
Webpage Resource Protection via Obfuscation and Auto Expiry

Zhuhan Jiang and Jiansheng Huang
School of Computing, Engineering and Mathematics

University of Western Sydney, Sydney, Australia
{z.jiang, j.huang}@uws.edu.au

Abstract—Content delivery via web pages or sites are becoming
increasingly popular due to the effectiveness and versatility of
the readily available delivery mechanism, especially in the e-
education and training. While the copyright laws are there to
protect the ownership and commercial rights of the intelligent
properties, the openness of the web architecture often makes it
impossible to prevent the content source being
misappropriated or incorporated illegitimately elsewhere after
some modifications on the downloaded source. We propose
here an obfuscation mechanism for the HTML5 to convert a
site of raw content into a site of obfuscated pages and images.
With the advent of canvas on HTML5 and the AJAX to stop
certain unauthorized access, the whole site of documents can
be rendered meaningless or useless on both the server and the
client side if just a small key part is modified or hidden.
Several masquerading algorithms have been proposed for this
purpose. The obfuscation will become permanent if a webpage
is merely downloaded or even DOM-saved without having all
necessary intermediate data or keys tracked by a specialist,
before the auto-expiry of such a process, at a cost tantamount
or exceeding the reconstruction of the original documents from
scratches hence defeating the purpose of piracy. We applied
the scheme to the delivery of a university subject by
automating the whole process.

Keywords-Content obfuscation; document ownership
protection; e-training; HTML5 and AJAX; document auto-
expiry.

I. INTRODUCTION

Web has long since surpassed its original purpose of
publishing material on the Internet. It has evolved into a very
effective and interactive platform to operate business, create
social media, and run educational or training services, to
name a few [1]. The largely sharing-by-all paradigm of the
web during its inception has been gradually diverted into
controlled access and restricted content or media deliveries,
especially in e-business and e-education. The question of
how much one can safeguard the ownership of the delivered
content and to what extent naturally arises and becomes
increasingly pertinent. It is generally understood that, if a
piece of material is delivered via web to its authorized
recipients, the document is practically fully surrendered in
that almost all text and images there are at the disposal of the
recipients in their original digital format, as long as the
recipients have the minimal expertise on the web
technologies. This means that these recipients may easily
modify the content to reproduce and redistribute the original

material. This can be highly undesirable for the protection of
intelligent properties, especially when there are powerful
web crawlers or site copiers [2]. Due to the common
inherited belief that not much can be done in this regard, not
much research efforts [3] have been made to seek as much as
possible the protection of the delivered material, apart from
setting up a few superficial obstacles such as [4] disabling
the copy/paste, disallowing printing certain parts of the
pages, using data URI scheme, and replacing a portion of a
web page by a Javascript (JS) which converts the coded
counterpart of the portion, e.g., in base 64, back to the Hyper
Text Markup Language (HTML) format. However, these
superficial tricks are only effective to the people of no or
shallow technical skills.

Before we undertake to investigate how to protect our
web source, we have to first establish the level of protection
that we seek. If a piece of web content is to be delivered to a
client’s browser screen, there is no way one can stop the
client from taking a picture or a video of the delivered
material. Hence, a separate hardcopy or recording of the
essential content does not belong to our protection scope. For
convenience we refer this as the knowledge scope, and web
content is thus unprotectable there. Next, we consider the
reproduction scope in that the web content can be saved
outside the original server and utilized to achieve essentially
the same browsing experience. Currently, almost all regular
web pages can be fully saved and are thus unprotectable in
this scope apart from those live stream multimedia objects.
Since most web contents are not ideal or practical to be
streamed live, we will exclude the consideration of such
objects in this work. The last scope we will also look into is
the source scope in which we will examine whether the
source can be saved in a clear and manageable format. A
piece of source is considered to be in a readily manageable
format if it is close to the original format that is suitable for
modification or editing. Our aim in this work is to achieve a
reasonable protection in the reproduction scope as well as in
the source scope through obfuscation. Because the web
delivered material can’t be realistically protected in the
knowledge scope, then the extent of protection is only
limited to the understanding that the efforts required to
reproduce the same browsing effect or manageable source
are not less than the efforts required to start from scratch on
the mere basis of “hardcopy” saved in the knowledge scope.
Just like the industrial encryption algorithms are often
theoretically breakable if there were an infinitely fast
computer, but will be nonetheless treated as secure, as long

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

as the current technologies are still way behind the power
required to break the encryption, the protection of the web
resource is often in comparison to what is required to
reconstruct the resource from scratches. In this sense, if an
unbearably significant amount of time or effort would be
required to break or circumvent a protection, it still serves as
a good protection.

