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Abstract—Computer hardware which consist billions of 

transistors could fail because of soft errors with the improving 

of semiconductor technology, and these failure could result in 

incorrect program execution. However, soft errors could be 

masked. Most methods of SIFT (Software-Implemented Fault 

Tolerance) do not take mask into account. In fact, these parts 

of program which could mask soft errors don’t need to be 

added redundancy instructions with SIFT methods. These 

parts of program are analyzed in this paper. We equal logical 

errors of soft errors to errors in program. In our analysis, we 

focus on two parts of program. One is idle program which is 

related to control flow. The probability for them to be executed 

is low. The other is dynamically dead codes. From static view, 

dynamically dead codes include statically dead codes and 

statically partial dead codes. By control flow graph, we analyze 

the condition which could mask soft errors of these parts of 

program. Finally, we design an experimental framework to 

demonstrate our analysis. Those codes which we analyze show 

their ability to mask soft errors.  

Keywords-soft errors; error mask; fault tolerance; control 

flow; dynamically dead codes 

I.  INTRODUCTION 

Due to improvement of semiconductor technology, 

transistors are getting smaller and faster. Those transistors 

yield performance enhancements, but their lower threshold 

voltages and tighter noise margins make them less reliable. 

When facing energetic particles striking the chip, 

microprocessors which consist billions of transistors are 

susceptible to transient faults. Transient faults which are 

also called soft errors are intermittent faults. These faults do 

not cause permanent damage, but may result in incorrect 

program execution by altering transferring signals or stored 

values [1][2][3]. 

When soft errors appear, system could not be failure 

because of soft error mask. For an instance, when the 

hardware component which is not used encounters soft error, 

it can’t affect system state. Soft error mask can be classified 

several classes based on its effects on different level, such as 

mask on architecture level and mask on program level. The 

mechanism of soft error mask on program level is that 

program errors which are caused by soft errors of hardware 

are masked on the level of program with control flow and 

data flow.  

SIFT methods protect program to tolerate soft errors. 

Most of SIFT methods are implemented by compiler. The 

compiler which are implemented tolerance algorithm 

compile common program to redundancy program. These 

methods copy data which are used in program, and compute 

every part of program twice to make sure the right result. 

Most methods of SIFT do not take soft error mask into 

account. However, it is obviously that there is no need to 

copy those data which are related to those parts of program 

which can mask soft errors. If we can distinguish these parts 

of program which could mask soft errors from the whole 

program, we can ignore these parts of program with a fault 

tolerance method. Then, the method can lead to higher 

performance. 
This paper gives an analysis of soft error mask on the 

level of program. Based on our analysis, we show these parts 
of program which could mask soft error. In accordance with 
those methods that protect program statically, these parts of 
program are analyzed from a static approach. Those parts of 
program which are idle program and dynamically dead codes 
can mask program errors which are caused by soft errors. 
Idle program which have low probability to be executed 
can’t activate their program errors. Dynamically dead codes 
on the contrary are executed, but their results don’t come to 
be used. To meet the trade-off between reliability and 
performance, we give a measurement to these parts of 
program to decide if these parts of program need to be 
protected with our method. To demonstrate our analysis, we 
give some experiments by the method of simulation. Our rest 
structures are as follows. In Section 2, we show two parts of 
program which could mask error. Section 3 analyzes 
conditional branches which is one of mask parts in program. 
Section 4 shows dynamically dead codes which is another 
mask part of program. We give an experiment frame in 
Section 5. We show results of experiments and discuss these 
results in Section 6. Section 7 is related work. In last Section, 
we make a conclusion. 

II. SOFT ERRORS AND ITS MASK ON PROGRAM LEVEL 

Radiation of cosmic rays has an effect on semiconductor 

chip. This event can cause a single event upset (SEU), and 

SEU cause soft errors of hardware. These hardware include 

storage, bus, cache and functional unit related to instruction 

pipeline. Soft errors of hardware could lead to errors of 

program during execution. These program errors could 
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propagate in program with control flow and data flow. We 

consider program errors which are caused by soft errors as 

logical errors of soft error. Based on the mechanism that soft 

errors on hardware affect program execution, we choose to 

show program behaviors on the low level. It is convenient to 

show the effect of soft errors to program on low level, such 

as assembly language or machine language.  

