
Mobile Ad-hoc Networks: an Experimentation System
and Evaluation of Routing Algorithms

Maciej Foszczynski, Marek Adamczyk, Kamil Musial, Iwona Pozniak-Koszalka, Andrzej Kasprzak
Dept. of Systems and Computer Networks, Wroclaw University of Technology

Wroclaw, Poland
e-mail: iwona.pozniak-.koszalka@pwr.wroc.pl

Abstract—The paper concerns the problem of path finding in
wireless ad-hoc networks. Several algorithms, including meta-
heuristic algorithms, evolutionary algorithm and the created
hybrid algorithm, are considered. Algorithms have been
implemented into a designed experimentation system. The
system allows making simulation experiments along with
multistage experiment design. In the paper, the results of some
experiments are discussed. Moreover, the comparative analysis
of efficiency of algorithms is presented. It may be concluded
that the proposed hybrid algorithm seems to be promising.

Keywords-wireless network; ad-hoc network; path finding;
meta-heuristic algorithms; hybrid algorithm, experimentation
system, simulation, efficiency

I. INTRODUCTION

Mobile wireless ad-hoc networks are networks with a
short period of life. An ad-hoc network is a wireless network
to which mobile devices that can act both as client and
access point are connected. The most characteristic feature
of the ad-hoc network is the lack of any central control
device, and also any device to supervise the operation of this
information exchange system. Another important feature is
the lack of fixed network infrastructure. Systems with this
type of connection, therefore, are characterized by high
variability and irregularity, which implies the problems
absent, or present to a lesser extent in the standard fixed
infrastructure networks, both wired, and wireless. Mobility
of devices forming such structure is the cause of irregular
construction and is a reason of frequent changes in the
network structure. The consequence of these characteristics
is high importance of algorithms to find not only the
shortest path leading from source to destination node, but
also to be able to find it fast, regardless of network structure
changes. Performance of the algorithm that solves this
problem with a large variation of the network structure is
crucial, because the algorithm will have to be used after any
change in the network structure.

This paper in its content aims to present and formulate
the problem (Section II), and demonstrates the variety of its
synthetic solutions (Section III). Major emphasis has been
made to describe and present the experimentation system
created (Section IV), and the results of testing of certain
algorithms obtained with this system and using multistage
experiment design ideas [1] (Section V). In the final part of
the paper, the matter of prospects for the future is raised,
including a summary (Section VI).

II. PROBLEM STATEMENT

To fully realize the problem of path finding in a graph of
mobile ad-hoc network, one have to imagine a sample
network, like the one shown in Fig. 1. It is clear to see, that
from a mathematical point of view, this problem can be
reduced to find the shortest path between two vertices of an
undirected graph.

Figure 1. Sample structure of ad-hoc network.

Mathematical model symbolizing the entire analysed
network is a non directed, weighted graph. Vertices in the
graph represent individual devices in the network.
Connections between the vertices are the physical
representation of the wireless connections between devices.
The weight of each of the edges in the form of a specific
number, defines the quality of the connection. In order to
simplify the mathematical analysis of the problem, it can be
assumed that the larger the weight, the worse the connection
quality. The final element which is necessary to build a full,
abstract representation of the problem is to determine the
conditions of existence of the connections between vertices.

In the proposed model, the possibility to connect two
vertices in the graph is defined by their range, which is an
abstract representation of the range of wireless devices in
real ad-hoc networks. In the mathematical model, it will also
be the number given in standardized units, to determine the
radius of coverage of the given vertex. Based on the radius,
it can be determined which of the neighboring vertices of a
vertex can connect to it and, therefore, can be connected
with an edge, what may represent a real connection.

III. THE ALGORITHMS

Two proactive algorithms and two author's reactive
algorithms are under consideration, including
implementations of Dijkstra and A-star algorithms, as well

206

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

as ACO (Ant Colony Optimization) and Hybrid algorithms.
Dijkstra's and A* algorithms' main purpose was to provide
comparison to the reactive algorithm in a modified form of
Ant Colony Optimization, and the proposed (by the authors
of this paper) hybrid algorithm, which is a combination of
modified versions of two of the selected algorithms.

A. Dijkstra and A-star Algorithms

Dijkstra's algorithm is an algorithm that always returns
the optimal or close to the optimal route, although it is
computationally greedy. In this case, the algorithm has been
modified in such way, that after finding the path to the
destination node it finishes the path finding process.