It is worth noting at this point that while pure
cryptography, with or without the Public Key Infrastructure,
will in principle secure the transmission of almost anything
digital, it often requires [5] additional support platforms, the
measures to secure the keys, as well as the willingness to
sacrifice certain performances or flexibilities. This also
explains the needs for the obfuscation systems like the one
we are proposing here.

This paper is organized as follows. First, Section II
describes the basic design principle for the obfuscation of
both the images and the text, utilizing HTML5 features,
Asynchronous Javascript and XML (AJAX), and time-
dependent keys. The automation process of the obfuscation
is then outlined in Section III, with an implementation done
for the demonstration in Section IV. Section V finally gives a
conclusion.

II. THE DESIGN PRINCIPLE AND METHODOLOGIES

A. The Basic Design Principle

When a browser renders a page, it first loads a
preliminary source of the page and then gradually loads other
sources specified in the current or updated page content on a
need to basis or recursively. Because additional page or
resource loading may be activated by JS after interaction
with a client user, the required resources in principle cannot
be totally identified before a browsing session is fully
completed. This means when JS are properly engineered, a

browser will have no memory of its intermediate interactive
page modifications or loading by the time of saving a page,
leaving the fully saved version still missing the intermediate
components to function independently on its own. Some
browsers, such as Chrome, as opposed to IE, will save
maximally the page content by using the resulting Document
Object Model (DOM) at the time of making a copy, and thus
store elements additionally loaded through such as AJAX.
However, the unavoidable loss of the intermediate execution
memory still leaves room to craft the protection or
obfuscation of the web source. A simplistic scheme is
depicted in Fig. 1 in which a “decoder” in JS is dynamically
loaded, directly or recursively, via AJAX, and the decoder
expires immediately or automatically after a certain period of

time. We note that a direct page saving will miss the
decoder, and a manual tracing may hit the expiry time
quantum particularly when recursive AJAX loading is
utilized. When the same page is reloaded, it may load a
different decoder or key valid within a different time
quantum. Hence, if a part of the content to is to be
dynamically reconstructed at the expired viewing time it will
produce an illegible result. This is what we will call lapse
protection in that the pages are unrecoverable after the site is
disabled even though they are downloaded and “saved”. That
is, completely recoverable pages must be constructed before
the site life expectancy quantum has lapsed.

The coded content does not necessarily imply an
encryption, and in many cases it is not encrypted at all. Some
browsers can still save partly the images and text in the
content. However this can be avoided too to the similar
extent of lapse protection. The basic idea is to use JS to
generate and rearrange the general text and use canvas in
HTML 5 to superpose images and wipe out the loading
traces of the component images. Because the JS portions
need to be preserved so as to maintain the original
interactivity, mixture of JS and plain HTML portion cannot
be “flattened” out into just HTML without losing the
interactivity. This explains that all browsers save the mixture
of JS and text as they are, but the coded form of such a
mixture wouldn’t be much more useful compared to a hard
camera copy.

B. Conceal the Images

Since images constitute an important part of a typical
web page, how to conceal the source of the original images
deserves a separate consideration. Whenever an image is
rendered in a web page, it appears in the form of an image
element and will be typically stored as a part of DOM with
its hosting page, even though some browsers may not do so
when images appear in an AJAX-loaded DIV section. Our
strategy comes with the advent of the CANVAS object

which is meant to support interactive image modifications at
the pixel level. Just like JS interactivity in general can’t be
flattened into a piece of JS-free text, the dynamic nature of
canvas implies that it is not stored state-wise when a page
containing a canvas is saved. Hence the simplest strategy to
protect images will be to display each image within a canvas,
as described in Fig. 2.

