
Soft Error Mask Analysis on Program Level

Lei Xiong, Qingping Tan, Jianjun Xu

School of Computer

National University of Defense Technology

Changsha 410073, China

leixiong@nudt.edu.cn, eric.tan.6508@gmail.com, jjun.xu@gmail.com

Abstract—Computer hardware which consist billions of

transistors could fail because of soft errors with the improving

of semiconductor technology, and these failure could result in

incorrect program execution. However, soft errors could be

masked. Most methods of SIFT (Software-Implemented Fault

Tolerance) do not take mask into account. In fact, these parts

of program which could mask soft errors don’t need to be

added redundancy instructions with SIFT methods. These

parts of program are analyzed in this paper. We equal logical

errors of soft errors to errors in program. In our analysis, we

focus on two parts of program. One is idle program which is

related to control flow. The probability for them to be executed

is low. The other is dynamically dead codes. From static view,

dynamically dead codes include statically dead codes and

statically partial dead codes. By control flow graph, we analyze

the condition which could mask soft errors of these parts of

program. Finally, we design an experimental framework to

demonstrate our analysis. Those codes which we analyze show

their ability to mask soft errors.

Keywords-soft errors; error mask; fault tolerance; control

flow; dynamically dead codes

I. INTRODUCTION

Due to improvement of semiconductor technology,

transistors are getting smaller and faster. Those transistors

yield performance enhancements, but their lower threshold

voltages and tighter noise margins make them less reliable.

When facing energetic particles striking the chip,

microprocessors which consist billions of transistors are

susceptible to transient faults. Transient faults which are

also called soft errors are intermittent faults. These faults do

not cause permanent damage, but may result in incorrect

program execution by altering transferring signals or stored

values [1][2][3].

When soft errors appear, system could not be failure

because of soft error mask. For an instance, when the

hardware component which is not used encounters soft error,

it can’t affect system state. Soft error mask can be classified

several classes based on its effects on different level, such as

mask on architecture level and mask on program level. The

mechanism of soft error mask on program level is that

program errors which are caused by soft errors of hardware

are masked on the level of program with control flow and

data flow.

SIFT methods protect program to tolerate soft errors.

Most of SIFT methods are implemented by compiler. The

compiler which are implemented tolerance algorithm

compile common program to redundancy program. These

methods copy data which are used in program, and compute

every part of program twice to make sure the right result.

Most methods of SIFT do not take soft error mask into

account. However, it is obviously that there is no need to

copy those data which are related to those parts of program

which can mask soft errors. If we can distinguish these parts

of program which could mask soft errors from the whole

program, we can ignore these parts of program with a fault

tolerance method. Then, the method can lead to higher

performance.
This paper gives an analysis of soft error mask on the

level of program. Based on our analysis, we show these parts
of program which could mask soft error. In accordance with
those methods that protect program statically, these parts of
program are analyzed from a static approach. Those parts of
program which are idle program and dynamically dead codes
can mask program errors which are caused by soft errors.
Idle program which have low probability to be executed
can’t activate their program errors. Dynamically dead codes
on the contrary are executed, but their results don’t come to
be used. To meet the trade-off between reliability and
performance, we give a measurement to these parts of
program to decide if these parts of program need to be
protected with our method. To demonstrate our analysis, we
give some experiments by the method of simulation. Our rest
structures are as follows. In Section 2, we show two parts of
program which could mask error. Section 3 analyzes
conditional branches which is one of mask parts in program.
Section 4 shows dynamically dead codes which is another
mask part of program. We give an experiment frame in
Section 5. We show results of experiments and discuss these
results in Section 6. Section 7 is related work. In last Section,
we make a conclusion.

II. SOFT ERRORS AND ITS MASK ON PROGRAM LEVEL

Radiation of cosmic rays has an effect on semiconductor

chip. This event can cause a single event upset (SEU), and

SEU cause soft errors of hardware. These hardware include

storage, bus, cache and functional unit related to instruction

pipeline. Soft errors of hardware could lead to errors of

program during execution. These program errors could

449

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

mailto:leixiong@nudt.edu.cn
mailto:eric.tan.6508@gmail.com
mailto:jjun.xu@gmail.com

propagate in program with control flow and data flow. We

consider program errors which are caused by soft errors as

logical errors of soft error. Based on the mechanism that soft

errors on hardware affect program execution, we choose to

show program behaviors on the low level. It is convenient to

show the effect of soft errors to program on low level, such

as assembly language or machine language.