Necessary condition for the algorithm is to divide the
vertices of a graph into two sets [2]. One set contains the
vertices to which paths have been already counted, and the
other contains all the nodes which have not yet been
processed.

Determination of the path is made iteratively, e.g. [3].
As the first vertex, the initial, start vertex of the simulation
is set. In the A* algorithm, like Dijkstra's algorithm, gives
the optimal path between two vertices of the graph, but to
calculate the path it uses heuristics [4].

The algorithm minimizes the function f(x) = g(x) + h(x)
where g(x) is the distance from the start node to the vertex x
and h(x) is the path predicted by the heuristic from the
vertex x to the destination node. The values of f(x), g(x) and
h(x) are stored in three tables [5].

As heuristic functions, we have chosen the „Euclid”
function (1), and „Manhattan” function (2).

    22)(YendYxXendXxxh  (1)

 YendYxXendXxxh)( (2)

Determination of the path is iterative, as in Dijkstra's
algorithm e.g. [6].

B. Ant Colony Optimization Algorithm

The idea of the ant colony optimization is to base the
algorithm's work on the behaviour of the colony of ants,
seeking a route from their nest to food source and back
again, e.g. [7].

Ants, as they move along the edges of the graph, leave
their pheromone to indicate to the other ants that the edge
has already been visited [8]. With time, the concentration of
pheromone Pc on the edges of the graph is decreasing with
concentration loss factor l, i.e. new lPP cc  .

Pheromone concentration loss process is continuous and
occurs at the beginning of each run of the algorithm's
iteration, e.g. [9].

The proposed modification of a classic ACO consists in
dividing ants into two categories: forward and backward
ants. Forward ants' main purpose is to explore the graph and
to find the destination node. When forward ant reaches the
destination, it sends back backward ant and dyes. Backward
ants are much more likely to follow the pheromone, because

their priority is to consolidate the route and get back to the
source node quickly, from where they send forward ants
again.

In a classic implementation of this algorithm, routing
tables are used to locally memorize the results of the
algorithm's work in the network. For the means of an
abstract implementation, routing tables have been omitted,
as assumed that the subject of the research was the path
finding itself, rather than maintaining the route within a
given instance of the problem.

Determination of path length in this algorithm is made in
an iterative manner. The path which ant chooses for the next
step is added to the total value for each ant. Final result is
determined as the shortest path of all of the ants.

C. Hybrid Algorithm

Hybrid algorithm is an author's algorithm, which was
developed in response to the need to reduce the cost of
finding the path, regarding the implementation of the first n
steps as quickly as possible, and then, after a quick
advancement in path selection in the first stage, further
optimization of the path made by using one of specialized
algorithms e.g. [10].

To implement this algorithm, modified version of ACO
was implemented in conjunction with Dijkstra's algorithm
e.g. [11]. Modification has been made to limit the amount of
ants and to modify the way the ant chooses its next vertex in
the graph. Algorithm obtained in this way allows for a close
to random, but relatively controlled first n steps, which will
be made. After completing n steps, the ACO finishes and
passes its current vertex as the starting vertex for the next
algorithm.

After the calculation of the initial direction, Dijkstra's
algorithm is run, which is aimed to find the path to the
destination node if it has not been reached yet e.g. [12].

Path length in this algorithm is made in an iterative
manner, as a sum of path values given by both of the
algorithms.

IV. EXPERIMENTATION SYSTEM

A. Basic Characteristic

The Windows platform has been chosen as an
implementation environment, on which an application in C#
programming language has been created. To run the
simulator, the workstation must be equipped with Windows
2000/XP/Vista/7 operating system and .NET Framework
3.5.

The simulator has an interface that allows the user to
easily configure all the parameters of the application.
Moreover, its construction allows to quickly and easily
extending its capabilities, including possible addition of new
algorithms.

B. Functiona Features of Application

After launching the simulator application, the
application main window appears, as shown in Fig. 2. The
main window is divided into clearly separated areas.

207

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Figure 2. Main window of application

The largest area of the application window is the area of
simulation (A). In this area the graph representing the
specific problem and the effect of the algorithm will be
shown. It is also possible to modify a specific instance of
the problem before running the algorithm itself.

In the settings area, (B), we see the basic parameters that
can be modified in the program. The first one is the
parameter determining the number of vertices in the graph,
which is to be generated (‘1’)

Next are two buttons, allowing to save the current graph
to a file and load a saved graph to the program (‘2’).

A select form (‘3’) allows choosing a specific instance
of the problem saved earlier. To add a graph to the list, save
it in a subdirectory called „Graphs” in the root directory of
the simulator. After adding the file and restarting the
application, saved graph appears on the defined graphs
selection list.