However, images will stay in the cache for some time
when they are loaded even if loading paths may be removed
by JS within a web page. To avoid such cached images to be
directly retrieved and made use of, one may load their
distorted counterparts instead and use JS and a rectification

1. <script: load JS tools >
2. <div: AJAX-load decoder>
3. <form: notify server for the decoder expiry>
4. <div: AJAX-load coded content>
5. <script: decode content>
6. <script: delete decoder div>

W
eb Server

Recursive;
Auto expiring

Figure 1: A simplistic scheme

1. Replace all image tags of a given page with the canvas tags;
2. AJAX-load JS which is used to load all images into variables of

image objects;
3. AJAX-load JS that maps images to canvases;
4. Draw and decode images on the corresponding canvases
5. Remove the element containing the JS loaded in steps 1 and 2

Figure 2: Draw images in canvases

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

key to dynamically to convert the images back to the original
on the canvases. As the images are meant to be delivered to
the recipient for viewing and can be camera-copied anyway,
there is not much point to hide all picture details, and a
reasonable image distortion will render the source not
directly useable by a third party. There are infinitely many
ways to distort an image, and we will consider several here
in detail.

We start with a simple block-wise permutation of the
images, with each block optionally subject to an additional
“rescaling”. For a given picture image P of resolution M×N
pixels, we carve it up into blocks { Bi,j: i=1,..,m, j=1,..,n }, or
simply { Bk: k=0, ..., K-1 } with K=m·n, of M/m × N/n
pixels starting from the top left corner of the image, see Fig.

3. Let  be any permutation of 0,1,.., K-1, andk an
invertible mapping that can be used to transform any images.
If each image block Bk in P is replaced by k(Bk) where
k=(k) is the index permuted from k by , then the resulting
image P is our distorted image which can be reverted back if
one knows  and all the k. For simplicity, we have kept
intact the potential strips left over on the right and bottum
due to the incomplete block partition. For any key  in the
form of a sequence of random characters, we can derive a
corresponding permutation  in the following way: (i)
Repeatedly concatenate  with itself if ||<K; (ii) Let c=(0)
be the 1st character of string , and d  c mod (K), and we
assign (0)=d, i.e., 0 is permuted to d; (iii) Let c=[1] be the
next character in , and d  c mod (K1), set the ordered
indices I as {0, 1, .., K1}\{(0)} in increasing order, then
the index I(d) is the index that 1 will be permuted to, i.e.,

(1)= I(d); (iv) Repeat essentially step (iii) to have the
permutation  completely constructed. We have thus shown
how a random string can uniquely determine a permutation
of K indices. Fig. 4 shows an image block permutation with
block size 200150 pixels and =abc.

Next, let us explore what image transformersk we can
design. The simplest transformers will be an identity
mapping or an inverse mapping which produces a “negative”

image. Although in theory one could decompose any image
into a form of combination of two images one of which is
pseudo randomly generated pixel-wise, such decomposition
would result in massively reduced image compression [6][7]
and would thus be impractical. Hence we propose to define
an image transformer to be of the form k: xi,j xi,j=xi,j+ i,j
where image =(i,j) is a smooth image so that any
smoothly varying portion of the image X=(xi,j) will be
mapped to a similarly smooth portion of image X so that
compression will work at a similar scale to the original one.
As a simple example, one can use the previously mentioned
random key  to create seeds for a pseudo random number
generator, and then generate the pseudo integer constants k
and set i,j =k for all i and j. There are many algorithms to
generate pseudo random number, including for instance the
Mersenne Twister [8], or the generator by Marsaglia [9]. We
note that permutation of image blocks can of course be done
in a variety of ways, including the one implemented in [5]
which tries to smooth the block borders in addition. In
contrast to their work which focuses more on the
transmission of images alone, we are more concerned with
the speed and efficiency, and will thus have to avoid any
algorithms that would lead to the massive increase on the
size of the transmitted images.

C. Obfuscate the Text

Since the text of an HTML page is delivered in plain to
its recipient, the only way to obfuscate the content or make it
illegible or unusable is to resort to the client side scripts that
would dynamically convert the obfuscated text back to the
intended version within a browser, or vice versa. Since the
role of JS is to provide client interactivity rather than solely
manipulate the text, it is not possible to holistically emulate
the execution of all the JS by just the “resulting” text. This
thus lends us means to encrypt, hide, obfuscate or
camouflage the text. In principle, one may additionally make
use of the current visibility of the DOM elements within a
browser, using for instance [10] getBoundingClientRect, so
that only those elements within the current viewport of the
browser will be guaranteed to be dynamically converted
back to the intended text or format and some of the other
DOM elements will still contain the coded or “incorrect”
content.