Based on our ground, when facing on energetic particle

striking, inter-arrival times for raw faults in hardware

components are independent and exponentially distributed

with density function te   [4]. When time t , in program,

we assume that the instruction whose execution is related to

time t is in the location of l . The number of functional

units which are related to execution of the instruction is

denoted as n . Density functions of these hardware

components are denoted as 1

1

t
e

 
, 2

2

t
e

  , … , nt

ne
 

.

The event that result of the instruction execution is right

equals to the event that these n functional units are reliable.

We denote the error probability of the instruction in the

location of l as ()P l . Then

1 2() 1 (1 ())(1 ()) (1 ())nP l P u P u P u     (1)

and

1 2()

1 2
0

() () n
t

t

nP l e dt
        

    (2)

We denote 1 2S n       , so

0
() S

t
t

SP l e dt
 

  (3)

We transform this formula:

0
() S

t
t

S

dt
P l e dl

dl

 
  (4)

Since execution time of most instructions is single cycle,

except some special instructions which need additional

instruction cycles. To simplify our model, we assume that

the average execution time of every instruction is the same.

As a result, time and number of executed instructions keep

linear relationship. So

0
() S

l
l

SP l e dl
 

  (5)

We can see from this formula that error locations in

program are almost exponentially distributed.

If soft errors of hardware lead to wrong results of

instructions and wrong results don’t affect program outcome,

we take the situation as soft error mask. Soft error mask is a

dynamic conception which is related to execution of

program. However, dynamic behaviors of program are

based on their static program. In this paper, program is

modeled statically. We discuss program from static

approach. There are several situations can mask soft errors

which are as follows.

1) Idle program can mask errors. We define idle program

as the part of program which are not executed during

one execution. These program parts which can’t be

executed, they are pure idle program. The quantity of

this program is small. Additionally, those parts of

program which have probability to be executed can be

idle program. These parts of program are not executed

during one execution. Soft errors on hardware which

are related to these parts of program are masked.

2) Dynamically dead instructions can mask errors in

program. The results of dynamically dead instructions

may not be used. They include two parts of program in

static program. One is statically dead codes, their

results are not used after these code. So their errors can

be masked. The other one is partially dead codes.

Partially dead codes are related to control flow. On

some paths results of these codes are used, but on some

other paths their results are dead. If results of these

codes are dead definitely, their errors are masked.

III. ERROR MASK OF IDLE PROGRAM

Idle program are parts of program which can’t be

executed in one execution. We use control flow graph to

describe the control flow of program. Its node represents

basic block which contains sequential instructions, its edge

represents a possibility of control flow path transition. Edge

decides the block which follows the last block.

A. Idle Program

We assume the process that one node chooses the next

node is a Markov process. Markov process is a type of

stochastic process in which the outcome of a given trial

depends only on the current state of the process. A system

consisting of a series of Markov events is called a Markov

chain [8]. As Figure 1 shows, we assign every basic block a

label, such as 1 2 3 , , nA A A A， ， , and we divide them into

several groups based on their position. We denote them as

iG . For example, 1A is the first node, 1 1{ }G A , 2 3 4, ,A A A

can be the next node of 1A , so we group them together,

2 2 3 4{ , , }G A A A . Like this, we group 5 6,A A together,

7 8 9, ,A A A are single group, 3 5 6{ , }G A A , 4 7{ }G A ,

5 8{ }G A , 6 9{ }G A . We denote the basic block which is

chosen to be executed as ciA according to iG , and ci iA G .

