Copyright (c) IARIA, 2019.

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

Model-Driven Engineering of Fault Tolerant Microservices

Elena Troubitsyna
Abo Akademi University
Turku, Finland
email: Elena.Troubitsyna@abo.fi

Abstract—The microservices architectural style has gained
a significant popularity over the last few years. It promotes
structuring applications as a composition of independent
services of small granularity — microservices. Such an
approach supports agile development and continuous
integration and deployment. However, it also poses a
significant challenge in ensuring the required quality of service
and, in particular, fault tolerance. It requires a systematic
analysis of possible failure scenarios and the use of structured
techniques to implementing fault tolerance mechanisms
capable of coping with the various types of failures. In this
paper, we propose a structured approach to model-driven
engineering of fault tolerant applications developed in the
microservice architectural style. We define modelling patterns
to facilitate the design of appropriate fault tolerance
mechanisms. We also discuss how to integrate fault tolerance
into the design of complex applications. We demonstrate how
to graphically model the micorservice architectures and
augment them with various fault tolerance mechanisms. The
proposed approach facilitates a systematic analysis of possible
failures, recovery actions and design alternatives. Our
approach supports structured guided reasoning about fault
tolerance at different levels of abstraction and enables efficient
exploration of design space. It allows the designers to evaluate
various architectural solutions at the design stage that helps to
derive clean architectures and improve fault tolerance of
developed applications.

Keywords— microservices; fault tolerance; architecture;
graphical modelling; fault tolerance pattern component.

[. INTRODUCTION

Microservices architectural style [11] has gained a
significant attention over the last few years. The style builds
on the service-oriented computing paradigm [10]. It supports
continuous integration and deployment software engineering
approach, which makes it a good fit for ubiquitous cloud-
based environments. The microservices style was motivated
by the need of small autonomous teams of developers, who
do not own the full life-cycle of the application development,
to continuously integrate and deliver, provide on-demand
virtualisation and infrastructure automation.

Microservices aim at overcoming the drawbacks
associated with developing, refactoring and maintaining
monolithic applications. While supporting a quick and
efficient development, integration and modification, the style
introduces the additional complexity caused by the need to
correctly orchestrate the distributed microservices as well as
ensure the desired degree of Quality of Service (QoS).This is
a challenging task because the microservices, in general, are
developed using different languages and rely on lightweight
communication to implement complex application-level

ISBN: 978-1-61208-728-3

scenarios. Therefore, to ensure the desired high degree of
QoS and in particular, reliability, we should create an
approach that enables a systematic analysis of different
failures that might occur in the microservices architectures.
Moreover, we should provide the developers with structured
techniques to integrate different fault-tolerance mechanisms
into the developed applications and analyse their impact.

In this paper, we propose a structured model-driven
approach to modelling fault tolerance in the microservice
architecture. We rely on Unified Modelling Language
(UML) [9] — a popular graphical modelling language — to
define patterns for representing different fault tolerance
mechanisms and support their structured integration into the
application architecture. We define the modelling patterns
for representing fault tolerance mechanisms at different
levels of abstraction.

We propose static and dynamic fault tolerance
mechanisms. The static mechanisms are the structural
solutions, which rely on availability of redundant service
providers that can be requested to provide services in the
case of failures of the main service providers. This
mechanism allows the designers to mask failures of the
individual service providers. The dynamic fault tolerance
mechanisms rely on different monitoring solutions that
enable more efficient handling of microservices and
communication failures.

We believe that our approach supports structured guided
reasoning about fault tolerance and enables efficient
exploration of the design space. It allows the designers to
evaluate various architectural solutions at the design stage
that helps to derive clean architectures and improve fault
tolerance of developed complex services.

The paper is structured as follows: in Section II, we
discuss the microservices architectural style. In Section III,
we propose several fault tolerance mechanisms suitable for
the microservice architectures. In Section IV, we introduce
modelling of complex composite patterns. Finally, in
Section V, we overview the related work and discuss the
proposed approach.

