
Scalable Web Content Understanding Framework

Yang Sun, Hyungsik Shin, Sayandev Mukherjee, Ronald Sujithan, Hongfeng Yin, Yoshikazu Akinaga
and Pero Subasic

DOCOMO Innovations, Inc.
Emails: {ysun, hshin, smukherjee, rsujithan, hyin, akinaga, psubasic}@docomoinnovations.com

Abstract—The contextualization of an unknown web page is a
fundamental need in many online applications. We propose a
new framework known as the Content Understanding Engine
(CUE) that allows computational stages to be composed with
different technologies to contextualize an unknown URL. We
describe how this computation pipeline interfaces with our Big
Data infrastructure and how this approach simplifies deployment
to private or public cloud environments. The implementation
details of this framework are provided along with a use case
to demonstrate the value of the CUE. We provide the results
from our evaluation of this pipelined architecture with a wide
range of URL from different topics.

Keywords–contextual tagging; advertising; content understand-
ing engine.

I. INTRODUCTION

Many online applications heavily rely on automated sys-
tems to analyze the context of web pages. These contextual
systems are typically required to take URLs, fetch web pages,
parse content, extract keywords, classify text and find the
most relevant tags. The resulting contextual profiles will not
only present the opportunities for advertisement matching,
but also unveil personal preferences, interests and trending
concepts [1][2]. For example, to optimize advertising cam-
paigns, advertisers often develop models based on analyzing
historical contextual consumption of users and then match
product offerings to specific contextual profiles. Contextual
advertising systems also rely on contextual information to
match advertisement with web pages.

In practice, a number of different techniques drawn from
diverse fields, such as Text Mining, Natural Language Pro-
cessing, Machine Learning and Information Retrieval need
to be combined into a pipelined architecture to meet these
requirements. However, current frameworks do not handle the
whole process from URL crawling to the semantic analysis.
Our proposed framework integrates existing technologies and
handles the end to end complexity of the contextual profiling
process.

Many components are required to build a scalable and
useful contextual profiling system, including (1) a scalable web
content fetching module for billions of URLs, (2) a fast web
page parsing and ad removing module, (3) a scalable document
storage and processing module, (4) a content understanding
module to extract and tag web pages with brief and represen-
tative text, and (5) a tag generation module that finds the most
relevant tags from the representative text. Each module has
unique requirements in terms of response time, scalability and
accuracy.

Our proposed system framework has the following contri-
butions to the community:

• A Software Architecture for a scalable computation
pipeline that can be deployed to any private or public
cloud infrastructure;

• A staged architecture, allowing the use of different
technologies for each stage, and an interface with big
data infrastructure for truly large scale processing;

• A Wikipedia-based contextual tagging solution that
reflects the latest events and trending concepts; and

• A uniform way of communicating the contextual tags
to all players involved in the marketing process.

The rest of this paper is organized as follows. In Section II,
we describe the related work done in the areas of distributed
workflow engines and prior research on Contextual Profiling
Systems. In Section III, we describe the stages of our Content
Understanding Framework in detail. In Section IV, we briefly
describe the cloud deployment of our Content Understanding
Engine (CUE). In Section V, we describe a compelling use
case for the CUE and discuss evaluation results. Finally, we
state our conclusions and describe further work.

II. RELATED WORK

The contextualization of the contents of any web page,
including content tagging using a controlled vocabulary, is
a fundamental task in many online applications. Existing
approaches focus on three aspects of the context understanding
problem: (1) the free-text approach – using free text labels
to tag articles [2][3]; (2) the classification approach – clas-
sifying articles to a well-organized hierarchical taxonomy of
topics [1][4]; and (3) the semantic approach – using semantic
analysis to determine advertising needs [5]. Unfortunately,
none of these by itself is suited to our task, as discussed below.

The first approach summarizes articles with free text that
is rich enough to represent the meaning as well as abstract
enough to fit to specific applications. The feature space of free
text has dimension in the millions. Therefore, it is typically
difficult for advertising systems to use. The second approach
maps complex concepts to well-structured categories. These
categories typically have very general terms, so that specifics
of the articles are not represented in the approach. The third
approach, semantic analysis, is an evolving field that has
potential, but does not at present provide a mature solution
to the content understanding problem.

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

A. Principal Challenges
There are several challenges in the domain of content

understanding systems: (1) such systems need to function well
in the presence of “noise”, such as spelling and grammatical
errors, different languages, markup errors, handling boilerplate
content, etc.; (2) they need to create features from the extracted
text so that the features represent the original content in a
satisfactory form; (3) they need to map the representative
content extracted from the page to a set of known vocabulary
terms; and (4) they need to be able to scale and deal with
petabyte-scale volumes on model cloud infrastructures such as
the now-ubiquitous Amazon Web Services.

