
Provenance-Aware Self-Healing Systems for Heterogeneous Computing

Environments

Bahadır Dündar

Software Testing and Quality Evaluation Laboratory

TUBITAK

Gebze-Kocaeli, Turkey

email: bahadir.dundar@tubitak.gov.tr

Mehmet S. Aktas

Computer Engineering Department

Yildiz Technical University

Istanbul, Turkey

email: mehmet@ce.yildiz.edu.tr

Abstract— Dependability is an important attribute for

heterogeneous computing environments and their applications.

The growing complexity and dependency of heterogeneous

computing environments makes fault tolerance an appealing

research area. In this study, we discuss the inability to forecast

faults in large-scale execution traces. In addition, we discuss

research challenges in self-healing capabilities for autonomic,

dynamically coordinated smart-environments based on the

supervision of continuous monitoring of execution traces. To

address such limitations and research challenges, we introduce

a methodology, in which the state data coming from

heterogeneous computing environments, such as Internet of

Things (IoT) devices, is monitored for predictive maintenance,

optimization and dynamic provisioning.

Keywords-self-healing capabilities; fault tolerance; dynamic

replication; provenance; heterogeneous; IoT

I. INTRODUCTION

IoT depends on self-configured smart objects that have
limited storage and processing capacity. These small objects
are dynamically coordinated in a large-scale environment
[1]. Platforms for connected smart objects are built by
plugging heterogeneous computational entities together in
highly dynamic configurations. Orchestration, management
and monitoring of such devices and smart objects are
fundamental fields of research, as the number of
interconnected objects is supposed to reach several hundred
billion. This brings up the need for suitable approaches to
adaptation, reconfiguration and self-healing systems, made
of entities whose common characteristic is precisely their
heterogeneity. The current state of the art in these
applications lacks self-healing capability, which is
commonly used to refer the capability of self-recovery of
systems. To achieve this capability, there are number of
coordinating nodes to perform a particular task, running on
heterogeneously distributed computing platforms whenever
an adaptation is required to an abnormal situation.

In this paper, our first goal is to investigate research
opportunities in self-healing capabilities of dynamically
coordinated heterogeneous distributed computing
environments based on the supervision of continuous
monitoring of execution traces. To this end, we use
provenance as the descriptor metadata of the execution traces
taken from IoT application nodes. Our next goal is to
propose a software architecture for fault

forecasting/estimation on large-scale execution trace data. In
order to address these goals, this paper identifies following
concrete research objectives described as follows.

Objective 1: To determine how to achieve fault tolerance
to support self-healing capabilities in heterogeneous
computing environments.

Objective 2: To determine how to enable fault
forecasting/estimation within the execution traces of
activities happening among IoT application nodes.

Objective 3: To determine how to optimize self-healing
capabilities by taking into account both user involvement and
computing environment in heterogeneous distributed
computing environments [2].

This paper introduces architectural guidelines for
providing fault tolerance to heterogeneous computing
environments, such as IoT application domains. To achieve
fault tolerance, the use of provenance metadata is proposed.

The rest of the paper is organized as follows. Section II
presents the literature summary. Section III presents various
application scenarios to describe the scope of this research.
Section IV presents our proposed system architecture for
developing fault tolerance in an IoT application domain.
Finally, Section V presents conclusion and future work of
our paper.

II. LITERATURE SUMMARY

In a typical IoT application, a smart object is a

lightweight component that has a clear, software-defined

API through, which it can be controlled and managed at

runtime, and dynamically provisioned in an elastic way.

