
Implementing a USB File System for Bare PC Applications

William Thompson, Ramesh K. Karne, Sonjie Liang, Alexander L. Wijesinha, Hamdan Alabsi, and Hojin Chang

Department of Computer and Information Sciences

Towson University

Towson, MD 21252, U.S.

e-mail: {wvthompson, rkarne, sliang, awijesinha, halabs1, hchang}@towson.edu

Abstract—Bare machine computing applications including

Web servers, Webmail servers, SIP servers and SQLite require

a file system that can also be used with an OS such as Windows

or Linux. However, conventional file systems are OS-

dependent and cannot be used with bare PC applications,

which run without any OS or kernel support. This paper

describes the implementation of a novel FAT-32 based USB file

system for a bare PC, and provides details of its internal

structures and the file API. Implementing a bare machine file

system is challenging because it does not use any standard

system libraries and requires integrating the USB driver and

FAT32 file system with the bare PC application. The file

system can be used with any existing or future bare PC

application.

Keywords- bare machine computing; bare PC applications;

FAT32; file system; USB.

I. INTRODUCTION

File systems provide a means for organizing and
retrieving the data needed by many computer applications.
Typically, they are closely tied to the underlying operating
system (OS) and mass storage technology. Bare machine file
systems are, in contrast, independent of any OS or platform.
Such a file system can be used with computer applications
that run on a bare machine with no OS, and also in a
conventional OS environment. The file system can serve as a
basis to support future bare machine database management
systems, big data systems, and Web and mobile applications
that eliminate OS overhead and cost. Furthermore, it can be
used in bare machine security applications that provide
protection from attacks targeting OS vulnerabilities. In
earlier work [14], a lean USB file system for a bare PC was
described and relevant design issues were discussed. This
paper focuses on the implementation and internals of a bare
machine USB file system. It also defines a file API for bare
PC applications.

The file system depends on the USB architecture [17],
USB Mass Storage Specification [21], USB Enhanced Host
Controller Interface Specification [6], FAT32 standard [15],

and the bare machine computing paradigm. The file system
is stored on a USB along with its application. The USB

layout is similar to a memory layout providing a linear block
addressing (LBA) scheme. That is, a USB address map is

similar to a memory map. However, a USB is accessed with
sector numbers that are directly mapped to memory

addresses. It uses small computer system interface (SCSI)
commands that are encapsulated in USB commands. Thus, a

bare PC USB driver that works with this file system is
needed [12]. The FAT32 standard is complex and has a

variety of options that are needed for an OS based system as
it is required to work with many application environments.
The FAT32 options implemented in this system and the file

API are designed for bare PC applications.
Bare PC applications are based on the Bare Machine

Computing (BMC) or dispersed OS computing paradigm
[10]. This paradigm differs from a conventional approach as
there is no underlying OS to manage resources. This means
that the application programmer also has to deal with system
programming aspects. Resident mass storage is not used in a
bare PC, so applications are stored in a portable device such
as a USB drive or in the cloud. The application is written
primarily in C/C++ (with some assembly code) and runs as
an application object (AO). An AO includes its own
interfaces to the hardware [11] and the necessary OS-
independent device drivers. Bare PC applications include
Web servers [9], split servers [18], server clusters [19], email
servers [5], SIP servers and user agents [1], and peer-to-peer
VoIP systems [8].

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the file API for
bare PC applications. Section 4 gives details of file system
internals. Section 5 presents functional operation. Section 6
contains the conclusion..

II. RELATED WORK

There are many approaches to reduce OS overhead, use
lean kernels, or build a high-performance OS such as
Exokernel [4], IO-Lite [16], and Palacios and Kitten [13].
While the BMC paradigm somewhat resembles these
approaches, there is a significant difference in that bare
machine applications run without any centralized code in the
form of an OS or kernel. Flash memory has been used for
mass storage devices as in the Umbrella file system [7],
which also integrates two different types of storage devices.
In [2], it is shown how to improve performance by adding
cache systems at a driver level. In [3], a FAT32 file system
for high performance clusters is implemented. Figure 1. Bare machine USB file system.

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

In [14], the design of a lean USB file system for bare PC
applications was discussed and an initial version of the file
system was built and tested. That work showed the
feasibility of developing a file system without any OS
support. However, the file system was not easy to modify or
use with existing bare PC applications. This paper describes
the implementation of an enhanced USB file system with a
simple file API for bare PC applications.

III. FILE API

In a bare PC application, code for data and file systems
reside on the same USB. In addition to the application, the
USB has the boot code and loader in a separate executable,
which enables the bare PC to be booted from the USB. The
application suite (consisting of one or more end-user
applications) is a self-contained application object (AO) [11]
that encapsulates all the needed code for execution as a
single entity. For example, a Webmail server, SQLite
database and the file system can all be part of one AO. Since
no centralized kernel or OS runs in the machine, the AO
programmer controls the execution of the application on the
machine. When an AO runs, no other applications are
running in the machine. After the AO runs, no trace of its
execution remains.

