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Abstract—We consider a two-player zero-sum game with ran-
dom linear chance constraints whose distributions are known to
belong to moments based uncertainty sets. We show that a Saddle
Point Equilibrium problem is equivalent to a primal-dual pair of
Second-Order Cone Programs. The game with chance constraints
can be used in various applications, e.g., risk constraints in
portfolio optimization, resource constraints in stochastic shortest
path problem, renewable energy aggregators in the local market.

Keywords—Distributionally robust chance constraints, Zero-sum
game, Saddle point equilibrium, Second-order cone program.

I. INTRODUCTION

A two-player zero-sum game is defined using a single payoff
function, where one player plays the role of maximizer and
another player plays the role of minimizer. More commonly,
a zero-sum game is introduced with a payoff matrix, where
the rows and the columns are the actions of player 1 and
player 2, respectively. A Saddle Point Equilibrium (SPE) is
the solution concept to study the zero-sum games and it exists
in the mixed strategies [1]. Dantzig and later Adler showed
the equivalence between linear programming problems and
two-player zero-sum games [2] [3]. Charnes [4] generalized
the zero-sum game considered in [1] by introducing linear
inequality constraints on the mixed strategies of both the
players and called it a constrained zero-sum game. An SPE
of a constrained zero-sum game can be obtained from the
optimal solutions of a primal-dual pair of linear programs
[4]. Singh and Lisser [5] considered a stochastic version of
constrained zero-sum game considered by Charnes [4], where
the mixed strategies of each player are restricted by random
linear inequality constraints, which are modelled using chance
constraints. When the random constraint vectors follow a
multivariate elliptically symmetric distribution, the zero-sum
game problem is equivalent to a primal-dual pair of Second-
Order Cone Programs (SOCPs) [5].

Nash equilibrium is the generalization of SPE and it is used
as a solution concept for the general-sum games [6] [7]. Under
certain conditions on payoff functions and strategy sets, there

always exists a Nash equilibrium [8]. The general-sum games
under uncertainties are considered in the literature [9]–[13],
which capture both risk neutral and risk averse situations.

In this paper, we consider a more general two player zero-
sum game as compared to [5]. Unlike in [5], the strategy set
of each player is defined by a compact polyhedral set, which
is further restricted by some random linear inequalities and
the information on the distribution of the random constraint
vectors is not exactly known. We consider two different uncer-
tainty sets based on the partial information on the mean vectors
and covariance matrices of the random constraint vectors. We
show that, there exists an SPE of the game Zα and an SPE
problem is equivalent to a primal-dual pair of SOCPs.

The rest of the paper is organized as follows. The definition
of a distributionally robust zero-sum game is given in Section
II. Section III presents the reformulation of distributionally
robust chance constraints as second order cone constraints
under two different uncertainty sets. Section IV outlines a
primal-dual pair of SOCPs whose optimal solutions constitute
an SPE of the game.

II. THE MODEL

We consider a two player zero-sum game, where each player
has continuous strategy set. Let C1 ∈ RK1×m, C2 ∈ RK2×n,
d1 ∈ RK1 and d2 ∈ RK2 . We consider X = {x ∈ Rm |
C1x = d1, x ≥ 0} and Y = {y ∈ Rn | C2y = d2, y ≥ 0}
as the strategy sets of player 1 and player 2, respectively.
We assume that X and Y are compact sets. Let u : X ×
Y → R be a payoff function associated to the zero-sum game
and we assume that player 1 (resp. player 2) is interested in
maximizing (resp. minimizing) u(x, y) for a fixed strategy y
(resp. x) of player 2 (resp. player 1). For a given strategy pair
(x, y) ∈ X × Y , the payoff function u(x, y) is given by

u(x, y) = xTGy + gTx+ hT y, (1)

where G ∈ Rm×n, g ∈ Rm and h ∈ Rn. The first term of (1)
results from the interaction between both the players whereas
the second and third term represents the individual impact of
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player 1 and player 2 on the game, respectively. The strategy
sets are often restricted by random linear constraints, which
are modelled using chance constraints. The chance constraint
based strategy sets appear in many practical problems, e.g.,
risk constraints in portfolio optimization [14]. In this paper,
we consider the case, where the strategies of player 1 satisfy
the following random linear constraints,

(a1k)
Tx ≤ b1k, k = 1, 2, . . . , p, (2)

whilst the strategies of player 2 satisfy the following random
linear constraints