Based on our ground, when facing on energetic particle 

striking, inter-arrival times for raw faults in hardware 

components are independent and exponentially distributed 

with density function te    [4]. When time t , in program, 

we assume that the instruction whose execution is related to 

time t  is in the location of l . The number of functional 

units which are related to execution of the instruction is 

denoted as n . Density functions of these hardware 

components are denoted as 1

1

t
e

 
, 2

2

t
e

   , … , nt

ne
 

. 

The event that result of the instruction execution is right 

equals to the event that these n  functional units are reliable. 

We denote the error probability of the instruction in the 

location of l  as ( )P l . Then  

1 2( ) 1 (1 ( ))(1 ( )) (1 ( ))nP l P u P u P u         (1) 
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We denote 1 2S n       , so   
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We transform this formula:  

0
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Since execution time of most instructions is single cycle, 

except some special instructions which need additional 

instruction cycles. To simplify our model, we assume that 

the average execution time of every instruction is the same. 

As a result, time and number of executed instructions keep 

linear relationship. So   

0
( ) S

l
l

SP l e dl
 

             (5) 

We can see from this formula that error locations in 

program are almost exponentially distributed. 

If soft errors of hardware lead to wrong results of 

instructions and wrong results don’t affect program outcome, 

we take the situation as soft error mask. Soft error mask is a 

dynamic conception which is related to execution of 

program. However, dynamic behaviors of program are 

based on their static program. In this paper, program is 

modeled statically. We discuss program from static 

approach. There are several situations can mask soft errors 

which are as follows. 

1) Idle program can mask errors. We define idle program 

as the part of program which are not executed during 

one execution. These program parts which can’t be 

executed, they are pure idle program. The quantity of 

this program is small. Additionally, those parts of 

program which have probability to be executed can be 

idle program. These parts of program are not executed 

during one execution. Soft errors on hardware which 

are related to these parts of program are masked.  

2) Dynamically dead instructions can mask errors in 

program. The results of dynamically dead instructions 

may not be used. They include two parts of program in 

static program. One is statically dead codes, their 

results are not used after these code. So their errors can 

be masked. The other one is partially dead codes. 

Partially dead codes are related to control flow. On 

some paths results of these codes are used, but on some 

other paths their results are dead. If results of these 

codes are dead definitely, their errors are masked.  

III. ERROR MASK OF IDLE PROGRAM 

Idle program are parts of program which can’t be 

executed in one execution. We use control flow graph to 

describe the control flow of program. Its node represents 

basic block which contains sequential instructions, its edge 

represents a possibility of control flow path transition. Edge 

decides the block which follows the last block. 

A. Idle Program 

We assume the process that one node chooses the next 

node is a Markov process. Markov process is a type of 

stochastic process in which the outcome of a given trial 

depends only on the current state of the process. A system 

consisting of a series of Markov events is called a Markov 

chain [8]. As Figure 1 shows, we assign every basic block a 

label, such as 1 2 3 , , nA A A A， ， , and we divide them into 

several groups based on their position. We denote them as 

iG . For example, 1A  is the first node, 1 1{ }G A , 2 3 4, ,A A A  

can be the next node of 1A , so we group them together, 

2 2 3 4{ , , }G A A A . Like this, we group 5 6,A A  together, 

7 8 9, ,A A A  are single group, 3 5 6{ , }G A A , 4 7{ }G A , 

5 8{ }G A , 6 9{ }G A . We denote the basic block which is 

chosen to be executed as ciA  according to iG , and ci iA G . 

Moreover, we denote the set of chosen basic block as 

1 2 3 ( -1){ , , , , }ci c c c c iS A A A A . According to the definition of 

Markov chain above, for a program, ( 1,2,3, , )ciS i n  is a 

Markov chain. Every ciS  is only decided by the state of 

( -1)c iS . It is independent of other states. We denote the 

probability of every branch as P . If the branch between 

basic block iA  and basic block jA , we denote ijP  as 

probability of the branch. We define the probability of a 

branch as the ratio of the branch executing times to all 

executing times of source basic block. If the branch is 

definitely executed, the probability is 1, but we also describe 

it as ijP . 