Autonomous composition of these smart objects leads to

complex software ecosystems. In autonomous

heterogeneous computing environments, such as IoTs, there

are different units that can potentially be provisioned at

runtime. Currently, there is a lack of adequate solutions to

achieve resilient, dynamically coordinated IoTs.
The IoT components of these applications have end-to-

end links and data storage with read/write access. We argue
that in the IoT domain, if a number of IoT devices or IoT
services has faults, these faults will lead to complete failure
of the entire IoT application. Since our study primarily
focuses on fault tolerance mechanisms for heretogenous
computing environments, such as the IoT, we only review
background work on fault tolerance for these applications

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

running in heretogenous computing environments and
consisting of different kinds of resource-limited devices.
There are a number of previous studies that emphasize the
importance of self-healing capability in IoT domains [3][4].
In light of this emphasis, we categorize and review the
previous work as in the following paragraphs.

Deployment of IoT devices can be challenging. Fault
tolerance has been addressed in several studies in this
domain. These studies require deployment and re-
configuration of the devices during the execution of IoT
applications. However, these deployments require human
intervention and must be performed by experts. In our study,
we are interested in providing fault tolerance mechanisms
that can run applications continuously, even in the case of
individual node failure. Our approach is designed to run
applications without stalling them. In this scenario, an IoT
application can degrade gracefully under individual faults,
but it can continue its execution.

In order to provide fault tolerance in the IoT domain,
previous studies have used data replication techniques [5][6]
[7]. These studies have utilized both predefined replication
and dynamic replication techniques. However, apart from the
previous work, in our study we only focus on providing fault
tolerance for services (instead of data replication) that are
taking place in IoT applications.

Another approach for fault tolerance focused on service
replication technique [8]. This was addressed for failover
purposes. This approach only takes user requirements into
consideration in deploying services onto multiple devices in
order to recover failed services. In addition, this mechanism
is tightly coupled with a middleware, and the number of
replicated services is predefined. This approach does not
support dynamic replication of services. In our solution, we
introduce a loosely coupled fault tolerance mechanism to
solve this problem. Our study aims at using a combination of
both permanent and dynamic replication methods in order to
optimize fault tolerance strategy in IoT domains.

With the increasing number of security attacks in the IoT
domain, developing detection and prevention systems to
protect the components has become essential [9]. There are
some studies on detecting security attacks in the context of
IoT [10][11][12]. We, however, are interested in the
continuity of the entire IoT application, even under the
condition of failure of individual work items. We are not
concerned with preventing failures that may happen in
individual IoT devices due to security attacks.

Arjun et al. proposed a framework for IoT devices in
which these IoT devices can manage themselves with regard
to their configuration and resource utilization [13]. However,
this study focuses on a self-managing mechanism for
individual IoT devices by controlling their behaviors.
Additionally, this mechanism does not provide fault
tolerance for entire IoT applications. Our study primarily
focuses on fault tolerance for IoT applications, including
multiple devices, which are coordinating with each other.

Self-healing systems should have the ability to protect
themselves from possible failures. One of the methods of
protecting systems from failures is to predict faults before
they occur. There various types of fault prediction modeling

techniques, such as Linear Regression, Naive Bayes Logistic
Regression, Random Forests, Support Vector Machine and
C4.5 are used in fault prediction [14][15][16]. These
modeling techniques use different metrics, such as process
metrics, source code text, socio-technical metrics, object
oriented metrics, and line of code metrics [16][17][18]. In
our study, we focus on existing machine learning algorithms
that may lead to predicting/estimating fault incidents using
provenance data.

III. APPLICATION USE SCENARIOS

In order to define the scope of the proposed research, we

outline several application usage scenarios and various

requirements of the desired self-healing system architecture.

This section identifies several such scenarios, which differ in

terms of the devices used, their number, granularity, and

their interaction capabilities.

A. Elderly surveillance

This application aims at capturing important information

from elderly people and sending it back to a central platform.

It also serves as an agenda, reminder and telephone. Outside,

it works as a global positioning system (GPS). The primary

areas of application of the IoT in this scenario are shared

with those in typical healthcare systems: tracking,

identification and authentication, sensing and data gathering.