Under the selection of defined graphs, we see the graph
draw button (‘4’), allowing to generate a random graph,
consisting of the number of vertices determined by the
parameter (‘1’).

Vertex positions are random according to normal
distribution. If the arrangement of the vertices is not
satisfying, it is possible to draw another instance by re-
clicking on the „Randomize” button, or manually modifying
the position of given nodes. Nodes in the simulation area
can be moved using drag-and-drop method.

Below are two fields that allow interfering in the amount
of information displayed in the simulation. „Show ranges”
select (‘5’), displays the circle around each of the nodes,
symbolizing node's range in relation to the other vertices.
Selecting „Show numbers” parameter (‘6’) will cause a
number to appear next to each node which enables its
identification.

The number (‘7’) in the illustration has been assigned to
a button that connects all vertices in the graph. Connections
are made on the basis of nodes range. The connection
between the two vertices a and b may occur if, and only if,
the range r of the vertex with less value is less than or equal
to the distance dab between the vertices (3).

  


 


elseif

drr
baC

abba

:0

),max(:1
, (3)

The next two fields, (‘8’) and (‘9’), allow the selection
of the source and destination node in the graph. Algorithms
will find the shortest path between the initial and final
vertex, using only the available connections. There is a
possibility that it will be impossible to find any path
between two selected vertices.

After selecting the initial and final vertex, an algorithm
that will look for the shortest path between them can be
chosen. Selection of the algorithm takes place by selecting
from the drop-down list (‘10’).

If the algorithm supports additional parameters for its
operation, before the start of the simulation it is possible to
configure the parameters in „Algorithm Properties” (‘16’).

The last parameter that can be set is the „Step delay”
(‘11’). Here the number of milliseconds that the simulator
will wait after each step of the algorithm can be specified.
Note that due to the large variety of algorithms, this
parameter is purely indicative.

Additional button „Clear logs” (‘12’), is used to delete
the exported results of the algorithm run.

The last option available in the main settings area is a
field which allows enabling or disabling algorithm run
history (‘13’). When this option is enabled, step-by-step
algorithm history analyse is possible in the „History” tab
(‘15’).

Algorithm results field (C) is located under the main
settings area. Basic results of algorithm run are shown in
this field.

Below the simulation area two buttons marked „Start”
and „Stop” are located (D). These buttons allow starting and
stopping the simulation.

Current algorithm run information is shown in the live
statistics area (E). These statistics are updated with every
step of the algorithm, so if the delay of the algorithm
iteration was set, it will be possible to analyse statistics
during the run of the algorithm.

C. Concept of Research

Implementation environment allows for testing of the
algorithms in several aspects. The index of performance
treated as the measure of the efficiency, is the overall
quality of the path di, which is obtained as a result of the
algorithm run. The target function is expressed by (4).

 
i

ic dF (4)

208

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

At the same time, the algorithm should visit the least
amount of vertices possible, and take the smallest amount of
time for its action. Number of vertices visited by the
algorithm and the time of the execution are associated with
its actual demand for resources and traffic generated by the
algorithms in the network, therefore the quality of these
parameters is not left without a meaning to the estimation of
the quality of functioning of the algorithms.

Remaining at the level of abstract simulation of the
behaviour of algorithms for searching paths in the graph, the
quality of paths and quantity of visited vertices is taken into
account and in this respect, the algorithms are compared.

V. INVESTIGATIONS

A. Research Theses

It is estimated that Dijkstra's algorithm provides an
optimal, or very close to the optimal solution, but obtains it
at great expense of calculation, which should result in
relatively long run time. In the real network environment,
the additional disadvantage of this algorithm is the need to
process the entire graph each time a request to find the
appropriate path is sent.

A* algorithm, based on the heuristic methodology, as a
result of its action finds the optimal solution to the problem,
using relatively large amount of resources to obtain it, so it
predictably is to visit a large number of nodes in the graph.

Another approach to the problem is presented by the Ant
Colony Optimization which in contrast to the other
algorithms can run in the network for a long period of time,
gradually improving the result and adapting to various
network structure changes. In its abstract implementation,
this algorithm should not show up in finding the optimal
path, since the run time has been limited. Noteworthy, in the
real implementation of the algorithm it exhibits a high
degree of flexibility to adapt to rapidly changing network
topology.