 

450

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011              ISBN:978-1-61208-113-7



A1
1

A2
1

A3
1 A4

1

A5
1 A6

1 A7
1

A8
1 A9

1

P25 P26 P37 P47

P79
P58 P68

P

P12 P13 P14

 
Figure 1.  Control flow graph 

 

B. Probability Tree and Its Effects to Soft Error Mask 

As control flow graph shows, there is a probability for a 

node to next node. And next node also has probability to 

choose its next node. With control flow, every branch has its 

probability to be executed. We call it as probability tree. 

The probability of every branch is basic unit of this tree. 

We analyze the probability tree from top to down. We 

assume that the real probability of the first node is P . We 

assume that the branch is from basic block i  to basic block 

j . The real probability of this branch can compute like this:  

( ) ( ) *ij real basicblock i ijP P P . The real probability of this branch 

from basic block i  to basic block j  is the multiplicative 

result of probability of basic block i  and probability of this 

branch. The execution probability of basic block i  is the 

sum of branch probability which points to the basic block i . 

This is: ( ) * ( )basicblock i i realP P . We know the real 

probability of the first basic block, so we can compute all 

the real probability of probability tree from top to down. 

To evaluate the trade-off between performance and 

reliability of a tolerance computer system, we must not over 

care the reliability of the computer system. So we have 

reasons to ignore protection to some parts of program. We 

give a threshold probability t . The threshold probability is 

suitable for system requirement that meets the trade-off 

between performance and reliability. We propose a new 

software-implemented fault tolerance method which pursues 

the trade-off between performance and reliability of system. 

In our method, branch probability which is less than t  is 

ignored to be protected. In control flow graph, if the node 

which is pointed by a branch is an end node, then there is no 

other basic block next this basic block, we ignore the 

destination node to be protected. If the node is not an end 

node, there is a sub tree began with the destination node, we 

ignore this sub tree to protect. For a static program, after the 

application of our method to tolerate fault, the program 

which we will protect is transformed. To the transformed 

program, we do not need to adjust the probability of 

branches. For example, in Figure 1, if 12P t , we ignore 2A  

with its next branches and nodes to be protected. As a result, 

the program slice that we will protect is transformed. The 

program slice is described as Figure 2.  
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Figure 2.  Control flow graph of program slice 

 

IV. ERROR MASK OF DYNAMICALLY DEAD CODES 

Dynamically dead instructions are those instructions 

whose results are dead when program runs. They include 

two classes of static codes. One is statically dead codes. The 

saved results of this kind of codes are not used before the 

saving place was written again. Shown as Figure 3, I2 is 

statically dead instruction. The other one is partially dead 

instructions. There are more than one path after this 

instruction. On some execution paths the saved results of 

this kind of instruction were not used before the saving 

place was written again. The instruction is dead on those 

execution paths. While, on other execution paths, the saved 

results of this kind of instruction are used. On these 

execution paths the instruction is alive. Partially dead 

instruction is also related to conditional branch. Figure 4 

shows an instance of partially dead instruction. I2 assigns a 

value to variable X. After I2, there are two branches. 

Variable X is used on the left branch, but it is not used 

before assigning a new value to variable X of I5 on the right 

branch. So instruction I2 is alive if left path is chosen, and 

instruction I2 is dead if right path is chosen. 

 

I1
1

I2:write(R)
1

......
1

In:write(R)
1

Many instructions that don't use result of R

 
Figure 3.  Statically dead instructions 
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Figure 4.  Partially dead instructions 

 
If an instruction is partially dead instruction, it must be in 

a basic block which contains this instruction. Then the 

execution probability of this instruction equals to the 

execution probability of the basic block, and the latter has 

been computed in Section 3. Then PDI basicblockP P . After 

this partially dead instruction, there are many paths, some 

make this instruction live, and some make this instruction 

dead. We can compute the sum probabilities of which make 

the partially dead instruction live. It equals to the sum of 

branch probability which can make the instruction live, and 

the sum probability of partially dead instruction to live is 

liveP . So the final probability of this partially dead 

instruction to live is I liveP  ,  ( )I live PDI liveP P P    . We 

assume a threshold probability as p . The variable p  also 

meets the extent of trade-off between performance and 

reliability. To every partially dead instruction, if I liveP p  , 

we ignore protection to this partially dead instruction. 

However, if I liveP p  , we still have to protect it with 

redundancy instructions. As Figure 4 described, if 

I liveP p  , the program slice, which we will protect, is 

transformed. The program slice is as Figure 5. 

 

I1
1

I3:Z=X+Y
1

I4
1

I6
1

I7
1

I5:X=Z
1

 

Figure 5.  Control flow graph of program slice 

. 