Moreover, we denote the set of chosen basic block as

1 2 3 (-1){ , , , , }ci c c c c iS A A A A . According to the definition of

Markov chain above, for a program, (1,2,3, ,)ciS i n is a

Markov chain. Every ciS is only decided by the state of

(-1)c iS . It is independent of other states. We denote the

probability of every branch as P . If the branch between

basic block iA and basic block jA , we denote ijP as

probability of the branch. We define the probability of a

branch as the ratio of the branch executing times to all

executing times of source basic block. If the branch is

definitely executed, the probability is 1, but we also describe

it as ijP .

450

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

A1
1

A2
1

A3
1 A4

1

A5
1 A6

1 A7
1

A8
1 A9

1

P25 P26 P37 P47

P79
P58 P68

P

P12 P13 P14

Figure 1. Control flow graph

B. Probability Tree and Its Effects to Soft Error Mask

As control flow graph shows, there is a probability for a

node to next node. And next node also has probability to

choose its next node. With control flow, every branch has its

probability to be executed. We call it as probability tree.

The probability of every branch is basic unit of this tree.

We analyze the probability tree from top to down. We

assume that the real probability of the first node is P . We

assume that the branch is from basic block i to basic block

j . The real probability of this branch can compute like this:

() () *ij real basicblock i ijP P P . The real probability of this branch

from basic block i to basic block j is the multiplicative

result of probability of basic block i and probability of this

branch. The execution probability of basic block i is the

sum of branch probability which points to the basic block i .

This is: () * ()basicblock i i realP P . We know the real

probability of the first basic block, so we can compute all

the real probability of probability tree from top to down.

To evaluate the trade-off between performance and

reliability of a tolerance computer system, we must not over

care the reliability of the computer system. So we have

reasons to ignore protection to some parts of program. We

give a threshold probability t . The threshold probability is

suitable for system requirement that meets the trade-off

between performance and reliability. We propose a new

software-implemented fault tolerance method which pursues

the trade-off between performance and reliability of system.

In our method, branch probability which is less than t is

ignored to be protected. In control flow graph, if the node

which is pointed by a branch is an end node, then there is no

other basic block next this basic block, we ignore the

destination node to be protected. If the node is not an end

node, there is a sub tree began with the destination node, we

ignore this sub tree to protect. For a static program, after the

application of our method to tolerate fault, the program

which we will protect is transformed. To the transformed

program, we do not need to adjust the probability of

branches. For example, in Figure 1, if 12P t , we ignore 2A

with its next branches and nodes to be protected. As a result,

the program slice that we will protect is transformed. The

program slice is described as Figure 2.

P

A1
1

P13
P14

A4
1

A3
1

P37

A7
1

P47

P79

A9
1

Figure 2. Control flow graph of program slice

IV. ERROR MASK OF DYNAMICALLY DEAD CODES

Dynamically dead instructions are those instructions

whose results are dead when program runs. They include

two classes of static codes. One is statically dead codes. The

saved results of this kind of codes are not used before the

saving place was written again. Shown as Figure 3, I2 is

statically dead instruction. The other one is partially dead

instructions. There are more than one path after this

instruction. On some execution paths the saved results of

this kind of instruction were not used before the saving

place was written again. The instruction is dead on those

execution paths. While, on other execution paths, the saved

results of this kind of instruction are used. On these

execution paths the instruction is alive. Partially dead

instruction is also related to conditional branch. Figure 4

shows an instance of partially dead instruction. I2 assigns a

value to variable X. After I2, there are two branches.

Variable X is used on the left branch, but it is not used

before assigning a new value to variable X of I5 on the right

branch. So instruction I2 is alive if left path is chosen, and

instruction I2 is dead if right path is chosen.

I1
1

I2:write(R)
1

......
1

In:write(R)
1

Many instructions that don't use result of R

Figure 3. Statically dead instructions

451

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

I1
1

I2:X=Y
1

I3:Z=X+Y
1

I4
1

I6
1

I7
1

I5:X=Z
1

Figure 4. Partially dead instructions

If an instruction is partially dead instruction, it must be in

a basic block which contains this instruction. Then the

execution probability of this instruction equals to the

execution probability of the basic block, and the latter has

been computed in Section 3. Then PDI basicblockP P . After

this partially dead instruction, there are many paths, some

make this instruction live, and some make this instruction

dead. We can compute the sum probabilities of which make

the partially dead instruction live. It equals to the sum of

branch probability which can make the instruction live, and

the sum probability of partially dead instruction to live is

liveP . So the final probability of this partially dead

instruction to live is I liveP  , ()I live PDI liveP P P    . We

assume a threshold probability as p . The variable p also

meets the extent of trade-off between performance and

reliability. To every partially dead instruction, if I liveP p  ,

we ignore protection to this partially dead instruction.

