
A Naming Scheme for Identifiers in a Locator/Identifier-Split Internet Architecture

Christoph Spleiß, Gerald Kunzmann1

Technische Universität München
Department of Communication Engineering

Munich, Germany
{christoph.spleiss, gerald.kunzmann}@tum.de

Abstract—Many researchers agreed that splitting the IP-
address into a locator and an identifier seems to be a promising
approach for a Future Internet Architecture. Although this so-
lution addresses the most critical issues of today’s architecture,
new challenges arise through the mapping system which is
necessary to resolve identifiers into the corresponding locators.
One interesting question is how the naming of identifiers is
achieved. In this work we give an overview of a naming scheme
for identifiers based on the HiiMap locator/ID split Internet
architecture. The naming scheme supports user-friendly iden-
tifiers for hosts, content and persons and does not rely on DNS.
We furthermore give a possible solution for a lookup algorithm
that can deal with spelling mistakes and typing errors.

Keywords-Locator/ID split; Future Internet; Naming
schemes; Content Addressing

I. INTRODUCTION

Today’s Internet architecture has been developed over 40
years ago and its only purpose was to interconnect a few
single nodes. No one expected that the Internet and the
number of connected devices would grow to the current size.
Measurements show that the Internet continues growing at a
tremendous high rate [1]. The address space of the current
IPv4 addresses is already too small to address every single
node in the Internet and the growth of BGP routing tables
sizes becomes critical for the Internet’s scalability [2]. While
IPv6 is a promising solution for the shortage of addresses, it
will probably increase the BGP routing table problem. Be-
sides that, more and more devices connected to the Internet
are mobile, such as smart phones or netbooks. However, the
current Internet architecture has only very weak support for
mobility as the IP address changes whenever a device roams
between different access points.

Separating the current IP address into two independent
parts for reachability and identification is a possible solution
to many problematic issues with today’s Internet [3]. With
this approach a known identifier (ID) can always be used to
reach a specific host, no matter where it is currently attached
to the network. However, not only the number of hosts has
developed differently than initially expected, but also the
way people use the Internet. Today, the focus of the Internet
is on accessing a specific piece of information and the host

1G. Kunzmann is now working for DOCOMO Communications Labora-
tories Europe GmbH, Landsberger Strasse 312, Munich, Germany.

that stores the information os of minor interest. Furthermore,
the emergence of social networks, Web 2.0 applications,
Voice over IP (VoIP) and instant messaging applications
additionally put the person in the focus of interest.

The split of locator and ID thereby offers perfect prereq-
uisites for the support of addressing schemes for content,
information and persons. Using this paradigm, an ID is
assigned for every host, content and person. A highly
scalable and flexible mapping system translates IDs into
the corresponding locators. Note that the mapping system
is mandatory a part of each locator/ID split architecture.

A crucial question is how to name and assign IDs. As IDs
are used as control information in communication protocols
and packet headers, they are mostly fixed-length bit strings
that can be hardly memorized by humans. In this work we
present a flexible and adaptable naming scheme for IDs that
can be used to identify hosts, content, persons and is open
for future extensions. Our approach is based on the HiiMap
Internet architecture [4]. HiiMap provides a highly scalable
and customizable mapping system. It does not rely on the
Domain Name System and allows each entity to calculate
the requested ID on its own.

The paper is structured as follows. In Section 2 we
discuss related work and different concepts of locator/ID
split architectures. Section 3 describes our approach of a
new naming scheme for IDs while Section 4 deals with a
lookup algorithm that tolerates spelling mistakes. Section 5
summarizes the results.

II. RELATED WORK

Many proposals dealing with the split of locator and ID
have been published so far, but only a few of them discuss
how to name IDs. However, almost all of them use a bit-
representation of constant length as ID.