V. EXPERIMENTAL FRAMEWORK 

To demonstrate our analysis, we design an experimental 

framework. Our experimental framework includes 

SPEC2000 benchmarks, simplescalar tool set, and static 

fault injection tool. We choose some integer benchmarks 

from the SPEC2000 benchmark suite: gzip vpr, gcc, mcf, 

crafty, parser, perlbmk, gap, vortex, bzip2, twolf. Their 

sources are all written by C language. These benchmarks 

were compiled using a modified version of GNU 

GCC2.7.2.3 at the –O2 optimization level. To evaluate the 

mask ability of benchmark, we run benchmark on 

simplescalar tool set. Simplescalar tool set is a simulation 

tool for simulating computer architecture of a processor. We 

use sim-safe functional simulator to run our benchmark. 

Sim-safe function simulator is safer compared with other 

functional simulator such as sim-fast. We implement a static 

fault injection tool to inject fault into benchmark program. 

This tool can inject fault to determined location in program, 

and it can also inject fault to any random location in 

program. 

The experimental framework is described as Figure 6. 

Firstly, we compile benchmarks to assembly codes. Then, 

we inject faults into assembly codes with fault injection tool. 

Thirdly, we run this program on simplescalar tool set with 

sim-safe simulator. Finally, we get simulation results.  

 

Benchmark
programs

Fault
injection

tool

 programs
with faults

Simplescalar
tool set

Simulation
results

  
Figure 6.  Experimental framework 

 

VI. RESULT AND DISCUSSION 

We give three error injection experiments. First, we inject 

errors into determined locations which contain idle program 

and partial dead codes. Second, we randomly inject error 

into locations which contain idle program and partially dead 

codes. Third, we randomly inject error into locations which 

are all over the whole program. The first experiment is to 

show that if the result of program can be still right when 

these code encounter faults. The second experiment is also 

to show this aim when faults are random. The third 

experiment show results under the real situation that faults 

turn on random location of program. In Section 2.1, we have 

known error locations in program are exponential 

distributed. In our experiment, we generate data by 

exponential distribution with Monte Carlo simulation.  
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The statistics of conditional branch in SPEC2000 

benchmark is as table 1. We can see from table 1 that the 

quantity of conditional branch instructions is much enough 

to be paid attention. Take benchmark bzip2 for example, the 

whole number lines of its code is 4650 lines, the number of 

its “if” statement is 245, and the number of its “switch” 

statement is 10. One “if” statement is at least one line, and 

one “switch” statement is at least two lines. These 

conditional branch instructions are at least 265 lines of code. 

Moreover, if we only care 80% of them, the rest codes 

which we need not to protect is at least 53 lines. However, 

these codes could be double or even more than 53 lines. If 

the scale of program is larger than bzip2, these codes could 

be more.  

 

TABLE I.  STATISTICS OF CONDITIONAL BRANCH IN SPEC2000 

Spec name Counts of “if” 

statement 

Counts of “switch” 

statement 

gzip 400 2 

vpr 870 38 

gcc 12805 524 

mcf 80 1 

crafty 1098 29 

parser 624 0 

perlbmk 4174 183 

gap 2921 23 

vortex 3018 49 

Bzip2 245 10 

twolf 1378 5 

   

The percentage of statically partial dead code with 

SPEC2000 is as Figure 7. We can see from the figure that 

partial dead code is an important part of program. Among 

11 SPEC2000 benchmarks, the percentage of statically 

partial dead code varies from 0.1 to nearly 7. In additional to 

idle program, these parts of program take a lot of account of 

the program. With our software-implemented fault tolerance 

method to tolerate soft errors, there could be a dramatic 

enhancement to system performance.  
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Figure 7.  Percentage of statically partial dead codes in SPEC2000 

 

We choose one of the SPEC2000 benchmark gzip to 

show our experimental results. For the ability of soft errors 

mask, gzip can present the behavior of all programs. Gzip is 

a data compression program. It uses Lempel-Ziv coding 

(LZ77) as its compression algorithm. We choose 1000 files 

to be compressed with gzip, and then we calculate the 

probabilities of conditional branches. We choose 20% as a 

threshold probability. It means we only care about those 

conditional branches whose probability is above 20%. 