However, if I liveP p  , we still have to protect it with

redundancy instructions. As Figure 4 described, if

I liveP p  , the program slice, which we will protect, is

transformed. The program slice is as Figure 5.

I1
1

I3:Z=X+Y
1

I4
1

I6
1

I7
1

I5:X=Z
1

Figure 5. Control flow graph of program slice

.

V. EXPERIMENTAL FRAMEWORK

To demonstrate our analysis, we design an experimental

framework. Our experimental framework includes

SPEC2000 benchmarks, simplescalar tool set, and static

fault injection tool. We choose some integer benchmarks

from the SPEC2000 benchmark suite: gzip vpr, gcc, mcf,

crafty, parser, perlbmk, gap, vortex, bzip2, twolf. Their

sources are all written by C language. These benchmarks

were compiled using a modified version of GNU

GCC2.7.2.3 at the –O2 optimization level. To evaluate the

mask ability of benchmark, we run benchmark on

simplescalar tool set. Simplescalar tool set is a simulation

tool for simulating computer architecture of a processor. We

use sim-safe functional simulator to run our benchmark.

Sim-safe function simulator is safer compared with other

functional simulator such as sim-fast. We implement a static

fault injection tool to inject fault into benchmark program.

This tool can inject fault to determined location in program,

and it can also inject fault to any random location in

program.

The experimental framework is described as Figure 6.

Firstly, we compile benchmarks to assembly codes. Then,

we inject faults into assembly codes with fault injection tool.

Thirdly, we run this program on simplescalar tool set with

sim-safe simulator. Finally, we get simulation results.

Benchmark
programs

Fault
injection

tool

 programs
with faults

Simplescalar
tool set

Simulation
results

Figure 6. Experimental framework

VI. RESULT AND DISCUSSION

We give three error injection experiments. First, we inject

errors into determined locations which contain idle program

and partial dead codes. Second, we randomly inject error

into locations which contain idle program and partially dead

codes. Third, we randomly inject error into locations which

are all over the whole program. The first experiment is to

show that if the result of program can be still right when

these code encounter faults. The second experiment is also

to show this aim when faults are random. The third

experiment show results under the real situation that faults

turn on random location of program. In Section 2.1, we have

known error locations in program are exponential

distributed. In our experiment, we generate data by

exponential distribution with Monte Carlo simulation.

452

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

The statistics of conditional branch in SPEC2000

benchmark is as table 1. We can see from table 1 that the

quantity of conditional branch instructions is much enough

to be paid attention. Take benchmark bzip2 for example, the

whole number lines of its code is 4650 lines, the number of

its “if” statement is 245, and the number of its “switch”

statement is 10. One “if” statement is at least one line, and

one “switch” statement is at least two lines. These

conditional branch instructions are at least 265 lines of code.

Moreover, if we only care 80% of them, the rest codes

which we need not to protect is at least 53 lines. However,

these codes could be double or even more than 53 lines. If

the scale of program is larger than bzip2, these codes could

be more.