Assume that a decoders array of algorithms are loaded
into the current page as in Fig. 1, then a piece of coded text T
may be converted back to the intended format by executing
decode(T, k), where k is a key, and then having its result
written back to the page via the JS function w defined as
document.write if possible, and can be achieved via the DOM
element editing anyway if necessary. In fact, one can place T
into an invisible element with a designated element ID so
that a JS can easily further decide whether to convert the
coded text. A decoder could be a decrypter, with a key
extracted from  if needed, or could be as simple as a word
or letter shuffler. If the coded text T is made to retain the
demarcation of the sentences, then one can also use JS to
parse T sentence wise and have each sentence decoded by a
different decoder sequentially. If the word structure is also

Figure 3: Image blocks

B0 B1 B2

B3 (2)(B2)

Figure 4: Image block permutation

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

preserved or identifiable, then the decoding can be moved
towards the word level too.

Due to the nature of our goal, cryptographic encryption is
generally an over kill. Instead, an effective design of text
scramblers will serve the purpose better in general. Our text
scrambler will permute a selected group [11] G of g
characters containing at least a-Z, A-Z and 0-9, that is, all the
characters from base 64 apart from “+” and “/”. Hence, for
any string sG*, any character s[k] indexed by x in G can be
permuted to the character indexed by x=(x+k) in G. For
notational convenience, we may simply identify the
character in G with its index. This is simple to implement
and hides away also the original character statistics. We note
that additional cryptographic features can also be added at
this stage.

D. Document Corruption and Presentation Erosion

Although a typical protection application will have most
of the publically transmitted web resource in a “ciphered” or
“corrupted” form and the correct content and presentation
converted back real-time, the methodology is essentially the
same as corrupting or eroding a proper page into something
“illegible”. To corrupt or obfuscate a web page, we can erode
the textual accuracy, image content or correspondence,
Cascading Style Sheets (CSS) styling, as well as JS
interactivity, to name a few. One may even choose to erode a
web page to the extent that is proportional to the time
elapsed from the expiry date of the decoding key. There can
be countless ways to corrupt or destroy the page content so
as to protect the content ownership; we will thus examine a
few prominent and effective strategies that can be employed
to achieve this goal.

First, global variables will be ideal to represent the expiry
status which can be easily retrieved elsewhere using a non-
telling name such as w[x] where w contains the window
object and x contains the string name of a global variable.
Additional JS tools, if needed, can be loaded dynamically
into the HEAD element of the DOM with callback enforced.
Next, one can traverse the DOM tree to scramble the page
content of text nodes, and to remove randomly or selectively
some of the nodes for embedded or external CSS. If one
wants to select only some CSS definitions to disable for an
external CSS file, the document.styleSheets array allows one
to do so. As for JS, one can enumerate all the properties and
functions for any given object, e.g., for(var p in obj) { if(typeof
obj[p] == 'function') { .. } } much like playing the role of a
name space, to determine which ones are to be modified or
deleted for instance. If obj is the window object, then all
global variables and functions can be located or modified.
We note that any functions or properties defined via such as
obj.f=function(){..} or obj.p='foo'; can be located this way.

As for the images on a web page, they can be temporarily
drawn on an invisible canvas, modified and then saved to
replace the original for the display. One can also use JS to
distort the ordering of the images within the same page. We
have thus shown that there should be no technical obstacles
to have a JS code implemented to distort, encrypt or
camouflage a web page.

E. Issuing Time-dependent Ticket of a Key

How to create a ticket for a timestamp and a given key of
characters so that the ticket gives a random look and can be
used to recover the original key if another (new) timestamp
not exceeding a specified time difference is passed to it? In
other words, if a mapping T=genT(t,k) generates a ticket T
from a timestamp t and key k, and a mapping k=genK(t,T)
generates a key k from a timestamp t and a ticket T, then
k=k only if t has not exceeded t by a specified amount. For
this purpose, we allocate M bits of which N bits are to cater
for the timestamp scope, leaving thus K=MN bits to
represent part of the key. The procedure to generate a ticket
is as follows: (i) convert into binary the timestamp t and the
key k which is padded bits 0 to make it a multiple of K bits;
(ii) insert a block of N random bits after every K bits of the
key k to form an expanded key k*; (iii) collect M bits on the
right of timestamp t, padding bits 1 on the left if necessary,
to make an expanded timestamp t*; (iv) XOR t* and k*
bitwise into T*; (v) pad bits 0 to T* on the right to make it a
multiple of 6 bits and then convert it into the final ticket T by
mapping successively each block of 6 bits into a base 64
character or an equivalent; see Fig.5 for an illustration. The
reverse function genK can be similarly constructed. To avoid
the use of “+” and “/” characters which have a special
meaning in a web page, we used “.” and “_” instead. As an
example, for M=30, N=15, k=“Random”, t=1388494800 (1
Jan 2014), we have T=gwUAj_dGtMungJk6WQi3 as one of
the valid tickets for the same key and timestamp.