A. Host-based approaches

LISP: In contrast to other architectures that are examined
in this work, LISP [5] does not separate the identifier from
routing purposes. Within an edge network, the normal IP-
address still serves as so called Endpoint Identifier (EID)
and routing address at the same time. While the EID is only
routable inside a LISP-domain, an additional set of addresses
is used for the routing between different LISP-domains,

57

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

which are called Routing Locators (RLOC). RLOCs are
the public IP-addresses of the border routers of a LISP-
domain, globally routable, and independent of the nodes’
IP addresses inside the domain. Whenever a packet is sent
between different LISP-domains, the packet is first routed to
the Ingress Tunnel Router (ITR), encapsulated in a new IP
packet, and routed to the Egress Tunnel Router (ETR) ac-
cording to the RLOCs. The ETR unpacks the original packet
and forwards it to the final destination. A mapping system
is necessary to resolve foreign EIDs (EIDs that are not in
the same domain) to the corresponding RLOCs. However,
as in normal IP networks, the EID changes whenever a node
changes its access to the network. Furthermore, DNS is still
necessary to resolve human readable hostnames to EIDs.

HIP: The Host Identity Protocol [6] implements the
locator/ID split by introducing an additional layer between
the networking and the transport layer. For applications
from higher layers the IP address is replaced by the Host
Identity Tag (HIT), which serves as identifier. The IP address
is purely used as locator. The main focuses of HIP are
security features. This is why the HIT is a hash value from
the public key of an asymmetric cryptographic key pair.
Encryption, authenticity and integrity can be achieved in this
way. However, the coupling of ID and public key is a major
drawback, as the ID changes whenever the key pair changes.
Furthermore, HIP solely is a host based protocol and is not
suitable for addressing content or persons.

HIMALIS: Like HIP, the HIMALIS (Heterogeneity In-
clusion and Mobility Adaption through Locator ID Sep-
aration in New Generation Network) [7]approach realizes
the locator/ID split by introducing an extra layer between
network and transport layer, the so-called Identity Sublayer.
HIMALIS can use any kind of addressing scheme for
locators and supports security features based on asymmetric
keys. However, it does not burden the ID with the semantic
of the public key. HIMALIS uses domain names as well as
host IDs to identify hosts. In contrast to other approaches,
a scheme how to generate host IDs out of the domain name
using a hash function is shown. However, they use multiple
databases for resolving domain names and hostnames to
IDs and locators. Furthermore, it is again only a host based
protocol.

B. Content-based approaches

Contrary to the host based approaches, the NetInf (Net-
work of Information) architecture shows how locator/ID
separation can be used for content-centric networking [8].
By introducing an information model for any kind of
content, NetInf allows fast retrieval of information in the
desired representation. Thereby, each information object
(IO) includes a detailed description of the content and its
representations, with locators pointing to the machine that
stores the information. The ID is assigned to the IO and is
composed out of hash values of the content creator’s public

key and a label created by the owner. In order to find a
specific IO, the creator’s public key and label must be known
exactly.

Another Future Internet Architecture focusing on content
is TRIAD [9]. One key aspect of TRIAD is the explicit
introduction of a content layer that supports content routing,
caching and transformation. It uses character strings of
variable length as content IDs and uses the packet address
solely as locator.

C. Hybrid approaches

A proposal for a Next Generation Internet architecture
that supports basically any kind of addressing scheme is the
HiiMap architecture [4]. Due to the locator/ID separation
and a highly flexible mapping system, HiiMap allows for
addressing hosts as well as content and is still open for
future extensions and requirements. In the following we use
the term entity for any addressable item.

The HiiMap architecture uses never changing IDs, so
called UIDs (unique ID) and two-tier locators. One part
of the locator is the LTA (local temporary address) that is
assigned by a provider and routable inside the provider’s
own network. The other part is the gUID (gateway UID).
This is a global routable address of the provider’s border
gateway router and specifies an entrance point into the
network.

HiiMap splits the mapping system into different regions,
whereby each region is its own independent mapping system
that is responsible for the UID/locator mappings of entities
registered in this region. The mapping system in each region
consists of a one-hop distributed hash table (DHT) to reduce
lookup times. As DHTs can be easily extended by adding
more hosts, the mapping system is highly scalable. In order
to query for UIDs which regions are not known, a region
prefix (RP) to any UID is introduced. This RP can be queried
at the so-called Global Authority (GA), which resolves UIDs
to RPs. The GA is a centralized instance and acts as root of a
public key infrastructure, thus providing a complete security
infrastructure. As RP-changes are expected to be rare, they
can be cached locally.