II. MICROSERVICES ARCHITECTURAL STYLE

Microservice architectures [11] have emerged as a new
architectural style, which aims at overcoming the problems
associated with monolithic architecture. In monolithic
applications, all functionality is put together to be distributed
as a single file. Monolithic applications are simpler to deploy
because they usually run on a single machine. Moreover,
they are easier to develop because a programmer does not
need to deal with abstractions associated with distributed

Copyright (c) IARIA, 2019.

architectures. However, large monolithic applications are
hard to maintain, because even a simple refactoring requires
rebuilding and redeploying the entire application. Moreover,
since a monolith application is usually tightly coupled,
failure of even a small part of it leads to the failure of the
entire application. Handling runtime failures is especially
cumbersome, because all components run in the same
environment.

Another approach is taken from the service-oriented
architectural style. In Service-Oriented Architecture (SOA)
an application consists of independent, interoperable and
reusable services, usually implemented as Web services. To
facilitate achieving a loose coupling between the
components, SOA aims at abstracting of the overall business
logic [12].

Each service publishes its description, where it defines its
capabilities. A service in SOA typically has one of two main
roles — a service provider or service consumer. A service
provider is invoked via an external source to provide some
services according to its published capabilities. A service
consumer (sometimes called service requestor) invokes
service providers by sending them corresponding messages.
A service can play just a single role in the composed
application. It can also play both roles, e.g., if it functions as
an intermediary that routes and processes messages or as a
service director, which needs to invoke other services to
provide a composite service, which is a part of application.

Typically, an application is composed of services that are
hosted on different servers. SOA promotes an asynchronous
communication to ensure stateless nature of services.
Obviously, highly distributed nature of SOA makes
development and deployment of services more challenging.

Microservice architecture builds on the concept of SOA.
It promotes building an architecture consisting of
autonomous and, hence, independently replaceable and
upgradable services. Each microservice represents a small
component specialising in implementing a certain
functionality. Usually, microservices run in their own
processes distributed across the network.

Microservice architectures have many benefits including
availability, scalability as well as continuous integration and
deployment [11]. Next, we discuss a few main
characteristics of microservices, which we find particularly
useful for achieving QoS of complex applications built in
the microservice architectural style.

Single responsibility: the functionality of each
microservice is narrowly focused. The main goal is to keep
the code base as small as possible and ensure that each
microservice can be redeveloped and redeployed in short
time. Microservices emphasise the modularity principle,
which, nevertheless, allows us to build large applications
composed of numerous services.

Autonomy. As mentioned above, in a micorservice
architecture, each microservice is typically run on its own
process and the processes are distributed across the network.
This introduces additional complexity but allows an
application to cope with different performance demands and
avoid tight coupling.

Heterogeneity. The microservice architecture supports
technological independence in implementing each
individual microservice, e.g., a programmer is free to choose

ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

any programming language to implement a microservice.
The API of a microservice should be language-agnostic to
ensure that the services can communicate with each other on
different platforms.

Scaling. Microservice can be replicated if there is high
performance demand or used differently in different parts of
the application. Such an approach ensures good scalability
of the microservices applications. Microservices have only
run-time dependencies on each other and, hence, can be
replaced or deployed independently, which further improves
scalability and flexibility in developing complex
applications.

The growing popularity of the microservices architectural
style has led to creating several specialised platforms.
Among the most popular platforms are Spring Boot and
building on it Spring Cloud, WildFly Swarm, Payara Micro
and SilverWare [11]. In addition, there are different
libraries, frameworks and application servers, which allow
the developers to create the applications in the microservice
style.

Since microservices should run in highly distributed
environments, their developers should deal with the
complexity inherent to all distributed systems, in particular,
complexity of achieving fault tolerance and reliable
behaviour of the overall developed application. To achieve
this goal, we should utilise the knowledge and best practices
— design patterns — created in the area of fault tolerant
computing and adapt them to the microservices style. In the
next section, we focus on discussing various fault tolerance
mechanisms and model-driven approach to designing them.