An overview of the USB file system for bare PC
applications is shown in Figure 1. The simple API for the file
system consists of five functions to support bare PC
applications. These are (1) createFile(), (2) deleteFile(), (3)
resizeFile(), (4) flushFile() and (5) flushAll(). These
functions provide all the necessary interfaces to create and
use files in bare PC applications. The fileObj (class) uses a
fileTable data structure to manage and control the file
system. A given API call in turn interfaces with the USBO
object, which is the bare PC device driver for the USB [12].
This device driver has many interfaces to communicate
directly with the host controller (HC). The HC interfaces
with USB device using low-level USB commands.

Figure 2 lists the file API functions, and Figure 3 shows
an example of their usage. The parameters for the
createFile() function are file name (fn), memory address
pointer (saddr), file size (size) and file attributes (attr); it

returns a file handle (h). The file handle is the index value of
the file in the fileTable structure, which has all the control
information of a file. This approach considerably simplifies
file system design as it can be used as a direct index into the
fileTable without the need for searching. The deleteFile(h)
function uses the file handle to delete a file. When a file is
deleted, it simply makes a mark in the fileTable structure and
its related structures such as the root directory and FAT
table. The resizeFile() function is used to increase or
decrease a previously allocated file size. Thus, an AO
programmer needs to keep track of the growth of a file from
within the application. The flushFile() function will update
the USB mass storage device from its related data structures
and memory data. An AO programmer has to call this
function periodically or at the end of the program to write
files to persistent storage. The flushAll() interface is used to
flush all files and related structures onto the USB drive. Note
that the programmer gets a file address, uses it as standard
memory (similar to memory mapped files), and manages the
memory to read and write to a file. There is no need for a
read and write API in this file system. All standard file IO
operations are reduced to the list shown in Figure 2.

A significant difference between the bare PC file system
and a conventional OS-based file system is that an AO

programmer directly controls the USB device through the
API. That is, a user program directly communicates with the

hardware without using an OS, kernel or intermediary
software. For instance, the createFile() function invokes the

f
Figure 5. USB layout.

Figure 4. USB parameters

Figure 2. File API functions.

Figure 3. File API Usage.

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

ileObj function, which in turn invokes the USBO function.
The latter then calls the HC low-level functions. In this

approach, an API call runs as a single thread of execution
without the intervention of any other tasks. Thus, writing a
bare PC application is different from writing conventional

programs as there is no kernel or centralized program
running in the hardware to control the application. These
applications are designed to run as self-controlled, self-
managed and self-executable entities. In addition, the

application code does not depend on any external software or
modules since it is created as a single monolithic executable.

IV. FILE SYSTEM INTERNALS

Building a USB file system for bare PC applications is
challenging. The system involves several components and
interfaces, and it is necessary to map the USB specifications
to work with the memory layout in a bare PC application and
the bare machine programming paradigm. Details of file
system internals are provided in this section to illustrate the
approach.

A. USB Parameters

Each USB has its own parameters depending on the
vendor, size and other attributes. Some parameters shown in
Figure 4 are used for identification and laying out the USB
memory map. These parameters are analogous to a schema
in a database system and are located in the 0th sector.

B. USB and Memory Layout

Figure 5 displays the USB layout for a typical file system
with 2GB mass storage. The boot sector contains many
parameters as shown in Figure 4. The reserved sectors
parameter is used to calculate the start address of FAT1
table. The number of sectors per FAT defines the size of
FAT1 and FAT2 tables, which are contiguous. The root
directory entry follows the FAT2 table as shown in Figure 5.

The number of clusters in the root directory and number
of sectors per cluster defines the starting point for the files
stored in the USB. The root directory has 32 byte structures
for each file on the USB. These 32 byte structures describe
the characteristics of a FAT32 file system. The layout in
Figure 5 shows two files prcycle.exe and test.exe. The first
file is the entry point of a program after boot and the second
one is the application. Other mass storage files created by the
application are located after test.exe. The bare PC file system
has to manage the FAT tables, root directory and file system
data.

The USB layout and its entry points are used to map
these sectors to physical memory. A memory map is then
drawn as shown in Figure 6. During the boot process, the
BIOS will load the boot sector at 0x7c00 and boot up the
machine. This code will run and load prcycle.exe using a
mini-loader. When prcycle.exe runs, it provides a menu to
load and run the application (test.exe). The original boot,
root directory and FATs as well as other existing files and

Figure 9. USB operations.

Figure 8. File Table Entry (FTE)

Figure 7. Initialization.

Figure 6. Memory map

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

data in the USB are also stored in memory to manage them
as memory mapped files. The cache area stores all the user
file data and provides direct access to the application
program. In this system, the USB and memory maps are
controlled by the application and not by middleware.