Like other approaches, HiiMap uses fixed length bit
strings of 128 bits as UID. As plaintext strings are not
feasible as UIDs due to their variable length, a naming
scheme is necessary to assign UIDs to all kinds of entities.
Thereby, the existing Domain Name System is to be replaced
by the more flexible HiiMap mapping system.

III. NEW NAMING SCHEME FOR IDENTIFIERS

In this section we introduce a naming scheme for IDs
that is suitable to address basically any entity and that can
be generated out of human friendly information. Although
we use the HiiMap architecture exemplarily, this approach
can also be adapted to other locator/ID split architectures.

58

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Type input to Hash(name) Ext 1 Ext 2
static host plain text domain name hash of local hostname service
non-static host global prefix assigned by provider hash of local hostname service
content plain text content name child content version number
person first + last name random communication channel

Table I: Content of UID fields corresponding to different types

A. General Requirements for Identifiers

When introducing a Future Internet Architecture based on
locator/ID separation, the ID has to fulfill some mandatory
demands. In the following we sum up general requirements
for IDs proposed by the ITU [10]:

• The ID’s namespace must completely decouple the
network layer from the higher layers.

• The ID uniquely identifiers the endpoint of a communi-
cation session from anything above the transport layer.

• The ID can be associated with more than one locator
and must not change whenever any locator changes.

• A communication session is linked to the ID and must
not disconnect when the locator changes.

In addition to the ITU we add further requirements:
• An ID must be able to address any kind of entity, not

only physical hosts.
• Every communication peer can generate the ID of its

communication partner out of a human readable and
memorable string.

• The ID is globally unique, but it must be possible to
issue temporary IDs.

• The registration process for new IDs must be easy.
• IDs must be suitable for DHT storage.
While some of these aspects mainly affect the design of

a Future Internet Architecture based on a locator/ID split,
some issues are directly related with the naming of IDs.

B. Generalized Identifier

As IDs are used in the transport layer protocol to de-
termine the endpoint of a communication, we cannot avoid
using fixed-length bit strings to realize packet headers of
constant size. In combination with DHTs, which also require
fixed-length bit strings, the usage of a hashing function is
obvious. In contrast to other approaches, which compose the
ID of one hash value only, we split the ID in several prede-
termined fields whose purposes are known to all entities.

In the following we introduce a generalized scheme how
to compose global unique IDs (UID) for any entity and
give concrete examples how to name hosts, content and
persons. Our scheme allows storing all these IDs in the
same mapping database and is yet flexible enough to support
different databases for different types of IDs.

Figure 1 shows the generalized structure of an ID, which
is composed of a region prefix (RP) and an UID. The UID
consists of a type field (T), the hash value of a human
friendly name for the entity to be identified as well as two

extension fields (Ext 1 and Ext 2). The UID is stored in the
mapping system of a specific region, denoted by the RP.

The type field T denotes to which type of entity the UID
belongs to. As T contains the most significant bits (MSB) in
the UID, it is possible to map different ID types to different
databases in the mapping system. We suggest 128 bits for the
UID, whereby 4 bits are used to determine the type, 76 bits
are assigned for the hash value, 32 bits for Ext 1 and 16 bits
for Ext 2. In the following we show realizations for applying
UIDs to different types: host, content and persons. Table I
gives an overview how the UID is composed according to
the type of entity. Each part is described in detail in the
following subsections. Note that our scheme is not limited
to these types, but can easily be extended.

RP T Hash(name) [Ext 1] Ext 2 UID

Figure 1: UID with regional prefix RP

C. Identifiers for Hosts

IDs for hosts are the most common use case today and
DNS is used to resolve hostnames to IP addresses in order
to access a specific machine. The hostname, or FQDN (full
qualified domain name), which specifies the exact position
in the tree hierarchy of the DNS, can be roughly compared
to the ID in a locator/ID separated Internet architecture.
However, the FQDN is not present in any lower layer
network protocol and is solely used in the application layer.