III. FAULT-TOLERANCE IN MICROSERVICE ARCHITECTURE

The main goal of introducing fault tolerance in the
microservice architecture (and SOA in general) is to prevent
a propagation of faults to the application interface level, i.e.,
to avoid an application failure [7][8]. A fault manifests itself
as error — an incorrect service state [7][8]. Once an error is
detected, an error recovery should be initiated. Error
recovery is an attempt to restore a fault-free state or at least
to preclude system failure.

Error recovery aims at masking error occurrence or
ensuring deterministic failure behaviour if the error cannot
be masked. In the former case, upon detection of error,
certain actions are executed to restore a fault-free system
states and then guarantee normal service provisioning. In the
latter case, the service provisioning is aborted and failure
response is returned.

In this paper, we focus on the architectural graphical
modelling [9] of fault tolerance mechanisms, which can be
integrated into the microservice architecture [11]. We
demonstrate how to explicitly introduce handling of faulty
behaviour into the microservice architecture.

To model a microservice, we should analyse its
interactions with the other microservices in the application
under development. At the abstract modelling level, we treat
a microservice as a black box with the defined logical
interfaces. As we mentioned in Section II, in general, each
microservice can play one of two roles — service consumer or
service provider. Figure 1 and Figure 2 show the patterns for
modelling service provider and service consumer
correspondingly.

Copyright (c) IARIA, 2019.

rec request

A
‘ serving

service response

idle I

N

Figure 1. Behavior of service provider

send request

idle I waiting

N

rec. response

Figure 2. Behavior of service consumer

To model a microservice, we should analyse its
interactions with the other microservices in the application
under development. At the abstract modelling level, we treat
a microservi

A high-level state diagram of the service provider is
depicted in Figure 1. The microservice is idle and upon
receiving a service request enters the state serving. When the
requested computation is completed, the service provides the
requested outcome and returns to the state idle.

A high-level state diagram of the service consumer is
depicted in Figure 2. Similarly, the data consumer is
activated after is issues the service request and upon
receiving the requested results returns to the state idle.

Figure 3. Example of microservice architecture

A generic microservice architecture can be represented
by a diagram similar to the one shown in Figure 3. The
scenarios to be supported can be modelled as a sequence of
service requests and replies. Correspondingly, the
microservices involved into an execution of the scenario
play the roles of service providers and service consumers.

Let us analyse the possible failures that might occur
while executing an application composed of microservices.
We can identify three classes of failures:

1. Invalid service request
2. Invalid service response
3. Network failure

ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

The first class of failures caused by an error in the
request parameters. This failure can be easily detected
during the scenario execution by the explicit response
indicating the error. The second class of failures — the
invalid service response — is caused by a logical error in
implementing a certain microservice. This type of error can
be detected by integrating the corresponding functionality
into the service consumer that checks the validity of the
obtained response.

Finally, the network failures are not caused by the
microservices themselves. They can only be detected by
integrating the corresponding monitoring mechanisms, for
instance, timeouts, into the microservice architectures as
well as the appropriate fault tolerance patterns, which we
discuss next.

Timeout pattern. This pattern aim at coping with
unreliable networks. As we discussed previously, a
microservice architectural style promotes loose coupling of
services, which results in a highly distributed execution of
scenarios. In general, the network is unreliable and hence,
connections might fail or become slow. Such network
behaviour negatively effects the executions relying on the
synchronous remote calls, i.e., can deadlock the scenario
execution.

To prevent this, timeouts can be used to bound the
waiting time. Despite the fact that timeout mechanisms are
actively used at the operating systems level, their use at the
application level is less common.

timeout
aborted waiting

reauest

waiting

Figure 4. Timeout pattern for service consumer

Figure 4 graphically depicts the timeout pattern with
respect to the service consumer. We have decided to single
out the state of failed response, since it would allow us to
explicitly collect data about failed responses when we study
more complex fault tolerance patterns.

The interactions between the service consumer and
service provider in the timeout pattern are shown in Figure
5.

Figure 5. Interaction in timeout pattern

Circuit breaker. Circuit breakers detect excessive current
in electric circuits and by failing open the circuit to prevent
the connected appliances from damage. When the excessive
current is removed, the circuit breaker can be reset and the
circuit becomes closed and functioning again.