(a2l )
T y ≥ b2l , l = 1, 2, . . . , q. (3)

Let I1 = {1, 2, . . . , p} and I2 = {1, 2, . . . , q} be the index
sets for the constraints of player 1 and player 2, respectively.
For each k ∈ I1 and l ∈ I2, the vectors a1k and a2l are
random vectors defined on a probability space (Ω,F ,P). We
consider the case, where the only information we have about
the distributions of a1k and a2l is that they belong to some
uncertainty sets D1

k and D2
l , respectively. The uncertainty sets

D1
k and D2

l , are constructed based on the partially available
information on the distributions of a1k and a2l , respectively.
Using the worst case approach, the random linear constraints
(2) and (3) can be formulated as distributionally robust chance
constraints given by

inf
F 1

k∈D1
k

P
(
(a1k)

Tx ≤ b1k
)
≥ α1

k, ∀ k ∈ I1, (4)

and
inf

F 2
l ∈D2

l

P
(
(−a2l )

T y ≤ −b2l
)
≥ α2

l , ∀ l ∈ I2, (5)

where α1
k and α2

l are the confidence levels of player 1 and
player 2 for kth and lth constraints, respectively. Therefore,
for a given α1 = (α1

k)k∈I1
and α2 = (α2

l )l∈I2
, the feasible

strategy sets of player 1 and player 2 are given by

S1
α1 =

{
x ∈ X| inf

F 1
k∈D1

k

P{(a1k)Tx ≤ b1k} ≥ α1
k, ∀ k ∈ I1

}
,

(6)

and

S2
α2 =

{
y ∈ Y | inf

F 2
l ∈D2

l

P{(−a2l )
T y ≤ −b2l } ≥ α2

l , ∀ l ∈ I2
}
.

(7)
We call the zero-sum game with the strategy set S1

α1 for player
1 and the strategy set S2

α2 for player 2 as a distributionally
robust zero-sum game. We denote this game by Zα. A strategy
pair (x∗, y∗) ∈ S1

α1 × S2
α2 is called an SPE of the game Zα

at α = (α1, α2) ∈ [0, 1]p × [0, 1]q , if

u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), ∀ x ∈ S1
α1 , y ∈ S2

α2 .

III. REFORMULATION OF DISTRIBUTIONALLY ROBUST
CHANCE CONSTRAINTS

We consider two different uncertainty sets based on the
partial information about the mean vectors and covariance
matrices of the random constraint vectors aik, i = 1, 2,
k ∈ Ii. For each uncertainty set, distributionally robust chance

constraints (4) and (5) are reformulated as second-order cone
constraints.

A. Moments Based Uncertainty Sets

For each player i, i = 1, 2, we consider the case,
where the mean vector and covariance matrix of the ran-
dom vector aik for all k ∈ Ii are known to be-
long to polytopes Uµi

k
and UΣi

k
, respectively. We consider

polytopes Uµi
k

= Conv(µi
k1, µ

i
k2, . . . , µ

i
kM ) and UΣi

k
=

Conv(Σi
k1,Σ

i
k2, . . . ,Σ

i
kM ), where Σi

kj ≻ 0, j = 1, 2, . . .M ;
Conv denotes the convex hull and Σi

kj ≻ 0 implies that Σi
kj

is a positive definite matrix. For each i = 1, 2, and k ∈ Ii,
the uncertainty set for the distribution of aik is defined by

Di
k

(
µi
k,Σ

i
k

)
=

{
F i
k

∣∣∣ EF i
k

[
aik
]
∈ Uµi

k

COVF i
k
[aik] ∈ UΣi

k

}
, (8)

where EF i
k

and COVF i
k

are expectation and covariance op-
erator under probability distribution F i

k, respectively. The
uncertainty set (8) is considered in [15]. As for the second
uncertainty set, we consider the case, where the mean vector
of aik lies in an ellipsoid of size γi

k1 ≥ 0 centered at µi
k and

the covariance matrix of aik lies in a positive semidefinite cone
defined with a linear matrix inequality. It is defined by

Di
k(µ

i
k,Σ

i
k) =

F i
k

∣∣∣∣∣∣∣∣∣∣

(
EF i

k
[aik]− µi

k

)⊤ (
Σi

k

)−1

×
(
EF i

k
[aik]− µi

k

)
≤ γi

k1,

COVF i
k
[aik] ⪯ γi

k2Σ
i
k

 , (9)

where Σi
k ≻ 0 and γi

k2 > 0; for the given matrices B1 and
B2, B1 ⪯ B2 implies that B2 −B1 is a positive semidefinite
matrix. The uncertainty set (9) is considered in [16].