Experimental implementation of the hybrid algorithm is
an interesting subject of research. It is difficult to accurately
predict the algorithm behaviour and possible results, but
according to the assumptions, the algorithm is to provide
relatively satisfactory outcome in the short period of time,
while showing a small number of visited vertices.

B. Experiment Design

Each algorithm was tested for five different total
numbers of vertices in the graph. Instances of graphs with
20, 30, 50, 70 and 100 vertices were chosen, and saved in
order to provide the same test environment for each of the
algorithms. For each of the numbers of vertices in the graph
and the values of parameters of each algorithm, 10
measurements were made, what allows to objectively asset
the quality of the results, thus calculating the average results
for each of the algorithms.

The experiment design, constructed along with the
multistage experiments concept [13], was composed of the
series of series of single executions of algorithms. The
detailed values of the flexible parameters are specified in
Table 2. It is necessary to mention, that all experiments

were conducted in the environment described in the
previous subsections.

TABLE 2. Experiment Design.

Algorithm Parameter Number of vertices

Dijkstra - 20 30 50 70 100

A* Euclid 20 30 50 70 100

A* Manhattan 20 30 50 70 100

ACO Pc = 0,0004 20 30 50 70 100

ACO Pc = 0,0016 20 30 50 70 100

ACO Pc = 0,0064 20 30 50 70 100

ACO Pc = 0,0128 20 30 50 70 100

Hybrid n = 5 20 30 50 70 100

Hybrid n = 10 20 30 50 70 100

Hybrid n = 20 20 30 50 70 100

C. Results and Discussion

In the first case, the thesis, concerning the efficiency of
Dijkstra's algorithm, was taken under consideration.
Performed simulations of the algorithm run time for 100
vertices, shown in Fig. 3, confirm the assumption that the
algorithm is characterized by a relatively low efficiency,
needing a lot of time to process all the data.

Run time for graph with 100 vertices

0

1

2

3

4

5

6

algorithm

R
u

n
 t

im
e

Dijkstra

A* Euclid

A* Manhattan

Hybrid 5

Hybrid 10

Hybrid 20

Figure 3. Run time of algorithms for 100 vertices.

It is worth to be mentioned, that a high processing time
has also been obtained for the hybrid algorithm, which
greater part for the graph of 100 vertices is Dijkstra's
algorithm, which further confirms the truth of stated thesis.

A* search algorithm, due to the complex structure of the
implementation using the heuristic methods, has proved to
visit the largest number of vertices, which confirms the
related thesis. Example of the number of visited nodes for
the graph of 30 vertices, shown in Fig. 4, classifies it right
after the Ant Colony Optimization, which in the actual

209

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

implementation is intended to work without the time
limitation.

Visited nodes for 30 vertices

0

10

20

30

40

50

60

70

80

90

algorithm

vi
si

te
d

 n
o

d
es

Dijkstra

A* Euclid

A* Manhattan

ACO

Hybrid 5

Hybrid 10

Hybrid 20

Figure 4. The total number of visited nodes for 30 vertices.

A noteworthy fact is that irrespective of the type of used
heuristic function, A* algorithm, according to the thesis, is
characterized by a large number of visited vertices, and so,
in fact, a large number of generated connections, but
generating the optimal solution of the path finding problem.

According to the thesis set for the Ant Colony
Optimization, it did not provide optimal results, however, it
is able to adapt to the network structure. Fig. 5 shows how
the path quality obtained by the ACO differs from the
quality of paths developed by other algorithms in adequate
run time. Clearly, author's ACO algorithm is able to find
very good quality path and is further characterized by very
high flexibility of action.

Impact of used algorithm on solution quality

0

200

400

600

800

1000

1200

Algorithm

P
a

th
 le

n
g

th

Dijkstra

A* Euklides

A* Manhattan

ACO

Hybrydowy

Figure 5. Path length for 30 vertices.

It is worth to note, that the quality of path obtained by
the ACO changes with the pheromone concentration loss

factor. Fig. 6 shows, that properly chosen pheromone loss
factor can help to make the algorithm even more effective.

Impact of pheromone concentration loss factor
on solution quality in ACO

0

200

400

600

800

1000

1200

1400

1600

500 1000 2000

Ant steps taken

P
a

th
 le

n
g

th 0,0004

0,0016

0,0064

0,0128

 Figure 6. Impact of pheromone loss on solution quality in ACO.

The results of an experimental hybrid algorithm proved
to be a confirmation of assumptions of its possible
behaviour. With the increase in the contribution of modified
Ant Colony Optimization, which means increasing the
importance of the pseudo-random part of the algorithm,
hybrid algorithm significantly increased the speed of its
operation.