Similar to today’s hostnames, we introduce a hierarchy
to our UIDs. However, contrary to FQDNs, our scheme
is limited to two hierarchical levels: a global part and a
local part. While the global part is used to identify a whole
domain, e.g. a company or an institute at a university, the
local part is used to identify single machines within this
domain. Note that the term domain does not refer to a
domain like in today’s DNS hierarchy. A domain in our
solution has a flat hierarchy and simply defines an authority
for one or more hosts. We differentiate between two different
types of host UIDs:

1) Static Host Identifier: Static host UIDs are never
changing IDs that can be generated by hashing a human
readable hostname. Their main purpose is for companies or
private persons that want to have a registered UID that is
always assigned to their host or hosts.

Hash: The domain name part of the plain text hostname
is used to generate the hash field of the UID.

59

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Ext 1: The hash value of the local host name is used
to generate this field. A local hostname is unique inside a
specific domain. An example for a local hostname could be
pc-work-003 and mydomain.org as its domain name.

Ext 2: The Ext 2 field is used to identify a specific service
on the host. It can be compared to today’s TCP or UDP ports.
However, specifying a value in Ext 2 is not necessary when
requesting the locator for a specific host from the mapping
system and can therefore be set to zero. As the host is
precisely identified with the global and local UID part, it
is not necessary to store identifiers for each service of the
host as they would all point to the same locator. Instead,
Ext 2 is set to zero in the UID when querying the mapping
system and filled with the specific service identifier when
actually accessing the node.

For privacy reasons it is possible not to publish the UID
for a private host in the global mapping system but only in
a local database. For a single point of contact it is possible
to use an UID with Ext 1 set to zero, which points to
e.g. a login server, router or load balancer which forwards
incoming requests to internal hosts.

Note that the host has to update its mapping entry pointing
to new locator(s) upon a locator change.

2) Non-static Host Identifier: Contrary to static host IDs
and the basic idea of never changing UIDs there will always
be the need for non-static host UIDs, i.e. IDs that do not have
to be registered, that are assigned to a host for a specific time
and that are returned to the issuer if no longer needed. An
example can be a private household with a DSL or dial-
up Internet connection and a few hosts connected through
a router. Each host needs its own, distinct UID to make
connections with other hosts in the Internet, but it does
not need to have a registered, never changing UID if no
permanent accessibility is needed.

Hash: The global part is assigned to the router or middle-
box that provides Internet access to the other hosts during the
login process. It can be compared to the advertisement of an
IPv6 prefix. The global part is valid as long as the customer
has a contract with its provider. A new global part is assigned
if the customer changes its provider. Yet, the transfer of
a global UID part between different providers should be
possible. In order to assign non-static UIDs to customers,
each provider holds a pool of global UID parts. The mapping
entry for a specific dynamic host UID is generated by
the corresponding host immediately after assignment and
whenever its locator changes. However, each host with no
static UID assigned must proactively request a non-static
host UID, either by its provider or router and middlebox,
respectively. Note that the global part of a non-static host
UID does not consist out of the hash value of a plaintext
string and can therefore not be computed.

Ext 1: The local part of the dynamic UID is generated
from the local hostname of a machine.

Ext 2: Identical to the static host UIDs.

D. Identifiers for Content

As the focus of the users in the Internet is shifting from
accessing specific nodes to accessing information and con-
tent, different approaches towards a content-centric network
have been made as shown in Chapter II. By applying the
idea of information models, like the NetInf approach, to
our naming scheme, each content, which can be e.g. a
webpage or an audio or video file, gets its own distinct UID.
Hereby, the UID does not point to the data object itself but
to the information model of the content that has a further
description and metadata stored.

Hash: For generating the UID of content we have to
use a meaningful name that can describe the corresponding
content or information. While this is indeed quite a difficult
task, possible solutions could be e.g. the name of a well-
known newspaper like nytimes which refers to the front page
of the New York Times online version. Similar, the name of
an artist could refer to an information object where albums
or movies are linked.

As the spelling of the content description is not always
exactly known, we suggest a lookup mechanism that can
cope with minor spelling mistakes in the next chapter. In
our proposal this plaintext name is used as input to a known
hash function to generate the hash part of the UID.