B. Second-order cone constraint reformulation

We show that the distributionally robust chance constraints
(4) and (5) are equivalent to second-order cone constraints for
the uncertainty sets defined by (8) and (9).

Lemma III.1. For each i = 1, 2, and k ∈ Ii, let the
distribution F i

k of random vector aik, lies in uncertainty set
Di

k

(
µi
k,Σ

i
k

)
defined by (8). Then, the constraints (4) and (5)

are equivalent to (10) and (11), respectively, given by

(µ1
kj)

Tx+

√
α1
k

1− α1
k

||(Σ1
kj)

1
2x|| ≤ b1k,

∀ j = 1, 2, . . . ,M, k ∈ I1, (10)

− (µ2
kj)

T y +

√
α2
k

1− α2
k

||(Σ2
kj)

1
2 y|| ≤ −b2k,

∀ j = 1, 2, . . . ,M, k ∈ I2. (11)

Proof. Based on the structure of uncertainty set (8), (4) can
be written as

inf
(µ,Σ)∈U1

k

inf
F 1

k∈D(µ,Σ)
P
{
(a1k)

Tx ≤ b1k
}
≥ α1

k,
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where

D(µ,Σ) =
{
F 1
k

∣∣∣EF 1
k
[a1k] = µ,COVF 1

k
[a1k] = Σ

}
,

and
U1
k =

{
(µ,Σ)

∣∣∣µ ∈ Uµ1
k
,Σ ∈ UΣ1

k

}
.

The bound of one-sided Chebyshev inequality can be achieved
by a two-point distribution given by equation (2) of [17].
Therefore, we have

inf
F 1

k∈D(µ,Σ)
P
{
(a1k)

Tx ≤ b1k
}
=



1− 1

1+
(µT x−b1

k
)2

(xT Σx)

,

if µTx ≤ b1k,

0, otherwise.

For the case µTx > b1k,

inf
F 1

k∈D(µ,Σ)
P
{
a1kx ≤ b1k

}
= 0,

which makes constraint (4) infeasible for any α1 > 0.
Therefore, for x ∈ S1

α1
the condition µTx ≤ b1k always holds

and the constraint (4) is equivalent to

inf
(µ,Σ)∈U1

k

1− 1

1 + (µTx− b1k)
2/(xTΣx)

≥ α1
k,

which can be reformulated as

min
µ∈U

µ1
k

(
b1k − µTx

)
max

Σ∈U
Σ1
k

√
xTΣx

≥

√
α1
k

1− α1
k

. (12)

The above inequality (12) can be reformulated as (10). Simi-
larly, we can show that (5) is equivalent to (11).

Lemma III.2. For each i = 1, 2, and k ∈ Ii, let the
distribution F i

k of random vector aik, lies in the uncertainty
set Di

k

(
µi
k,Σ

i
k

)
defined by (9). Then, the constraints (4) and

(5) are equivalent to (13) and (14), respectively, given by

(µ1
k)

Tx+

(√
α1
k

1− α1
k

√
γ1
k2 +

√
γ1
k1

)∥∥∥(Σ1
k

) 1
2 x
∥∥∥ ≤ b1k,

∀ k ∈ I1, (13)

− (µ2
k)

T y +

(√
α2
k

1− α2
k

√
γ2
k2 +

√
γ2
k1

)∥∥∥(Σ2
k

) 1
2 y
∥∥∥ ≤ −b2k,

∀ k ∈ I2. (14)

Proof. Based on the structure of the uncertainty set (9), the
constraint (4) can be written as

inf
(µ,Σ)∈Ũ1

k

inf
F 1

k∈D(µ,Σ)
P
{
a1kx ≤ b1k

}
≥ α1

k,

where

D(µ,Σ) =
{
F 1
k

∣∣∣EF 1
k
[a1k] = µ,COVF 1

k
[a1k] = Σ

}

and

Ũ1
k =

{
(µ,Σ)

∣∣∣∣ (µ− µ1
k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1

k1,
Σ ⪯ γ1

k2Σ
1
k.

}
.

Using the similar arguments as in the Lemma III.1, the
constraint (4) is equivalent to

b1k + v1(x)√
v2(x)

≥

√
α1
k

1− α1
k

, (15)

where

v1(x) =

min
µ

−µTx

s.t.
(
µ− µ1

k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1

k1,
(16)

v2(x) =

{
max
Σ

xTΣx

s.t. Σ ⪯ γ1
k2Σ

1
k.