Based on the frequency of soft errors and our program 

length, we statically inject 5 faults into the program in every 

experiment. For each experiment, we test 10 times. Then we 

calculate the average results. Results of Experiment are as 

Figure 8. 
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Figure 8.  Simulation results of gzip with fault injection 

   
Experiment 1 shows fault tolerance ability of program part 

which has low probability to be executed. Experiment 2 
shows fault tolerance ability of program part which has 
probability to be executed. Experiment 3 shows fault 
tolerance ability of the whole program. From results of 
experiment 1, when there are errors in conditional branches 
or statically partial dead code whose probability to be 
executed is low, execution of the program can not be 
affected. This result matches our analysis. From Figure 8 of 
experiment 2, the effects of conditional branches and 
statically partial dead code to the program outcome is limited, 
these effects are weakened by control flow. From experiment 
3, we can see that the ability of program to tolerate errors is 
considerable during its execution. Except these codes which 
are related to control flow can tolerate errors in program, 
there are still other codes can tolerate errors, such as errors 
are masked from logical operation. 

VII. RELATED WORK 

Soft error mask has been studied on the level of 

architecture.  Mukherjee distinguishes these bits which do 

not affect program outcome as unACE bits [1]. If there is a 

fault on unACE bits, there is no effect to the system because 

unACE bits can’t affect committed architectural state. 

Mukherjee also proposes AVF (Architectural Vulnerability 

Factor) to measure reliability of hardware component. AVF 

is the probability that a user-visible error will occur given a 
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bit flips in a storage cell. LI et al. have shown AVF of 

hardware component is a variable because of soft error mask 

[4]. Mukherjee et al. show several situations of unACE bits 

on micro-architecture and architecture level [1].   

There are some algorithms of soft error tolerance on 

software level, such as EDDI, SWIFT, and so on 

[2][3][5][6]. They are different from the method 

implemented by hardware duplication. Hardware methods 

protect hardware structure and duplicate hardware structure 

which can be corrupted. However, software methods protect 

programs by duplicating instructions and adding checking 

instructions into program [5] [6]. We take EDDI for 

example. It is implemented by compiler. The compiler 

compile source program to executable program containing 

redundancy code. EDDI divides program into many basic 

blocks. Based on basic block, it partition basic block by 

store instruction, this is called storeless basic block. Inside a 

storeless basic every instruction is duplicated, and before 

store instruction every result is checked [5]. However, 

EDDI, SWIFT protect program on the uniform way. No 

matter whether these sections of program can mask error or 

not, they protect them on the same way. Although these 

methods can get a good reliability of system, they sacrifice 

the performance of system.  

  Except these soft errors mask on architecture level, there 

are some situations for soft error to be masked on the level 

of program. Based on software protection, we give an 

analysis of soft errors mask on program level. Our results of 

analysis are helpful to optimize these tolerance systems 

which are implemented by the method of software-

implemented hardware fault tolerance. The purpose of our 

analysis is to meet the trade-off between performance and 

reliability. If these parts of program which can mask soft 

error are clear for us, there is no need to protect these parts 

of program. Therefore, redundancy instructions are reduced. 

Performance of system can be improved. 

VIII. CONCLUSION 

Model transistors of processor get smaller and faster, but 

their lower threshold voltages and tighter noise margins 

make them less reliable. When computer system expose in 

the space, its components may encounter soft errors because 

of high energy particle striking. Once soft error of computer 

component happened, it may affect the execution of 

program. However, soft errors of computer components may 

not lead to system failure, because these soft errors may be 

masked. This paper analyze soft error mask on program 

level. Based on the mechanism that soft errors affect system 

reliability, we compute error distribution caused by soft 

error in program. In our analysis, there are two kinds parts 

of program related to control flow can mask soft error. They 

are idle program which is related to conditional branches 

and dynamically dead codes. Based on control flow graph, 

the probability of branches and basic block to be executed 

are computed by our method. In our method, if the 

probability of basic block to be executed is less than 

threshold probability, we considered this basic block as idle 

program. These parts of program need not to be protected. 

Dynamically dead code includes statically dead code and 

partially dead code from static approach. In our method, 

partially dead code whose probability to live is less than 

threshold are ignored to be protected. We designed an 

experiment frame to demonstrate our analysis. In our 

experiment, we statically inject faults to program, and run 

program on a simulator. Experiment Results match our 

analysis. 
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