The idea of circuit breaker in the microservice
architecture is similar to the electric one. It is a wrapper,

Copyright (c) IARIA, 2019.

which intercepts the erroneous (and potentially dangerous)
calls to make sure that they do not harm the entire
application. Hence, the main purpose of the circuit breaker
is to monitor the behaviour of the network and services and
if the failure rate exceeds certain threshold, make the calls to
the remote destinations to fail immediately. After certain
timeout, the circuit breaker sends some testing call to the
quarantined server to check whether it has recovered. If the
calls succeed then the circuit breaker stops failing the calls
to this sever, i.e., it “closes” the circuit.

Figure 6. Interactions in the circuit breaker pattern

The graphical model for representing the interactions in
the circuit breaker pattern is shown in Figure 6. The state
diagram representing the dynamic behaviour is given in
Figure 7. The circuit breaker is activated upon receiving a
request from a service consumer. It monitors the request
execution by the service provider and collects the
corresponding data. If request fails, it checks whether the
failure rate has exceeded the predefined threshold. If not
then the circuit breaker continues to function in the
monitoring mode, i.e., does not block the calls to the
corresponding service provider.

However, if the failure rate threshold is exceeded, then
the circuit breaker changes its mode to block, i.e., fail all the
calls to the corresponding service provider. The service
provider becomes quarantined. After the quarantine time
expires, the circuit breaker sends a test request to the
quarantined service provider. If the request is successfully
returned the quarantine is removed and the circuit breaker
returns to the monitoring mode.

Circuit breakers provide us with an efficient way to
prevent cascading failures. They rely on timeout pattern to
detect failures and correspondingly, recoveries of the service
providers. The circuit breakers collect data about the
behaviour of the microservices, which can be used to
refactor them and continuously improve the reliability of the
microservices architectures.

IV. ComMPOSITE FAULT TOLERANCE PATTERNS

In this section, we overview more complex fault
tolerance patterns. They built on the patterns introduced in
Section III as well as classic fault tolerance techniques.

Proactive fault tolerance. This pattern aims at preventing an
execution of complex scenarios that cannot be executed to
the completion. Proactive fault tolerance identifies potential
failures before the scenario or part of it is executed, signals
about the possible deadlock and either proposes an
alternative way to execute a scenario or fails it.

The proactive fault tolerance pattern is a composite
pattern that relies on timeout and circuit breaker patterns as
well as other standard fault tolerance techniques.

ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

Figure 7. Dynamic behaviour of circuit breaker pattern

The graphical model of proactive fault tolerance pattern
is shown in Figure 8.

Figure 8. Dynamic behaviour of proactive fault tolerance pattern

Composite services. Some microservices are composite,
i.e., to provide a requested service they need to request
services from several other microservices, process the
responses and finally provide the requested result. Let us
note, that any other microservice might also be “composed”
of several microservices, i.e., in its turn, the requested
microservice execution might be orchestrated by its
(sub)service director. Hence, in general, a composite
microservice might have several layers of hierarchy.

|_Tos

|_Fram&1

I_Tess

81 U
(=23
I_Tes1

|_Froms2 |_Froms32

|52

|_Ta&2
Figure 9. Service director: static view

To model a composite microservice, we introduce the
providers of the microservices into the abstract architectural
service model. The model includes the external service
providers communicating with the microservice director via
their service director, as shown in Figure 9.

Figure 10. Duplication pattern: static view

Copyright (c) IARIA, 2019.

Now, let us discuss the patterns that allow us to introduce
structural means for fault tolerance using various forms of
redundancy.

Duplication pattern. The duplication is a simplest
arrangement for structural fault tolerance. It can be
introduced if there are two microservice providers, which
provide functionally identical microservices. In this case, the
request from a service director of a service consumer can be
duplicated and microservice providers activated in parallel.
An execution is successful if any out of two microservice
providers successfully completes the request.

An architectural diagram of the duplication arrangement is
given in Figure 10 and the dynamic behavior shown in
Figure 11.

Figure 11. Dynamic behavior of duplication pattern.