Let β ≥ 0 be a Lagrange multiplier associated with the
constraint of optimization problem (16). By applying the
KKT conditions, the optimal solution of (16) is given by

µ = µ1
k +

√
γ1
k1Σ

1
kx√

xTΣ1
kx

and the associated Lagrange multiplier is

given by β =

√
xTΣ1

kx

4γ1
k1

. Therefore, the corresponding optimal

value v1(x) = −(µ1
k)

Tx −
√
γ1
k1

√
xTΣ1

kx. Since, uTΣu ≤
uT γ1

k2Σ
1
ku for any u ∈ Rn, then, v2(x) = γ1

k2x
TΣ1

kx.
Therefore, using (15), (4) is equivalent to (13). Similarly, we
can show that (5) is equivalent to (14).

The reformulation of feasible strategy sets (6) and (7) for
uncertainty sets (8) and (9) can be written as

S1
α1 =

{
x ∈ X | (µ1

kj)
Tx+ κα1

k
||(Σ1

kj)
1
2x|| ≤ b1k,

∀ j = 1, 2, . . . ,M, k ∈ I1
}
, (17)

and

S2
α2 =

{
y ∈ Y | −(µ2

lj)
T y + κα2

l
||(Σ2

lj)
1
2 y|| ≤ −b2l ,

∀ j = 1, 2, . . . ,M, l ∈ I2.
}
. (18)

For each i = 1, 2, k ∈ Ii, if καi
k
=

√
αi

k

1−αi
k

, (17) and (18)

represent the reformulations of (6) and (7) under uncertainty
set defined by (8), respectively. For each i = 1, 2, k ∈ Ii, if

καi
k
=

(√
αi

k

1−αi
k

√
γi
k2 +

√
γi
k1

)
, and M = 1, (17) and (18)

represent the reformulations of (6) and (7) under uncertainty
set defined by (9), respectively.

We assume that the strategy sets (17) and (18) satisfy the
strict feasibility condition given by Assumption III.3.

Assumption III.3. 1) There exists an x ∈ S1
α1 such that

the inequality constraints of S1
α1 defined by (17) are

strictly satisfied.
2) There exists an y ∈ S2

α2 such that the inequality
constraints of S2

α2 defined by (18) are strictly satisfied.
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The conditions given in Assumption III.3 are Slater’s con-
dition, which are sufficient for strong duality in a convex
optimization problem. We use these conditions in order to
derive equivalent SOCPs for the zero-sum game Zα.

IV. EXISTENCE AND CHARACTERIZATION OF SADDLE
POINT EQUILIBRIUM

In this section, we show that there exists an SPE of the
game Zα if the distributions of the random constraint vectors
of both the players belong to the uncertainty sets defined in
Section III-A. We further propose a primal-dual pair of SOCPs
whose optimal solutions constitute an SPE of the game Zα.

Theorem IV.1. Consider the game Zα, where the distributions
of the random constraint vectors aik, k ∈ Ii, i = 1, 2, belong
to the uncertainty sets described in Section III-A. Then, there
exists an SPE of the game for all α ∈ (0, 1)p × (0, 1)q .

Proof. Let α ∈ (0, 1)p×(0, 1)q . For uncertainty sets described
in Section III-A, it follows from Lemma III.1 and Lemma
III.2 that the strategy sets S1

α1 and S2
α2 are given by (17)

and (18), respectively. It is easy to see that S1
α1 and S2

α2 are
convex and compact sets. The function u(x, y) is a bilinear
and continuous function. Hence, there exists an SPE from the
minimax theorem [1].

A. Equivalent Primal-Dual Pair of Second-Order Cone Pro-
grams

From the minimax theorem [1], (x∗, y∗) is an SPE for the
game Zα if and only if

x∗ ∈ argmax
x∈S1

α1

min
y∈S2

α2

u(x, y), (19)

y∗ ∈ argmin
y∈S2

α2

max
x∈S1

α1

u(x, y). (20)

We start with problem miny∈S2
α2

maxx∈S1
α1

u(x, y). The inner
optimization problem maxx∈S1

α1
u(x, y) can be equivalently

written as

max
x,t1k,j

xTGy + gTx+ hT y

s.t.