This system works on a mobile platform, being dependent on

availability of internet signal and energy. Moreover, it takes

into consideration wearable sensors for acquiring vital

information, which ship it to the mobile device via bluetooth,

and from the device into the central, in real-time. Different

sorts of services are coordinated with each other and

composed to fulfill the system’s functional requirements.

The computational resources and battery power of these

systems are limited, while communication technologies

consume considerable amounts of energy. In this particular

scenario, the IoT application should be capable of

proactively predicting problems and should have fault

tolerance. In this sense, the system should act (and react) in

accordance with self-healing mechanism when detecting and

predicting problems.

B. Smart Cities

The primary issue here is the way smart objects and

sensors interact and are orchestrated with the families of

electronic public services (EPS) that structure the urban

network. A smart city is often characterized as instrumented,

interconnected, and intelligent. Instrumented refers to the

capacity to acquire real-world data using different types of

channels like sensors, personal devices, medical devices,

social networks, etc. Interconnected refers to the integration

of data in an interoperable platform and its provision to and

usage on different city services. Intelligent relates to the use

of complex computational tools to deliver public value to

city inhabitants. Due to the embeddedness of digital

technology, citizens are more and more used to interacting

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

with them on a daily basis, typically through mobile devices

and wireless networks. Therefore, cities possess a wide range

of digitally skilled users that are ready to use and benefit

from the IoT to deliver EPS. However, the development of

smart city initiatives faces some challenges, some of them

falling clearly into the domain of applications of the

heterogeneous computing platforms, such as IoT. In this

scenario, we argue that these challenges in developing IoT

applications are rooted in the lack of self-healing capabilities

associated with such IoT applications. These capabilities are

very beneficial, considering the growth of connected devices,

as these applications are integrating many smart

environments from different domains, such as transportation,

health and e-participation.

IV. SYSTEM ARCHITECTURE

In this study, we present a self-healing mechanism for

IoT application domain. Inspired by our application use

scenarios, we argue that given an IoT application, if some

devices or services failed, IoT application would be shut

down. To this end, in this study, we introduce a failover

mechanism to enable fault tolerance in IoT applications, so

that the application can still continue its functioning (even in

the case of few failed devices/services). This failover

mechanism is introduced to address the aforementioned

objective#1. We present a fault prediction/estimation

mechanism that could estimate the present number and

future incidences of faults. We refer the failover mechanism

as the Self-Healing Mechanism Component. Within this

component, we also take into account both user involvement

and computing environment requirements to address the

objective#3. In this study, we also introduce the use of

existing solutions to a Provenance Service (i.e., Metadata

Service for execution traces of activities) to enable fault

tolerant IoT systems. This addresses the aforementioned

objective#2. Figure 1 illustrates system architecture for fault

tolerance. In this section, the components and their

interdependencies are explained in detail, together with the

employed research methods.

A. Provenance Service

Provenance is metadata, which is defined as the lineage

of a piece of data or an activity. It keeps track of the lifecycle

of an activity or data. In the presented self-healing

methodology, provenance metadata will be used for

providing fault tolerance. To this end, PROV-O

Specification (W3C recommended data representation) will

be utilized for provenance data representation [19]. In

provenance data representation, ideal granularity of

provenance and the types of information should be

considered for self-healing purposes.

Figure 1. System Architecture

B. Fault Detection and Prediction

One of the aspects of a self-healing mechanism is to be
able to protect itself from possible failures. To achieve this,
we argue that the following research challenges should be
taken into account.

The first challenge is data conversion. Provenance is
graph-based data expressing the execution traces of
activities. Since provenance data is represented in XML
format, it is not suitable for data mining tasks. Distributed
provenance graphs should be converted to a small-scale
provenance graphs should be converted to a small-scale
representation without information loss, so that they can be
processed for fault prediction/estimation. Such a data
conversion can be done by utilizing statistical features for
performing the data conversion, without information loss for
tasks like clustering of scientific workflow execution traces
[20][21].