TABLE I. STATISTICS OF CONDITIONAL BRANCH IN SPEC2000

Spec name Counts of “if”

statement

Counts of “switch”

statement

gzip 400 2

vpr 870 38

gcc 12805 524

mcf 80 1

crafty 1098 29

parser 624 0

perlbmk 4174 183

gap 2921 23

vortex 3018 49

Bzip2 245 10

twolf 1378 5

The percentage of statically partial dead code with

SPEC2000 is as Figure 7. We can see from the figure that

partial dead code is an important part of program. Among

11 SPEC2000 benchmarks, the percentage of statically

partial dead code varies from 0.1 to nearly 7. In additional to

idle program, these parts of program take a lot of account of

the program. With our software-implemented fault tolerance

method to tolerate soft errors, there could be a dramatic

enhancement to system performance.

percentage of statically dead codes

0
1
2
3
4
5
6
7
8

gzip vpr gcc
m

cf

cr
af

ty

par
se

r

per
lb

m
k

gap

vor
te

x
bzip

2

tw
olf

benchmarks

p
e
r
c
e
n
t
a
g
e

statically dead codes

Figure 7. Percentage of statically partial dead codes in SPEC2000

We choose one of the SPEC2000 benchmark gzip to

show our experimental results. For the ability of soft errors

mask, gzip can present the behavior of all programs. Gzip is

a data compression program. It uses Lempel-Ziv coding

(LZ77) as its compression algorithm. We choose 1000 files

to be compressed with gzip, and then we calculate the

probabilities of conditional branches. We choose 20% as a

threshold probability. It means we only care about those

conditional branches whose probability is above 20%.

Based on the frequency of soft errors and our program

length, we statically inject 5 faults into the program in every

experiment. For each experiment, we test 10 times. Then we

calculate the average results. Results of Experiment are as

Figure 8.

percentage of wrong program outcome

0

10

20

30

40

50

60

70

experiment1 experiment2 experiment3

p
e
r
c
e
n
t
a
g
e wrong outcome

Figure 8. Simulation results of gzip with fault injection

Experiment 1 shows fault tolerance ability of program part

which has low probability to be executed. Experiment 2
shows fault tolerance ability of program part which has
probability to be executed. Experiment 3 shows fault
tolerance ability of the whole program. From results of
experiment 1, when there are errors in conditional branches
or statically partial dead code whose probability to be
executed is low, execution of the program can not be
affected. This result matches our analysis. From Figure 8 of
experiment 2, the effects of conditional branches and
statically partial dead code to the program outcome is limited,
these effects are weakened by control flow. From experiment
3, we can see that the ability of program to tolerate errors is
considerable during its execution. Except these codes which
are related to control flow can tolerate errors in program,
there are still other codes can tolerate errors, such as errors
are masked from logical operation.

VII. RELATED WORK

Soft error mask has been studied on the level of

architecture. Mukherjee distinguishes these bits which do

not affect program outcome as unACE bits [1]. If there is a

fault on unACE bits, there is no effect to the system because

unACE bits can’t affect committed architectural state.

Mukherjee also proposes AVF (Architectural Vulnerability

Factor) to measure reliability of hardware component. AVF

is the probability that a user-visible error will occur given a

453

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

bit flips in a storage cell. LI et al. have shown AVF of

hardware component is a variable because of soft error mask

[4]. Mukherjee et al. show several situations of unACE bits

on micro-architecture and architecture level [1].

There are some algorithms of soft error tolerance on

software level, such as EDDI, SWIFT, and so on

[2][3][5][6]. They are different from the method

implemented by hardware duplication. Hardware methods

protect hardware structure and duplicate hardware structure

which can be corrupted. However, software methods protect

programs by duplicating instructions and adding checking

instructions into program [5] [6]. We take EDDI for

example. It is implemented by compiler. The compiler

compile source program to executable program containing

redundancy code. EDDI divides program into many basic

blocks. Based on basic block, it partition basic block by

store instruction, this is called storeless basic block. Inside a

storeless basic every instruction is duplicated, and before

store instruction every result is checked [5]. However,

EDDI, SWIFT protect program on the uniform way. No

matter whether these sections of program can mask error or

not, they protect them on the same way. Although these

methods can get a good reliability of system, they sacrifice

the performance of system.

 Except these soft errors mask on architecture level, there

are some situations for soft error to be masked on the level

of program. Based on software protection, we give an

analysis of soft errors mask on program level. Our results of

analysis are helpful to optimize these tolerance systems

which are implemented by the method of software-

implemented hardware fault tolerance. The purpose of our

analysis is to meet the trade-off between performance and

reliability. If these parts of program which can mask soft

error are clear for us, there is no need to protect these parts

of program. Therefore, redundancy instructions are reduced.