Our experiments show that the generated ticket does
appear quite random because of the distributed random bits
in k*, particularly when K is relatively small. For a much
larger K, one can also apply an additional pattern
permutation to make the appearance more random. This can
be regarded as a form of variation divergence, and can also
be used to masquerade a pattern like a timestamp, such as the
bitwise mixing in Fig. 5 if desired, after T* is obtained there.

III. AUTOMATE THE PROTECTION PROCESS

In terms of the eventual applications of our proposed
webpage source protection scheme, a typical scenario would
be that a web designer first creates a web site mostly in a
normal manner, embedding additional automation directives
within some web pages if necessary. Then, a web server will
dynamically create a serving version of the pages that are
injected with the content obfuscation mechanism. In this
section, we first outline a general framework that can be
employed to serve a regular web page a.html in a protected

K bits K bits K bits

K bits N bits K bits N bits ……
K bits N bits K bits ……

K bits N bits

N bits

……
K bits K bits …… Key k

Padded k

k*

t*

Timestamp t

Figure 5: Bitwise mixing key with timestamp

T*
xor

Ticket T Base
64

Random bits

120Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

mode, and then examine a number of implemental
techniques. Even though the original pages and images may
be stored in a database as in a typical Content Management
System (CMS), we will for simplicity leave them as files
behind a firewall, hence not directly accessible to the
outside.

The workflow of delivering the content of a “raw” page

a.html that resides behind a firewall to a remote client in a
protected mode can be illustrated in Fig. 6. When a request
for a page, say, a.html, is made in step 1 through a server
side script, say, fetch.pl, a timestamp time is created in step
2 and such timestamps will differ for every quantum of
time, say 1 hour or a single day or a month. For each new
quantum timestamp we can create a new serving version of
the document which will be associated with a different set
of algorithms and keys to convert the serving page back to
the intended format via JS. The version associated with an
outdated timestamp will thus expire and be removed in step
3 at the next appropriate time after which full reconstruction
of the pages saved for the outdated timestamp will become
impossible. If the coded serving version is available for the
current timestamp, then the page will be immediately
returned via steps 4 and 9 to the client. Hence repeated
access of the same page within the expiration time quantum
will be straightforward and may be cached on the client.

If the serving version for the current timestamp is not
available, then steps 5-8 will immediately generate one. The
race condition [12] can be easily avoided if such a creation
has to first acquire a lock that would expire in a given
period of time such as several seconds. The unprotected raw
page files will be archived behind the firewall or protected
by the access permissions so that they are not directly
accessible by any remote clients but are accessible to certain
server scripts. Step 5 will typically accomplish the
following tasks:

i) Read in the raw page a.html, extract all image element

IDs and other element IDs, and assign distinct new IDs
to the image elements if they don’t have an existing
one. For sections of text, wrap them with tags
along with distinct new IDs. To facilitate the
processing and conversion, processing directives may
be inserted in the raw pages to indicate such as code
skipping via <!--wdp--skip--> up to <!--wdp--/skip--> and
text for obfuscation via <!--wdp--paragraph--> up to <!--
wdp--/paragraph-->.

ii) Construct an array TxtId for all the IDs of the text
elements that are to be encoded, and associative arrays
such as ImgViaId and ImgAlgorithm for proper
identification of the images, recovery algorithm, etc.

iii) All the generated supporting files such as the
algorithms in JS and distorted images may be kept in
subdirectory , or each file is prefixed by the “_”.
The key can be regarded as an optional seed for the
randomization in this Step 5.

Step 6 will generate distorted images from those original
ones dynamically. Such a distortion can also be constructed
offline by separate image processing software with the
mapping saved in the same directory as the raw page. On
top of the images being distorted, the randomization of the
image names could further obfuscate the correspondence
between the images and their rightful positions in the
document. As for the image distortion, it should be
dynamically achievable through the use of such as
ImageMagick package and the PerlMagic module.