The second challenge is fault prediction/estimation.
Existing machine learning algorithms that could lead to
predicting/estimating fault incidents will be utilized. Within
this challenge, one of the sub-goals of this study is to identify
all possible faults that might occur in the aforementioned
application domains. There could also be a case in which the
provenance data conversion will not lead to good
prediction/estimation capabilities; hence, big data processing
approaches (Map/Reduce programming model) that can
enable application of prediction/estimation algorithms on
large-scale provenance data should be considered.

The third challenge is fault detection on runtime. To
support accommodation to unexpected changes, change
detection strategies should be carried out. Interdisciplinary
research activities should be conducted, combining advanced
data mining & knowledge discovery methodology with fault

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

detection strategies based on models including smart
environment’ context and human-user factors. Basic
principles of fault detection imply the exploitation of
redundancy in order to detect inconsistencies on real data.
Such deviations are used to generate alarms associated to
unexpected changes and signatures described by them are
used in the identification and isolation of possible causes.
Models used for this purpose can be obtained from either
first principles (transient models) or learned from data
(following data mining, knowledge discovery approaches).
Complex event processing (CEP) has been one of the widely
used method utilized to facilitate runtime fault detection for
IoT. CEP is used for controlling operational rules for each
device taking part in IoT separately. Here, we aim at
monitoring the overall rules regarding the coordination of
many systems within an IoT context.

C. Self-Healing Mechanism

In this study, we argue that self-healing systems handle
fault tolerance for dynamic coordinated IoT devices taking
part in IoT application. Self-healing mechanisms
autonomously identify erroneous service and manage the
means by which the system is repaired. Resilience is
considered as a property of coordinated IoT to be deeply
studied to progress towards completely automated self-
healing systems. Hereby, one can consider several strategies
as follows: i) a failover mechanism by providing availability
to facilitate failure recovery, ii) architectural adaptation and
(automated) architecture reconfiguration, iii) manufacturing
values and estimations to facilitate testing of the Self-
Healing Mechanism component, and iv) providing online
feedback to operators in case of potential/foreseen errors.
Our approach to resilience is to provide a failover
mechanism. To this end, we identify following sub-
components of a self-healing mechanism: a) Failover
mechanism, b) Messaging protocol and messaging bus, and
c) Recovery. We describe each component as follows.

Failover mechanism: We use replication to achieve fault
tolerance. The technique of replication is generally used in
order to increase the dependability level of data hosting
environments. There are two types of replication methods:
permanent replication and dynamic replication. Permanent
replication stores the copies of data permanently. However,
in the dynamic replication method, the copies of data are
created temporarily [22][23]. In the proposed self-healing
mechanism, we are interested in replicating services and
providing service redundancy for fault tolerance.
Employment of a combination of both permanent and
dynamic replication in providing resilient IoT applications
should be considered in order to provide a minimum level of
replication of services (to meet with desired fault tolerance),
as well as an adjustable level of replication of services (in
case some services tend to be more fragile).

Messaging protocol and messaging bus: In order to
achieve a decentralized replication mechanism, messaging-
based replication protocols should be used. These protocols
will include messages like: a) selection of replica IoT
devices for replica service (both active and idle), b) selection
of new active replica services, c) live-state of existing IoT

devices, and d) introduction of a new IoT device into the
system. The use of a topic-based publish/subscribe-based
messaging paradigm, as for messaging bus, provides one-to-
one, one-to-many, and many-to-one communication channels
among the IoT devices. In this approach, each participating
IoT device will send a ping request (liveliness information)
to the rest of the available network nodes through a publish-
subscribe system. Each node will keep a vector of
information on existing nodes and will refresh it periodically.
Whenever a fault is predicted, a self-healing system is
expected to self-optimize itself for fault avoidance. Here, our
approach will take inputs from the Fault Prediction
mechanism and readjust the replica service configuration
(e.g., selection of new active replica service, increasing the
replica service numbers, etc.).