(i) − xTµ1
k,j − κα1

k

∥∥t1k,j∥∥+ b1k ≥ 0,

∀ j = 1, 2 . . . ,M, k ∈ I1,

(ii) t1k,j −
(
Σ1

k,j

) 1
2 x = 0, ∀ j = 1, 2 . . . ,M, k ∈ I1,

(iii) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (21)

Let λ1 =
(
λ1
k,j

)M
j=1,k∈I1

∈ RMp, δ1k,j ∈ Rm for all k ∈ I1,

j = 1, 2 . . .M , and ν1 ∈ RK1 be the Lagrange multipliers of
constraints (i), (ii), and equality constraints given in (iii) of

(21), respectively. Then, the Lagrangian dual problem of the
SOCP (21) can be written as

min
λ1≥0, δ1k,j , ν1

max
x≥0, t1k,j

{
xTGy + gTx+ hT y

+
∑
k∈I1

M∑
j=1

[
λ1
k,j

(
− xTµ1

k,j − κα1
k

∥∥t1k,j∥∥+ b1k
)

+ (δ1k,j)
T
(
t1k,j −

(
Σ1

k,j

) 1
2 x
)]

+ (ν1)T (d1 − C1x)
}

= min
λ1≥0,δ1k,j ,ν

1

[
max
x≥0

xT
(
Gy

−
∑
k∈I1

M∑
j=1

(
λ1
k,jµ

1
k,j +

(
Σ1

k,j

) 1
2 δ1k,j

)
− (C1)T ν1 + g

)
+
∑
k∈I1

M∑
j=1

max
t1k,j

(
(δ1k,j)

T t1k,j − κα1
k
λ1
k,j

∥∥t1k,j∥∥)+ hT y

+ (ν1)T d1 +
∑
k∈I1

M∑
j=1

λ1
k,jb

1
k

]
.

The inner maximization problems in the above Lagrangian
dual problem will be unbounded unless we have the following
dual constraints

Gy −
∑
k∈I1

M∑
j=1

(
λ1
k,jµ

1
k,j +

(
Σ1

k,j

) 1
2 δ1k,j

)
− (C1)T ν1 + g ≤ 0,

||δ1k,j || ≤ κα1
k
λ1
k,j ,∀ k ∈ I1, j = 1, 2 . . . ,M.

Under Assumption III.3, the Lagrangian dual problem of
(21) has zero duality gap [18]. Therefore, the problem
miny∈S2

α2
maxx∈S1

α1
u(x, y) is equivalent to the following

SOCP

min
y, ν1, δ1k,j , λ1

k,j

hT y + (ν1)T d1 +
∑
k∈I1

M∑
j=1

λ1
k,jb

1
k

s.t.

(i) Gy −
∑
k∈I1

M∑
j=1

(
λ1
k,jµ

1
k,j +

(
Σ1

k,j

) 1
2 δ1k,j

)
− (C1)T ν1 + g ≤ 0,

(ii) − (µ2
lj)

T y + κα2
l
||(Σ2

lj)
1
2 y|| ≤ −b2l ,

∀ j = 1, 2, . . . ,M, l ∈ I2,
(iii) ||δ1k,j || ≤ κα1

k
λ1
k,j , λ1

k,j ≥ 0,

∀ k ∈ I1, j = 1, 2 . . . ,M,

(iv) C2y = d2, ys ≥ 0, ∀ s = 1, 2, . . . , n. (22)
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Similarly, problem maxx∈S1
α1

miny∈S2
α2

u(x, y) is equivalent
to the following SOCP

max
x, ν2, δ2l,j , λ2

l,j

gTx+ (ν2)T d2 +
∑
l∈I2

M∑
j=1

λ2
l,jb

2
l

s.t. (i) GTx−
∑
l∈I2

M∑
j=1

(
λ2
l,jµ

2
l,j +

(
Σ2

l,j

) 1
2 δ2l,j

)
− (C2)T ν2 + h ≥ 0,

(ii) (µ1
kj)

Tx+ κα1
k
||(Σ1

kj)
1
2x|| ≤ b1k,

∀ j = 1, 2, . . . ,M, k ∈ I1,
(iii) ||δ2l,j || ≤ κα2

l
λ2
l,j , λ2

l,j ≥ 0, ∀ l ∈ I2, j = 1, 2, . . .M

(iv) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (23)

It follows from the duality theory of SOCPs that (22) and (23)
form a primal-dual pair [18].