C. Initialization

The Figure 7 illustrates the initialization process after the
bare PC starts. During initialization, existing files from the
USB are read into memory and file table attributes are
populated. In addition, FAT tables and other relevant
parameters are read and stored in the system. If the file data
size is larger than the available memory, then partial data is
read as needed and the file tables are updated appropriately.
A contiguous memory allocation strategy is used to manage
real memory. Because the file handle serves as a direct index
to the file table, the file management system is simplified.

D. File Table Entry (FTE)

The FTE is a 96-byte structure as shown in Figure 8. The
file name is limited to 64 bytes including name and type. 32-
byte control fields are used to store the file control
information needed to manage files. These attributes are
derived from the root directory, FAT tables and memory
map. The file index is the first entry in the FTE and it
indicates the index of the file table. The index is also used as
a file handle to be returned to the user for file control.

E. File Operations

The five file operations in the bare PC system use the
data structures file table and device driver interfaces.

The file system only covers a single directory structure.
When createFile() is called, it first checks the file table for
any existing file using the file name. If this file does not
exist, a new file is created with the given file name and
requested file size. Then an entry is made in the file table,
memory is assigned, and the root directory and FAT entries
are created for the file. When flushFile() is called, it updates
the USB and the call returns the file handle, which is an
index into the file table. Similarly, deleteFile() will delete the
file from the file table and flushAll() will update the USB
with all the USB data fields. The resizeFile() interface
simply uses the same entry with a different memory pointer
and keeps the data “as is” unless the size is reduced. When
the size is reduced, the extra memory is reset. All API calls
and their internals are visible to the programmer.

F. File Name

The file system supports both short and long file names.
At present, long file names are limited to 64 characters by
design since they introduce difficulties when creating the
root directory and file table entries. The FAT32 root
directory structure also results in complexity that affects file
system implementation.

Figure 12. Bare PC root directory.

Figure 13. USB root directory. Figure 11. Windows trace.

Figure 10. Analyzer trace.

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

G. System Interfaces

The The USB file system runs as a separate task in the
bare PC AO. The AO has one main task, one receive task
and many application tasks such as server threads. The main
task enables plug-and-play when the USB drive is plugged
into the system. Each USB slot in the PC is managed as a
separate task. Tasks and threads are synonymous in bare PC
applications as threads are implemented as tasks in the
system. Each event in the system is treated as a single thread
of execution without interruption. Thus, each file operation
runs as one thread of execution. There is no need for
concurrency control and related mechanisms in a bare PC
application. The files generated in the bare PC system can be
read on any OS that supports FAT32 such as Windows,
Linux or Mac.

V. OPERATION

The file system is written in C/C++, while the device
driver code is written in C and MASM. The MASM code is
27 lines and provides two functions that read and write to
control registers in the host controller. The fileObj code is
4262 lines including comments (30% of the code), and one
class definition. State transition diagrams are used to
implement USB operations and their sequencing. For
example, some of the state transitions occurring during the
initialization process are shown in Figure 7. The fileObj in
turn invokes the USB device driver calls shown in Figure 9.

File operations can be done anywhere in the bare PC
application. The task structure that runs in the bare PC file
system is similar to that used for bare Web servers [9], and
runs on any Intel-based CPU that is IA32 compatible. Bare
PC applications do not use a hard disk; instead, the BIOS is
used to boot the system. The file system, boot code and
application are stored on the same USB. A bootable USB
along with its application is generated by a special tool

designed for bare PC applications. The USB file system was
integrated with the bare PC Web server for functional
testing.

The operation of the bare PC file system is demonstrated
by having two existing files (prcycle.exe and test.exe) on the
USB along with the boot code. Small and large files are
created by the application with file sizes varying up to 100K.
To demonstrate file operations, four files were created and
tested as described here in addition to the two files
prcycle.exe and test.exe on the USB (after the program runs,
there a total of six files on the USB). The data were read
from the files and also written to them using the file API. A
USB analyzer [20] was used to test and validate the file
system and the driver. Figure 10 shows a sample trace from
the analyzer that illustrates reset, read descriptors, set
configuration and clear. These low level USB commands are
directly controlled by the programmer (they are a part of the
bare PC application).

Figure 11 shows the six files that exist on the USB
displayed on the screen of a Windows PC. The four created
files can be read from the Windows PC. Figure 12 shows the
file system in the bare PC root directory in memory. This
directory is used to update the files until they are flushed.
Figure 13 shows the root directory entries on the USB after
the program is complete. Figure 14 is a screen shot on the
bare PC showing the four files (short and long) created
successfully by the system. The bare PC screen is divided
into 25 rows and 8 columns to display text using video
memory. This display is used by the programmer to print
functional data, and for debugging. The programmer controls
writing to the display directly from the bare PC application,
with no interrupts used for display operations.