Ext 1: This field is optional and can be used to access
some more specific parts of the content or information that
is directly related with the main object. This can be e.g. one
specific article from a newspaper site or one specific album
or piece of music from an artist. Ext 1 can help to avoid
downloading a maybe bigger object description of the main
content to gather the desired information. Another benefit is
that each child object has its own locator and therefore can
be stored on different locations while still being accessible
through its parent UID. This is not possible today as e.g.
the URL of a newspaper article is directly coupled with the
host storing the information.

Ext 2: This field can be used to access a specific version
of the desired content or information. Like in a versioning
system, the Ext 2 field allows the user to easily access any
earlier version and the changes made to the information. The
actual version can be obtained by setting Ext 2 to zero.

Unlike with host addressing, we cannot simply connect
to a locator returned by the mapping system. As the infor-
mation object is a description of content or information, the
requesting application or user has to evaluate the information
object and select the desired representation according to the
users needs. Thus, the network stack will not evaluate the
data received from the mapping system for a content UID
query but forward it to the corresponding application.

Note, n case a name, e.g. nytimes, refers to both a host
(company) as well as content (webpage), the type field is
used to differentiate whether a host or a content locator is
returned.

60

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

E. Identifiers for Persons

With the emergence of social networks, Internet-capable
devices, Voice-over-IP (VoIP), etc., the need for personal IDs
arose, as the person inself is moving in the focus of interest.
Whenever somebody wants to contact a specific person he
is interested in the communication with that person and
does not want to care about the device, e.g. which phone or
computer the person is currently using for communication.
However, the user must have the possibility to choose the
communication channel. That can be an email, a phone call,
a message on a mailbox, a chat with an instant messenger
or a message in a social network and so on.

Hash: The main part of a person’s UID consists of a hash
value calculated from the person’s full name, i.e. first name
plus last name. As many people have the same first and
last name, the hash value is ambiguous and we need further
information to distinguish between different persons.

Ext 1: For this purpose we use a random number for Ext 1
when initially generating a person’s UID [11]. This initial
generation is not done by the person itself, but is issued by
a federal authority and valid for lifetime.

Ext 2: This field is used to specify the communication
channel to the corresponding person and has a set of prede-
termined values, e.g. for email, VoIP, or instant messaging.
Note, there are still enough unused values for future needs.
According to each Ext 2 value, different locators can be
stored in the mapping system, i.e., the Ext 2 value referring
to the VoIP account can point to the locator of a VoIP
provider or directly to a VoIP phone, the value referring to
the mailbox can point to a mail server. The mapping entry
for Ext 2 set to zero includes the person’s full name and,
depending on the person’s privacy settings, further details
about the person like birth date or current residential address.
Ext 2 set to one is used to get the locator of the machine
the person is currently working on if the corresponding
person agreed to publish this information. Thereby, the
communication channel can be signaled in a higher layer.

However, to contact a specific person, not only the per-
son’s name but also Ext 1 must be known. There are two
possibilities: First, the initiating person knows the correct
UID of its communication partner because they have ex-
changed it (like email addresses today). Second, the holder
of a personal UID can agree to be indexed in a directory that
is accessible through a personal UID with Ext 1 and Ext 2
set to zero. This directory can be compared to a phone book
and stores additional information about all persons that have
the same name including their random Ext 1 values.

IV. IDENTIFIER ASSIGNMENT AND LOOKUP

As each UID is globally unique by definition, it must
be ensured that only one entity at a time has a specific
UID assigned. It must be further prevented that any entity
is hijacking an UID for malicious purposes.

A. Registration and assignment

The registration process for a static host UID can be
compared to today’s domain names. Whenever a new static
host UID shall be registered, the corresponding mapping
region checks, like the NIC today, if a specific UID is already
registered. If the UID is unused, the mapping region creates
an initial entry in the mapping system, including the host’s
public key. From now on, the host can update its mapping
entry at any time, e.g. when it changes its access point. The
update message to the mapping system must be signed with
the host’s private key, thus avoiding the UID to be hijacked.
The UID at the node is configured via a system file like
/etc/hostname. The owner of a host must proclaim changing
the key-pair of a node at the mapping region.