As shown in Fig. 7, the implementation of the first 10
steps using the modified ACO resulted in a drastic reduction
of the algorithm run time, at the cost of decreasing the
quality of the solution.

Hybrid algorithm run time

-1

0

1

2

3

4

5

6

7

8

9

10

5 10 20

n

T
im

e

Figure 7. Hybrid algorithms run time.

With the increase of the n parameter, the number of
steps taken by the algorithm has significantly decreased.
The dependence is shown in Fig. 8. Number of visited
vertices remained more or less stable, which further
emphasizes the importance of pseudo-random part of the
algorithm to reduce the amount of the calculation.

210

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

Hybrid algorithm reliability

0

10

20

30

40

50

60

70

80

90

5 10 20

n

Steps

Nodes visited

Figure 8. Hybrid algorithm reliability.

Close to random nature of the hybrid algorithm is
stressed by the fact that for the n parameter value equal to
20, the number of performed steps has slightly increased,
which is caused by too much involvement of the random
part of the algorithm. Appropriately balanced algorithm
parameters can improve the overall quality of obtained
results and the algorithm itself provides promising results
and a solid basis for further research and development.

VI. CONCLUSIONS

Research carried out allowed drawing far-reaching
proposals for the design of systems based on the idea of
finding a path in wireless ad-hoc networks.

Diversity of the algorithms realizing the routing in
wireless ad-hoc networks available to implement requires
clarifying and clearly specifying the system requirements.
When it is known that the system must be resistant to
changes in network and rapid adaptations to new conditions,
it is advised to use algorithms that provide the desired
flexibility, for example, Ant Colony Optimization
algorithm. If the key is to obtain a satisfactory solution to
the problem in the shortest time possible and subjects
minimize the consumption of resources, a good solution
could be a hybrid algorithm, similar to the algorithm
proposed in this paper, which can combine the best features

from selected algorithms while maintaining an appropriate
balance between their drawbacks.

In the future implementation of similar project, the right
direction would be to develop the idea for giving
possibilities of simulations closer to the reality, gradually to
move away from abstract approaches. This would enable
more specific implementation of the algorithms for selected
problems and to conduct more in-depth research. Nodes
could use the parameters of the actual nodes of ad-hoc
network, which combined with assigning more details to the
connection between two nodes would increase the level of
realism, which would help to carry out further tests,
developing more accurate reflection of reality.

The computer experimentation system presented in this
paper was designed with a possibility to expand it with
additional modules. Increasing the functionality and
reducing the level of abstraction can provide a solid basis
for future research in this topic.

REFERENCES
[1] L. Koszalka, D. Lisowski and I. Pozniak-Koszalka, “Comparison of

Allocation Algorithms with Multistage Experiments”, Lecture Notes
in Computer Science, vol. 3984, Springer, 2006, pp. 58-67

[2] E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs”, Numerische Mathematik, 1959.

[3] A. Kasprzak, “Packet Switching Wide Area Networks”, WPWR,
Wroclaw, 1997 /in Polish/.

[4] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing
protocols for mobile ad hoc networks”, University of Wollongong,
2003.

[5] N. Wirth, “ Algorithms + Data Structures = Programs”, Prentice Hall,
1976.

[6] M. K. Marina and S. R. Das, “On-Demand Multipath Distance Vector
Routing in Ad Hoc Networks”, University of Cincinnati, 2001.

[7] M. Dorigo and T. Stützle, "Ant Colony Optimization”, MIT Press,
1997.

[8] C. Blum, “Ant colony optimization: Introduction and recent trends”,
Physics of Life Reviews, 2005.

[9] M. Dorigo, “ Ant Colony Optimization”, Scholarpedia, 2007.

[10] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution
Programs”, Springer, 1996.

[11] A. Botea, M. Muller, and J. Schaeffer, “Near Optimal Hierarchical
Path-Finding”, Journal of Game Development, 2004.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Dijkstra's
algorithm”, Introduction to Algorithms, Section 24.3, MIT Press,
1990.

[13] D. Ohia, L. Koszalka, and A. Kasprzak, “Evolutionary Algorithm for
Congestion Problem in Computer Networks”, Springer, Lecture
Notes in Artificial Intelligence, vol. 5711, 2009, pp. 113-122.

211

ICN 2011 : The Tenth International Conference on Networks

Copyright (c) IARIA, 2011 ISBN:978-1-61208-113-7