To replace the images by canvases in step 7, we load all
the distorted images into image objects created by JS in a
single go as explained in Fig. 2, and then paint them on the
respective canvases before deleting those loaded image
objects. As for the text coding, we use the seed  to
generate a pseudo random list of scrambling algorithms, and
sequentially code the i-th section of text by the i-th
algorithm. Combining all these together we can complete
the task of step 8. Once the page is loaded through step 9,
the decoders will unscramble the text and rectify all the
distorted images.

IV. IMPLEMENTATION AND EXPERIMENTS

Although all strategies and techniques studied earlier
may be implemented to protect the original webpage source
by obfuscation and timed expiry, a selected subset often
suffices the main needs while not inflicting too much
implementation cost. Our first application is on the web
delivery of the practicals for a university database subject.
The main procedure is as follows. First, we created the
normal web pages for the practicals. We then developed a
PERL script extractImages.pl which reads in a regular
webpage, say, a.html, and generate another page, say,
b.html. When this new page is loaded into a browser, it will
generate all the corresponding obfuscated images,
appending “-x” to the corresponding image name while
leaving the file extension intact. The image conversion is
done through the JS we implemented, utilizing the support
for the canvas element and the existing JS tools such as
FileSaver.js and canvas-toBlob.js. Then using another PERL

1. Request page indirectly for a.html fetch.pl?page=a.html

2. Create quantum timestamp time Server encrypted time

3. Clean up expired entries if any Coded serving repository

4. Fetch coded page etc associated with time

5. Randomization setup for with =timekey
Raw page
files

6. Generate/map to distorted images

7. Replace images by canvases, obfuscate image and text

8. Generate serving pages with respect to time

9. Send the coded page back to the client

Not available

Figure 6: Work flow of protected document delivery

Ok

121Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

script convertPage.pl we developed for this implementation
to convert the raw webpage to a new version to be
eventually made available on the web server. In the raw
page a.html we inserted <!--wdp--paragraph--> and <!--wdp--
/paragraph--> to delimit the body of the page: all the tag-free
text portions will be separately and randomly obfuscated
while tags and JS and CSS are preserved. In fact, the tag-
free text will be first parsed into “sentences” and the
obfuscation is independently done at the sentence level.

As an example, a part of the converted page will appear
as in Fig. 7 when the page is being served in the normal

manner. Fig. 8 shows how it appears when the page is
expired. We observe that both the text and images are now
distorted or obfuscated. If the page is saved as source code,

typically of the saving with IE, it will actually save not
much. If the page is saved as a complete page, practically
dumping the DOM elements as with Chrome, the part
displayed on the saved page will appear obfuscated as in
Fig. 9. Besides, all interactivity via the JS on the page will
cease to function. The code for the 2nd image in Fig. 7 reads

 <a href='viewimage.php?u=lab3h-x.png'
 id='image_lab3h_png'>
 <canvas id='canvas_lab3h_png' width=0 height=0

 class=iconwidth _width=450></canvas>
 <script>imageOnCanvas('lab3h-x.png',

 'canvas_lab3h_png',128,96);</script>
that corresponds to the original text <img
lab3h.png, and part of the (auto converted) source code
for the above takes the following typical out of order form

 … <i>View<script>a('sid_82_0');

 </script> </i>able new table on you will
 the be to then the necessary, if
 see<script>a('sid_83_0'); </script> <span
 id='sid_84_0'>Object Explorer …
which means the source being served is completely
obfuscated in both text and images. When the source code
gets into the client’s browser, it becomes rectified under
proper display styles but otherwise undecipherable as in Fig.

9. Fig. 10 gives a comparison of the same page when being
displayed in normal, expired and saved manners
respectively. Although Fig. 10 already well shows the broad

differences, we further magnify parts of Fig. 10 in Fig. 11 to
see more clearly the details. In Fig. 11, the main background
comes from the 2nd picture in Fig. 10, the top left with a
light green background comes from the 3rd picture, and the
one at the bottom with a purple background extracts the 1st
paragraph in the 1st picture of Fig. 10. We note that the
extent of the text obfuscation can be controlled and will be
somewhat proportional to the expired time. We also note
that the image is missing from the saved version because the
content on a canvas is not saved when a page is
“completely” saved by a browser, and we also deliberately
highlighted in pink the random text automatically inserted
for the obfuscation.