VI. CONCLUSION

We described the implementation of a novel bare
machine USB file system designed for applications that run
without the support of any OS environment/platform, lean
kernel or embedded software. We also presented a file API
for bare PC applications. The file system enables a
programmer to build and control an entire application from
the top down to its USB data storage level without the need
for an OS or intermediary system. This implementation can
be used as a basis for extending bare PC file system
capabilities in the future. The file system can be integrated
with bare PC applications such as Web servers,
Webmail/email servers, SIP servers and VoIP clients.

REFERENCES

[1] A. Alexander, A. L.Wijesinha, and R. Karne, “Implementing
a VoIP SIP server and a user agent on a bare PC”, 2nd
International Conference on Future Computational
Technologies and Applications (Future Computing), 2010, pp.
8-13.

[2] Y. H. Chang, P. Y. Hsu, Y. F. Lu, and T. W. Kuo “A driver-
layer caching policy for removable storage devices”, ACM
Transactions on Storage, Vol. 7, No. 1, Article 1, June 2011,
p1:1-1:23.

[3] M. Choi, H. Park, and J. Jeon, “Design and implementation of
a FAT file system for reduced cluster switching overhead”,

Figure 14. Bare PC screen shot.

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

International Conference on Multimedia and Ubiquitous
Engineering, 2008, pp. 355-360.

[4] D. R. Engler and M.F. Kaashoek, “Exterminate all operating
system abstractions”, Fifth Workshop on Hot Topics in
Operating Systems, USENIX, 1995, p. 78.

[5] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-
Kubi, “The design and implementation of a bare PC email
server”, 33rd IEEE Computer Software and Applications
Conference (COMPSAC), 2009, pp. 480-485.

[6] Intel Corporation, Enhanced host controller interface
specification for universal serial bus, March 2002, Rev 1,
http://www.intel.com/technology/usb/download/ehci-r10.pdf
[retrieved: April 8, 2016]

[7] J. A. Garrison and A. L. N. Reddy, “Umbrella file system:
Storage management across heterogeneous devices”, ACM
Transactions on Storage (TOS), Vol. 5, No. 1, Article 3,
March 2009.

[8] G. Khaksari, A. Wijesinha, R. Karne, L. He, and S.
Girumala., “A peer-to-peer bare PC VoIP application”, IEEE
Consumer Communications and Networking Conference
(CCNC) 2007, pp. 803-807.

[9] L. He, R. K. Karne, and A. L. Wijesinha, “The design and
performance of a bare PC Web server”, International Journal
of Computers and Their Applications, IJCA, Vol. 15, No. 2,
June 2008, pp. 100-112.

[10] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed,
“DOSC: dispersed operating system computing”, 20th Annual
ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2005, pp. 55-61.

[11] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run
C++ applications on a bare PC”, 6th ACIS Conference on
Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD) 2005.

[12] R. K. Karne, S. Liang, A. L. Wijesinha, and P. Appiah-Kubi,
“A bare PC mass storage USB device driver”, International
Journal of Computers and Their Applications, Vol 20, No. 1,
March 2013, pp. 32-45.

[13] J. Lange et al., “Palacios and Kitten: New high performance
operating systems for scalable virtualized and native
supercomputing”, 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2010, pp. 1-12.

[14] S. Liang, R. Karne, and A. L. Wijesinha, “A lean USB file
system for bare machine applications”, 21st Conference on
Software Engineering and Data Engineering (SEDE), 2012,
pp. 191-196.

[15] Microsoft Corp, “FAT32 file system specification”,
http://microsoft.com/whdc/system/platform/firmware/fatgn.rn
spx, 2000. [retrieved: April 8, 2016]

[16] V. S. Pai, P. Druschel, and W. Zwaenepoel. “IO-Lite: A
unified i/o buffering and caching system”, ACM Transactions
on Computer Systems, Vol.18 (1), Feb. 2000, pp. 37-66.

[17] Perisoft Corp, Universal serial bus specification 2.0,
http://www.perisoft.net/engineer/usb_20.pdf. [retrieved: April
8, 2016]

[18] B. Rawal, R. Karne, and A. L. Wijesinha, “Splitting HTTP
requests on two servers”, 3rd Conference on Communication
Systems and Networks (COMSNETS), 2011, pp. 1-8.

[19] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Mini Web
server clusters for HTTP request splitting”, IEEE Conference
on High Performance, Computing and Communications
(HPCC), 2011, pp. 94-100.

[20] Total Phase Inc., USB analyzers, Beagle,
http://www.totalphase.com. [retrieved: April 8, 2016]

[21] Universal serial bus mass storage class, bulk only transport,
revision 1.0, 1999, http://www.usb.org [retrieved: April 8,
2016]

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