Recovery: Recovery is another aspect of a self-healing
mechanism. In our self-healing mechanism approach, a
recovery mechanism will include actions to provide the
system with one of the idle replica services (instead of the
failed service) to bring the system to a known state of
replication level. Here, we intend to use messaging-based
protocols for recovery as well to achieve this.

An ideal self-healing system should implement the fault-
tolerance related tasks, implicitly optimizing the use of
resources of the system and the involvement of users. Users
must be involved in the customization of recovery or
tolerance of failures in the IoT applications that they
generate. We argue that the proposed approach to model
replication strategy should take into account the use of
resources and involvement of users in the IoT environments.

V. CONCLUSION AND FUTURE WORK

We have discussed research challanges related to fault
tolerance for IoT applications running in heretogenous
computing environments. We reviewed background work on
fault tolerance for these applications. We explained
application use scenarios to define the scope of this study.

The expected contributions of this research can be
outlined as follows. This study presents a fault tolerance
methodology that could address the resilience requirements
of IoT applications. It defines architectural constraints for
building fault tolerance in IoT application domains and
proposes a self-healing mechanism for IoT application
domains. This approach includes the use of replication of
services and utilizes topic–based, publish-subscribe
messaging protocols to achieve fault tolerance.

In the future work, we will introduce a) a failover
mechanism, b) machine learning algorithms to perform
forecasting/estimations, c) a methodology to define the fault
tolerance related tasks. Furthermore, we also plan on
manufacturing values and estimations to facilitate testing of
the Self-Healing Mechanism component and providing
online feedback to operators in case of potential/foreseen
errors.

ACKNOWLEDGMENT

We would like to thank Software Testing and Quality
Evaluation Laboratory (YTKDL) of TUBITAK-BILGEM
and Software Quality Laboratory of Yildiz Technical

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

University for supporting us and allowing us to use their
computer facilities for this study. As always, we are really
grateful for the help of the extended team of our department.

REFERENCES

[1] A. Botta, W. Donato, V. Persico, and A. Pescape, “On the
Integration of Cloud Computing and Internet of Things”,
IEEE, 2014, pp. 23-30, ISBN: 978-1-4799-4357-9.

[2] U. Yildiz, P. Mouallem, M. Vouk, D. Crawl, and I. Altintas,
“Fault-Tolerance in Dataflow-based Scientific Workflow
Management”, IEEE, 2010, pp. 336-343, ISBN: 978-0-7695-
4129-7.

[3] N. Finne, “Towards Adaptive Sensor Networks,” Dissertation
for the degree of Licentiate of Philosophy in Computer
Science, Uppsala University, 2011.

[4] T. Bourdenas and M. Sloman, “Starfish: policy driven self-
management in wireless sensor networks”, Proceedings of the
2010 ICSE Workshop, 2010, pp. 75-83, ACM 978-1-60558-
971-8.

[5] J. Neumann, N. Hoeller, C. Reinke, and V. Linnemann,
“Redundancy Infrastructure for Service-Oriented Wireless
Sensor Networks”, in 9th IEEE International Symposium on
Network Computing and Applications (NCA 2010), IEEE
Computer Society , July 2010, pp. 269–274, ISBN: 978-0-
7695-4118-1.

[6] K. Piotrowski, P. Langendoerfer, and S. Peter, “tinyDSM: A
highly reliable cooperative data storage for Wireless Sensor
Networks”, in 2009 International Symposium on
Collaborative Technologies and Systems, IEEE, 2009, pp.
225–232, ISBN: 978-1-4244-4586-8.

[7] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R.
Govindan, and S. Shenker, “GHT: A Geographic Hash Table
for Data-Centric Storage,” in Proceedings of the 1st ACM
international workshop on Wireless sensor networks and
applications (WSNA ’02), ACM, 2002, vol. 5, pp. 78–87.