Since the “decoding” part is to be completed by the
client browser, there will be an overhead on the speed of
page rendering. Hence, how complex an algorithm is
allowed to be must be tied to the allowed performance
degradation. Fortunately, the rectification of the deliberately

Figure 7: Normal view of the page

Figure 9: Viewing the saved page

Figure 8: Expired view of the page

Figure 10: Comparison on normal/expired/saved page view.

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

distorted images does not have a visible effect in general,
and the complexity of the textual obfuscation can also be
controlled by the operating parameters. For the system we

implemented here, the overhead is observable but easily
tolerable, and is in general in the scale of half a second. We
however plan to explore more quantitatively the overhead
impact in our future work.

V. CONCLUSION

The protection of web page content has been explored in
terms of the reproduction scope and the source scope. We
proposed an obfuscation mechanism that protects the page
resource on both the server and the client side. On the server
side, by removing or altering a simple key on the server, the
otherwise fully functional website can be made instantly
useless as all the resources there are obfuscated and
unrecoverable without the key. On the client side, the web
pages will be initially loaded in the distorted format for both
the images and the text from the server, and dynamically
rectified if the clients’ authorization has not expired. If a
client saves the “complete page” using a browse saving tool,
the saved page remain fully obfuscated at the source level,
and will not be able to get dynamically converted into its
intended proper format if the deciphering key is not saved, as
is the case for all auto-saving, or expired. A client user,
having saved the complete pages, will find making use of the
saved resource to imitate the original server not any easier
than building everything from scratches, according merely to
the screenshots of the whole site. This, therefore, defeats the
purpose of saving the page resources.

REFERENCES

[1] F. Greyling, M. Kara, A. Makka, and S. Van Niekert, “IT
worked for us: online strategies to facilitate learning in large

(undergraduate) classes”, Electronic Journal of e-Learning,
vol. 6, 2008, pp. 179-188.

[2] HTTrack Web Site Copier, http://www.httrack.com, last
accessed on 27 May 2014.

[3] Y. Gao, Y. Zhang, B. Bai, and X. Wang, “Survey of webpage
protection system”, Computer Engineering, or 计算机工程 as
its original name, vol. 30, no. 10, 2004, pp. 113-115.

[4] Web Protection, http://www.wiscocomputing.com/ articles/
protect_web_sites.htm, also http://thenetweb.co.uk/obfuscate-
hide-and-obscure-e-mail-addresses-telephone-numbers-and-
text, last accessed on 27 May 2014.

[5] A. Poller, M. Steinebach, and H. Liu, “Robust image
obfuscation for privacy protection in Web 2.0 applications”,
Proc. SPIE 8303, Media Watermarking, Security, and
Forensics, 2012; doi: 10.1117/12.908587.

[6] K.S. Thyagarajan, Still Image and Video Compression with
Matlab, Wiley, 2010.

[7] Z. Jiang, O. de Vel, and B. Litow, “Unification and extension
of weighted finite automata applicable to image
compression”, Theoretical Computer Science A, vol. 302/1-3,
2003, pp. 275-294.

[8] M. Matsumoto, and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random
number generator”, ACM Transactions on Modeling and
Computer Simulation, vol. 8, no. 1, 1998, pp. 3-30.

[9] G. Marsaglia, “Seeds for random number generators”,
Commun. ACM vol. 46, no. 5, 2003, pp. 90-93; also
https://groups.google.com /forum/#!msg /comp.lang.c/
qZFQgKRCQGg/rmPkaRHqxOMJ, last accessed on 27 May
2014.

[10] http://stackoverflow.com/questions/123999/how-to-tell-if-a-
dom-element-is-visible-in-the-current-viewport, last accessed
on 27 May 2014.

[11] J. A. Beachy and W. D. Blair, Abstract Algebra, 3rd edition,
Waveland Pr Inc, 2006.

[12] Y. Yu, T. Rodeheffer, and W. Chen, “Race track: efficient
detection of data race conditions via adaptive tracking”, ACM
SIGOPS Operating Systems Review – SOSP’05, vol. 39,
issue 5, 2005, pp. 221-234.

Figure 11: Magnified parts of Fig. 10

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