Remark IV.2. For each i = 1, 2, and k ∈ Ii, if καi
k

=√
αi

k

1−αi
k

, (22) and (23) represent the primal-dual pair of

SOCPs for the uncertainty sets defined by (8). For each

i = 1, 2, and k ∈ Ii, if καi
k
=

(√
αi

k

1−αi
k

√
γi
k2 +

√
γi
k1

)
and M = 1, (22) and (23) represent the primal-dual pair of
SOCPs for the uncertainty set defined by (9).

Next, we show that the equivalence between the optimal
solutions of (22)-(23) and an SPE of the game Zα.

Theorem IV.3. Consider the zero-sum game Zα, where the
feasible strategy sets of player 1 and player 2 are given by
(17) and (18), respectively. Let Assumption III.3 holds. Then,
for a given α ∈ (0, 1)p × (0, 1)q , (x∗, y∗) is an SPE of
the game Zα if and only if there exists (ν1∗, (δ1∗k,j)k,j , λ

1∗)
and (ν2∗, (δ2∗l,j)l,j , λ

2∗) such that (y∗, ν1∗, (δ1∗k,j)k,j , λ
1∗) and

(x∗, ν2∗, (δ2∗l,j)l,j , λ
2∗) are optimal solutions of (22) and (23),

respectively.

Proof. Let (x∗, y∗) be an SPE of the game Zα. Then, x∗ and
y∗ are the solutions of (19) and (20), respectively. Therefore,
there exists (ν1∗, (δ1∗k,j)k,j , λ

1∗) and (ν2∗, (δ2∗l,j)l,j , λ
2∗) such

that (y∗, ν1∗, (δ1∗k,j)k,j , λ
1∗) and (x∗, ν2∗, (δ2∗l,j)l,j , λ

2∗) are op-
timal solutions of (22) and (23) respectively.

Let (y∗, ν1∗, (δ1∗k,j)k,j , λ
1∗) and (x∗, ν2∗, (δ2∗l,j)l,j , λ

2∗) be
optimal solutions of (22) and (23), respectively. Under As-
sumption III.3, (22) and (23) are strictly feasible. Therefore,
strong duality holds for primal-dual pair (22)-(23). Then, we
have

gTx∗ + (ν2∗)T d2 +
∑
l∈I2

M∑
j=1

λ2∗
l,jb

2
l = hT y∗

+ (ν1∗)T d1 +
∑
k∈I1

M∑
j=1

λ1∗
k,jb

1
k. (24)

Consider the constraint (i) of (22) at optimal solution
(y∗, ν1∗, (δ1∗k,j)k,j , λ

1∗) and multiply it by xT , where x ∈ S1
α1

.
Then, by using Cauchy-Schwartz inequality, we have

xTGy∗ + gTx+ hT y∗ ≤ hT y∗ + (ν1∗)T d1

+
∑
k∈I1

M∑
j=1

λ1∗
k,jb

1
k, ∀ x ∈ S1

α1
. (25)

Similarly, we have

x∗TGy + gTx∗ + hT y ≥ gTx∗

+ (ν2∗)T d2 +
∑
l∈I2

M∑
j=1

λ2∗
l,jb

2
l , ∀ y ∈ S2

α2
. (26)

Take x = x∗ and y = y∗ in (25) and (26), then from (24), we
get

u(x∗, y∗) = hT y∗ + (ν1∗)T d1 +
∑
k∈I1

M∑
j=1

λ1∗
k,jb

1
k

= gTx∗ + (ν2∗)T d2 +
∑
l∈I2

M∑
j=1

λ2∗
l,jb

2
l . (27)

It follows from (25), (26), and (27) that (x∗, y∗) is an SPE of
the game Zα.

V. CONCLUSION

We show the existence of a mixed strategy SPE for a two-
player distributionally robust zero-sum chance-constrained
game under three different uncertainty sets based on first two
moments. Under Slater’s condition, the Saddle Point Equilibria
of the game can be obtained from the optimal solutions of a
primal-dual pair of SOCPs. The Saddle Point Equilibria of
zero-sum games can be computed efficiently because SOCPs
are polynomial time solvable. The uncertainty sets considered
in the paper have positive semidefinite cone structure, which
leads to the reformulation of distributionally robust chance
constraints as second order cone constraints. Moreover, these
reformulations play a major role in deriving the equivalent
primal-dual pair of SOCPs. The tractable reformulation of the
zero-sum game problem with different payoff structure, as well
as the uncertainty sets other than the ones considered in the
paper could be an interesting area for the future research.
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