The purpose of non-static UIDs is that they do not need
a registration process, as their prefixes are assigned by a
provider and therefore belong to that provider. However, it
must be possible for hosts with non-static UIDs to change
their mapping entries due to roaming although they have
not been individually registered. Therefore, whenever a new
non-static host UID is assigned, the provider creates the
initial mapping entry on behalf of the corresponding host
using the host’s public key. Then, the host can directly
update its locator at any time in the mapping system.
However, if a host wants to change its key pair, the node
must directly be connected to the provider. Only the provider
can verify that this host is allowed to update the public key
because the provider can verify the login data. If a host is
permanently relocated to another provider, it has to request
a new non-static host UID at its new access point. After that
it has to initiate the clearance of its old UID.

The procedure for content UIDs is basically the same like
for static host UIDs. The content creator has to initially
register the hash part of the UID at the mapping system.
However, it does not need to register each single content
that is provided. Then the content provider can freely create
new content that only differs in Ext 1 and Ext 2. A special
case is content that is free to public changes like Wikipedia.
Here, everybody is allowed to create a new version of the
corresponding content that differs in Ext 2 but changes must
be verified with the person’s key pair.

Unlike with UIDs for hosts or content, UIDs for persons
are assigned by an authority of the state. As the personal
UID can be used to make transactions and legal contracts,
it has to be guaranteed that the UID cannot be abused.
Furthermore, it has to be guaranteed that values for Ext 1
are unambiguous. That would not be the case if everybody
would generate its own random value for Ext 1. Thus, during
the registration process, an authority creates the mapping
entry for the person requesting a UID and deposits the
person’s public key. Then, the person can update and create
any entry for Ext 2 on its own. Changing the key pair must
be accomplished through the issuing authority.

61

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

B. Lookup mechanism

The idea of our naming scheme for IDs is based on the
fact that each UID can be generated out of a known plain text
string with a known hash function and without an additional
naming system like DNS. However, as the main part of any
UID consists of a hash function, the desired entity can only
be found if the plain text string that builds the UID is exactly
known and no spelling mistake or typing error occurred. To
overcome this drawback, we suggest a lookup mechanism
that is based on n-grams in addition to the pure UID lookup.

1) n-gram generation: Although DHTs only support
exact-match lookups, it is possible to use n-grams to perform
substring and similarity searches. Hereby, each plaintext
string is split up into substrings of length n, which are called
n-grams. The n-gram and its hash value is then stored as
key/value pair in the DHT [12].

A typical value for n is two or three. With n = 3, the
content name nytimes e.g. is split up into I = 5 trigrams
hi with i = 1, ..., I: nyt, yti, tim, ime, mes. Additional to
the actual mapping entry indexed by the UID, the hash
value H(hi) of each n-gram hi is inserted in the mapping
system together with the corresponding plain text name P .
Thereby, the mapping entry for an n-gram consists of the
tuple 〈H(hi); plaintext string〉 [11]. Although these tuples
are stored in the same mapping system like the UID, we
suggest using a different database within the mapping system
for performance reasons. Whenever the entity changes its
location, no updates of the n-grams are necessary, as they
do not contain any locator information but only the entitie’s
plaintext name.

2) Querying UIDs: Whenever querying the mapping sys-
tem for a specific UID, the first step in the lookup process
is using the precalculated (or already known) UID as query
parameter. Only if the mapping system is not able to find a
mapping entry to the corresponding UID, e.g. because of a
spelling mistake, the n-gram lookup is executed. It is up to
the user or application if an n-gram based query request is
initiated.

In doing so, the second step is to calculate the cor-
responding n-grams out of the plaintext string and query
the mapping system for each n-gram. The mapping system
sorts all matching n-grams according to the frequency of
the plaintext string and returns the list to the user. With
high probability, the desired plaintext has a high rank in the
returned list. By further correlating the input string with each
returned plaintext string, the result is even more precise [13].