Triple modular redundancy pattern. A more complicated
scheme for structural redundancy - triple modular
redundancy (TMR) is shown in Figure 12. The precondition
for implementing it is that we have three microservice
providers that provide functionally identical microservices.
In this case, a service request from a service consumer or
service director should be triplicated. All three microservice
providers receive the same service request and work in
parallel. The results of the service execution are sent to a
voting element.

The voting element is a dedicated microservice that
performs comparison of the results and produces the final
result. The voting element takes a majority view over the
produced results of the successfully executed services and
outputs it as the final result of the service execution.

The voting microservice might be implemented in two
different ways: it might output the results after receiving the
first two replies or it might start to act only after the certain
deadline when all non-failed services have replied

The proposed patterns offer suitable solution for
achieving fault tolerance in developing applications in the
microservice architectural style.

Figure 12. Dynamic behavior of TMR pattern.

ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

V. RELATED WORK AND CONCLUSIONS

While the topic of service orchestration and composition
has received significant research attention, the fault
tolerance aspect is not so well addressed. Liang [8] proposes
a fault-tolerant Web service on SOAP (called FT-SOAP)
using the service approach. It extends the standard WSDL
by proposing a new element to describe the replicated Web
services. The client side SOAP engine searches for the next
available backup from the group WSDL and redirects the
request to the replica if the primary server failed. It is a
rather complex mechanism that hinders interoperability.

Artix [2] is IONA's Web services integration product. It
provides a WSDL-based naming service by Artix Locator.
Multiple instances of the same service can be registered
under the same name with an Artix Locator. When service
consumers request a service, the Artix Locator selects the
service instance based on a load-balancing algorithm from
the pool of service instances. It provides useable services for
the service consumers. An active UDDI mechanism [4]
enables an extension of UDDI’s invocation API to enable
fault-tolerant and dynamic service invocation. Its function is
similar to the Artix Locator. A dependable Web services
framework is proposed in [1]. Once a failure for one specific
service occurs, the proxy raises a “WebServiceNotFound”
exception and downloads its handler from DeW. The
exception handling chooses another location that hosts the
same service and re-invoks the method automatically. The
main goal of DeW is to realize physical-location-
independence. Providing fault-tolerance capability for
composite Web service has also been discussed in [3].

A formal approach to introducing fault tolerance to the
service architecture in the telecommunication domain has
been proposed in [6][7][13][14]. This work extends the set
of architectural patterns that can be introduced to achieve
fault tolerance as well as propose a systematic support for
deriving fault tolerance solutions.

The fault tolerance means are often assessed
quantitatively. The techniques for probabilistic assessment
of fault tolerance have been proposed in [15]-[18]. These
techniques can be applied together with the proposed fault
tolerance patterns.

In this paper, we have proposed a systematic model-
driven approach to achieving fault tolerance in microservice
architectures. We have defined generic modelling patterns,
which can be utilised in model-driven engineering in the
microservice architectures. Our patterns help to analyse
possible failures and propose efficient solutions to cope with
them. By integrating the proposed patterns into the
architecture of a microservice, we can improve QoS and
achieve higher reliability. Our patterns propose both
dynamic and static means for achieving fault tolerance. The
dynamic patterns rely on run-time monitoring behaviour and
activating patterns if certain failure detection conditions
occur. The static pattern help the designers to systematically
utilise the redundancies present in the provisioning of
microservices.

We believe that our approach supports structured guided
reasoning about fault tolerance and enables -efficient
exploration of the design space while developing complex
microservice architectures.

Copyright (c) IARIA, 2019.

REFERENCES

[1] E. Alwagait, S. and Ghandeharizadeh, “A Dependable Web Services
Framework” 14™ International Workshop on Research Issues on Data
Engineering 2004, http:/fac.ksu.edu.sa/alwagait/publication/31143
retrieved January 2018.

[2] Artix Technical Brief. http://www.iona.com/artix, retrieved January
2018.