[8] P. H. Su, C. Shih, J. Y. Hsu, K. Lin, and Y. Wang,
“Decentralized Fault Tolerance Mechanism for Intelligent
IoT/M2M Middleware”, IEEE World Forum on Internet of
Things (WF-IoT), IEEE, 2015 pp. 45-50, ISBN: 978-1-4799-
3459-1.

[9] R. Roman, J. Zhou, and J. Lopez, “On the features and
challenges ofsecurity and privacy in distributed internet of
things”, Computer Networks, vol. 57, no. 10, 2013, pp. 2266-
2279.

[10] F. M. Almeida, A. R. L. Ribeiro, and E. D. Moreno, “An
Architecture for Self-healing in Internet of Things”,
UBICOMM 2015 : The Ninth International Conference on
Mobile Ubiquitous Computing, Systems, Services and
Technologies, IARIA, 2015, pp. 76-81, ISBN: 978-1-61208-
418-3.

[11] H. M. Salmon, et al.. “Intrusion detection system for wireless
sensor networks using danger theory immune-inspired
techniques”, International journal of wireless information
networks, vol. 20, no. 1, 2013, pp. 39-66.

[12] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time
intrusion detection in the Internet of Things.” Ad hoc
networks, vol. 11, no. 8, 2013, pp. 2661-2674.

[13] A. P. Athreya, B. DeBruhl, and P. Tague, “Designing for
Self-Configuration and Self-Adaptation in the Internet of of
Things”, Carnegie Mellon University, 2013, pp. 585-592.

[14] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings”,
IEEE Trans. Software Eng., vol. 34, no. 4, pp. 485-496,
July/Aug. 2008, (Paper=97, Status=F, Phase=2, Data=N).

[15] E. Arisholm, L.C. Briand, and E.B. Johannessen, “A
Systematic and Comprehensive Investigation of Methods to
Build and Evaluate Fault Prediction Models”, J. Systems and
Software, vol. 83, no. 1, 2010, pp. 2-17. (Paper=9, Status=P)

[16] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
Systematic Literature Review on Fault Prediction
Performance in Software Engineering”, IEEE Transactions
On Software Engineerıng, 2012, Vol. 38, No. 6.

[17] S. Shivaji, E.J. Whitehead, R. Akella, and K. Sunghun,
“Reducing Features to Improve Bug Prediction”, Proc.
IEEE/ACM 24th Int’l Conf. Automated Software Eng., 2009,
pp. 600-604. (Paper=164, Status=P).

[18] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu,
“Putting it All Together: Using Socio-Technical Networks to
Predict Failures”, Proc. 20th Int’l Symp. Software Reliability
Eng., 2009, pp. 109-119. (Paper=18, Status=P).

[19] PROV-DM: The PROV Data Model. [online] Available at:
http://www.w3.org/TR/prov-dm/[Accessed 14 Nov. 2015].

[20] M. Aktas, B. Plale, D. Leake, and N. Mukhi, “Unmanaged
Workflows: Their Provenance and Use”, Data Provenance
and Data Management in eScience, Berlin Heidelberg:
Springer-Verlag, 2013, pp. 59-81.

[21] P. Chen, B. Plale, and M. S. Aktas, “Temporal representation
for mining scientific data provenance”, Future Generation
Computer Systems-The International Journal Of Grid
Computing And Escience, 2014, 36, pp. 363-378.

[22] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A.
Aggarwal, “ A Dynamic Object Replication and Migration
Protocol for an Internet Hosting Servic in Proc.”, 19th Int'l
Conf. Distributed Computing Systems, 1998, pp. 101-113.

[23] M.S. Aktas and M. Pierce, “High-performance hybrid
information service architecture”, 2010, Concurr. 22(15), pp.
2095-2123.

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-474-9

ICIW 2016 : The Eleventh International Conference on Internet and Web Applications and Services