As the user must evaluate the results returned by an
n-gram query, the network stack will forward that data
directly to the application, which is responsible for correct
representation. However, although this feature is similar to
Google’s ”Did you mean...?”, the mechanism is not suitable
to handle complex queries with semantically coherent terms
as Google can do.

V. CONCLUSION

In this work we presented a new naming scheme for IDs
in locator/ID separated Future Internet Architectures. The
generalized ID scheme is suitable for basically addressing
any kind of entity. We showed examples for hosts, content
and persons. Because each UID can be computed out of
a human readable plaintext string, an additional naming
system like DNS is not necessary any more. Due to the
extendible type field, we have the possibility to assign ID-
types for e.g. mobile phones, sensors or even cars or abstract
services that provide any functionality to a user. Because IDs
are independent from locators, a communication session is
not interrupted upon an access point change. Furthermore,
by introducing an n-gram based extended lookup mechanism
we are able to cope with spelling errors and typing mistakes,
thus improving the quality of experience for the user.

REFERENCES

[1] ISC, “The ISC Domain Survey,” http://www.isc.org/solutions/
survey, Internet System Consortium, 2010.

[2] A. Afanasyev, N. Tilley, B. Longstaff, and L. Zhang, “BGP
routing table: Trends and challenges,” in Proc. of the 12th
Youth Technological Conference Ḧigh Technologies and In-
tellectual Systems¨, Moscow, Russia, April 2010.

[3] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure,
“Evaluating the benefits of the locator/identifier separation,”
in Proc. of 2nd ACM/IEEE Internat. Workshop on mobility in
the evolving Internet architecture. ACM, 2007, pp. 1–6.

[4] O. Hanka, G. Kunzmann, C. Spleiss, and J. Eberspächer,
“HiiMap: Hierarchical Internet Mapping Architecture,” in 1st
Internat. Conf. on Future Information Networks, 2009.

[5] D. Farinacci, V. Fuller, D. Oran, D. Meyer, and S. Brim,
“Locator/ID separation protocol (LISP),” Draft, 2010.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-lisp-07

[6] R. Moskowitz and P. Nikander, “Host identity protocol (HIP)
architecture,” RFC 4423, Tech. Rep., May 2006.

[7] V. Kafle and M. Inoue, “HIMALIS: Heterogeneity Inclusion
and Mobility Adaptation through Locator ID Separation in
New Generation Network,” IEICE TRANSACTIONS on Com-
munications, vol. 93, no. 3, pp. 478–489, 2010.

[8] C. Dannewitz, “NetInf: An Information-Centric Design for
the Future Internet,” Proc. 3rd GI/ITG KuVS Workshop on
The Future Internet, May 2009.

[9] D. Cheriton and M. Gritter, “TRIAD: A new next-generation
Internet architecture,” Tech. Rep., 2000. [Online]. Available:
http://www.dsg.stanford.edu/triad

[10] ITU, Draft Recommendation ITU-T Y.2015: General require-
ments for ID/locator separation in NGN, 2009.

[11] G. Kunzmann, “Performance Analysis and Optimized Opera-
tion of Structured Overlay Networks,” Dissertation, Technis-
che Universität München, 2009.

[12] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica, “Complex queries in DHT-based peer-to-peer
networks,” Peer-to-Peer Systems, pp. 242–250, 2002.

[13] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus
among words: Lattice-based word error minimization,” in 6th
European Conf. on Speech Communication and Technology,
1999.

62

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

http://www.isc.org/solutions/survey
http://www.isc.org/solutions/survey
http://tools.ietf.org/html/draft-ietf-lisp-07
http://www.dsg.stanford.edu/triad

	Introduction
	Related Work
	Host-based approaches
	Content-based approaches
	Hybrid approaches

	New naming scheme for Identifiers
	General Requirements for Identifiers
	Generalized Identifier
	Identifiers for Hosts
	Static Host Identifier
	Non-static Host Identifier

	Identifiers for Content
	Identifiers for Persons

	Identifier assignment and lookup
	Registration and assignment
	Lookup mechanism
	n-gram generation
	Querying UIDs

	Conclusion
	References