[3] V. Dialani, S. Miles, L.Moreau, D. Roure, and M. Dialani, “Transparent
fault tolerance for Web services based architectures”. 8th Europar
Conference (EULRO-PARO02), Springer 2002, pp. 889-898. ISBN: 3-
540-44049-6

[4] M. Jeckle and B. Zengler, “Active UDDI-An Extension to UDDI for
Dynamic and Fault Tolerant Service Invocation” 2nd International
Workshop on Web and Databases, Springer 2002, pp. 91-99. ISBN:3-
540-00745-8.

[5] L. Laibinis, E. Troubitsyna, and S. Leppinen, “Service-Oriented
Development of Fault Tolerant Communicating Systems: Refinement
Approach” International Journal on Embedded and Real-Time
Communication Systems, vol. 1, pp. 61-85, Oct. 2010, DOI:
10.4018/jertcs.2010040104.

[6] L. Laibinis, E. Troubitsyna, S. Leppénen, J. Lilius, and Q. Malik,
“Formal Service-Oriented Development of Fault Tolerant
Communicating Systems”, in M. Butler, C. Jones, A. Romanovsky,
and E. Troubitsyna (Eds.), Rigorous Development of Complex Fault-
Tolerant Systems, LNCS 4157, pp. 261-287, Springer 2006, ISBN
978-3-642-00867-2.

[7] J. C. Laprie. Dependability: Basic Concepts and Terminology.
Springer-Verlag, 1991.

[8] D. Liang, C. L. Fang, C. Chen, F. X, Lin. "Fault-tolerant Web service”.
Tenth Asia-Pacific Software Engineering Conference, IEEE Press,
Dec. 2003, pp.56-61, ISBN 973-4-642-01867-1

[9] J. Rumbaugh, I. Jakobson, and G .Booch, The Unified Modelling
Language Reference Manual. Addison-Wesley, 1998.

ISBN: 978-1-61208-728-3

ICIW 2019 : The Fourteenth International Conference on Internet and Web Applications and Services

[10] Web Services Architecture Requirements
http://www.w3.org/TR/wsaregs, retrieved January.2018.
[11] M. Fowler and J. Lewis. Microservices: a definition of this new

architectural term. In [Online]. Available
https://martinfowler.com/articles/microservices.ml. ~ Accessed: 01-
April- 2019.

[12] T. Erl. Serivce-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall, 2005. ISBN: 978-0131858589.

[13] A. Tarasyuk, E. Troubitsyna, L. Laibinis. Formal Modelling and
Verification of Service-Oriented Systems in Probabilistic Event-B. In
Proc. of IFM 2012, LNCS 7321, pp.237-252, Springer, 2012.

[14] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, L. Laibinis, Formal
Development and Quantitative Assessment of a Resilient Multi-robotic
System. In: Proc of SERENE 2013, LNCS 8166, pp. 109-124,
Springer.

[15] E. Troubitsyna, “Reliability assessment through probabilistic
refinement,” Nordic J. of Computing 6 (3), 320-342, 1999.

[16] L. Laibinis, B. Byholm, I. Pereverzeva, E. Troubitsyna, K.E. Tan and
I. Porres, Integrating Event-B Modelling and Discrete Event
Simulation to Analyse Resilience of Data Stores in the Cloud.The 11th
International Conference on Integrated Formal Methods, iFM 2014,
LNCS 8739, pp. 103-119, Springer 2014.

[17] LPereverzeva, L. Laibinis, E. Troubitsyna, M. Holmberg, M. Pori,
Formal Modelling of Resilient Data Storage in Cloud. In: Lindsay
Groves, Jing Sun (Eds.), Proceedings of 15th International Conference
on Formal Engineering Methods, LNCS 8144, 364-380, Springer-
Verlag Berlin Heidelberg, 2013.

[18] A. Tarasyuk, I. Pereverzeva, E. Troubitsyna, L. Laibinis, Formal
Development and Quantitative Assessment of a Resilient Multi-robotic
System. In: A. Gorbenko, A. Romanovsky, V. Kharchenko (Eds.),
Proceedings of the 4th International Workshop on Software
Engineering for Resilient Systems (SERENE 2013), Lecture Notes in
Computer Science 8166, 109—124, Springer-Verlag Berlin Heidelberg,
2013.