Performance of system can be improved.

VIII. CONCLUSION

Model transistors of processor get smaller and faster, but

their lower threshold voltages and tighter noise margins

make them less reliable. When computer system expose in

the space, its components may encounter soft errors because

of high energy particle striking. Once soft error of computer

component happened, it may affect the execution of

program. However, soft errors of computer components may

not lead to system failure, because these soft errors may be

masked. This paper analyze soft error mask on program

level. Based on the mechanism that soft errors affect system

reliability, we compute error distribution caused by soft

error in program. In our analysis, there are two kinds parts

of program related to control flow can mask soft error. They

are idle program which is related to conditional branches

and dynamically dead codes. Based on control flow graph,

the probability of branches and basic block to be executed

are computed by our method. In our method, if the

probability of basic block to be executed is less than

threshold probability, we considered this basic block as idle

program. These parts of program need not to be protected.

Dynamically dead code includes statically dead code and

partially dead code from static approach. In our method,

partially dead code whose probability to live is less than

threshold are ignored to be protected. We designed an

experiment frame to demonstrate our analysis. In our

experiment, we statically inject faults to program, and run

program on a simulator. Experiment Results match our

analysis.

REFERENCES

[1] S. Mukherjee, Architecture Design for Soft Errors, USA, Morgan
Kaufmann Publishers, 2008.

[2] G.A. Reis, J. Chang, and N. Vachharajani, “Software-Controlled
Fault Tolerance. ACM Transactions on Architecture and Code
Optimization”, Vol.V, No. N, 2005, pp. 1-28.

[3] G.A. Reis, “Software Modulated Fault Tolerance”, A dissertation
presented to the faculty of Princeton University, 2008.

[4] X. Li, “Soft Error Modeling and Analysis for Microprocessors”, A
dissertation presented to computer science in the graduate college of
the University of Illinois, 2008.

[5] N. Oh et al., “Error Detection by Duplicated Instructions in Super-
Scalar Processors”, IEEE Transactions on Reliability, Vol. 51, No. 1,
March 2002, pp. 63–75.

[6] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software-implemented Fault Tolerance”, In Proceedings of
the 3rd International Symposium on Code Generation and
Optimization. March 2005, pp. 243–254.

[7] A. Benso, S.D. Carlo, and G.D. Natale, “Static Analysis of SEU
Effects on Software Applications”, International test conference.
IEEE, 2002, pp. 500-508.

[8] S. Sparks, S. Embleton, and R. Cunningham, “Automated
Vulnerability Analysis Leveraging Control Flow for Evolutionary
Input Crafting”, Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007), 2007, pp.477-486.

[9] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Apprach, Third Edition, BeiJing, China Machine Press,
2002.

[10] L. David and I. Pusut, “Static Determination of Probabilistic
Execution Times”, Proceedings of the 12th 16th Euromicro
Conference on Real-Time System, ECRTS, 2004.

[11] J. Singer, “Towards Probabilistic Program Slicing”, Dagstuhl
Seminar Proceedings 05451 Beyond Program Slicing, 2006.

[12] M. Weiser, “Program slicing”, IEEE Transactions on software
Engineering. August 1984, pp. 352-357.

[13] J.A .Butts and G. Sohi, “Dynamic Dead-Instruction Detection and
Elimination”, In 10th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). October 2002, pp. 199-210.

[14] B. Fahs, S. Bose and M. Crum, “Performance Characterization of a
Hardware Mechanism for Dynamic Optimization”, In 34th Annual
International Symposium on Microarchitecture (MICRO). December
2001, pp. 16-27.

[15] A. V.Aho, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques and Tools, Addison-Wwsley, 1985.

[16] S.S. Muchnick, Advanced Compoiler Design Implementation,
Elsevier, 1997.

[17] J. Xue, Q. Cai, and L. Gao, “Partial Dead Code Elimination on
Predicated Region”, software-practice and experience. 36, 2004, pp.
1655-1685.

454

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