In order to address these challenges, many different tech-
nologies are used in practice. These technologies arise from
many different related fields, such as Text Mining, Natu-
ral Language Processing, Machine Learning and Information
Retrieval. A number of pipelined architectures have been
developed to solve the problem of applying these different
technologies to solve the end-to-end problem.

Our work is closely related to work on web usage min-
ing, automatic discovery and analysis of patterns in click
streams, user transactions, and other associated data collected
or generated as a result of user interactions with Web re-
sources [6][7][8]. In particular, our work is related to web
mining systems that use other sources of knowledge: either
semantic domain knowledge from ontologies (such as product
catalogs, concepts and categories) or a more generic knowl-
edge base such as the freely-available Wikipedia concepts and
categories [9]. However, the existing approaches focus primar-
ily on challenges 1, 2 and 3, but do not address challenge 4 as
an integral part of the solution. While building on this early
work on web mining, we needed a workflow solution that can
scale to process petabyte-scale volumes that can be deployed
and operated as a cloud-based service.

B. Existing Technologies and Frameworks
Hadoop [10], the open source implementation of the

MapReduce framework, has become the dominant environment
for building an architecture for solving the scalability problems
described in the previous section. In particular, systems such as
Oozie [11] and Azkaban [12] provide a workflow abstraction
on top of Hadoop. Both support defining a workflow as a
Directed Acyclic Graph (DAG) [13] made up of a composition
of individual steps. In Azkaban the job type, any parameters,
and any dependencies are specified. However, Azkaban does
not have any notion of a self-contained workflow, so a job can
depend on any other job in the system. In Oozie, a workflow is
defined in an XML file, which specifies a start action. However,
Oozie is tightly coupled with Hadoop and HDFS, thereby
making it harder to deploy computational stages that use other
technologies. Cascading [14] is a popular workflow engine for
building flexible enterprise data processing solutions without
having to worry about how to distribute the workload.

Recently, real-time workflow engines that overcome the
batch oriented nature of Hadoop, such as Storm [15] and
Spark [16], have become very popular. Storm is a distributed
realtime computation system that provides a set of general
primitives, Spouts and Bolts, for composing computation
stages. However, Storm flow is based on individual items
flowing through the system as a stream. Spark is a MapReduce-
like cluster computing framework designed to support low-

latency iterative computations. Spark aims to overcome the
batch-oriented nature of Hadoop by distributing the data in
slices and storing it in memory, thereby gaining a significant
performance boost. However, Spark maintains a tight coupling
with Hadoop and HDFS, making the integration of non-
Hadoop distributed systems non-trivial.

C. Why we design our own framework
After evaluating the frameworks mentioned above, we

decided to develop our own content understanding engine
from first principles for a number of reasons. Firstly, our
requirements are such that we need a flexible architecture to
combine very different technologies into a uniform pipeline.
Secondly, we need the ability to produce detailed output at
each stage and carefully study the results. Thirdly, we need
the ability to substitute a completely different technology for
a given stage without impacting other stages or the final results.
Finally, we wanted to leverage best-of-breed Open Source
technologies at each stage so that we can focus on the broader
solution we need to build.

III. FRAMEWORK

A. Requirements
The keys to the web content fetching module are flexibility

and scalability. The module is typically required to fetch
content for millions or even billions of URLs. It has to be
flexible enough to handle many exception cases such as invalid
URL, redirects, connection timeout, lost connection and so on.
It also has to be scalable at the same time in order to fetch
from billions of URLs in a reasonable time period.

The key requirements for the web page parsing module and
document storage module are scalability, processing speed and
accuracy. With billions of web pages, the parsing module and
document storage module have to be able to process web pages
fast and be scalable at the same time. To process 1 billion web
pages with 100 machines where each machine can process a
page in 100 ms, the system needs more than 11 days to finish.
The parsing module also has to be very accurate in extracting
core content from the web page markup to eliminate irrelevant
tags, scripts, and ads.

Algorithms and methods play a key role in representing
complex articles via short text labels. Web pages are typically
written or edited with long natural language text for readability.
Contextual profiling and advertising systems cannot directly
utilize the web page content because it contains many HTML
and scripting tags and commonly used words that do not
contribute to the core meaning of the page. Content extraction
and summarization systems typically scrape the web pages and
convert the natural language text into much shorter words and
phrases.

In contextual advertising, marketers typically prefer well-
defined categories over free text for reasons of communica-
tion, consistency and measurement. Well-defined contextual
elements, such as tags and categories, are easy to communicate
from marketers to advertising operators. It is also easy to
measure the campaign complexity and potential gain and cost
with well-organized categories and tags. However, predefined
category hierarchies cannot be changed dynamically as new
concepts become available. It is also hard for category struc-
tures to capture the meaning of articles. On the other hand, free

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

Big Data Infrastructure

NoSQL
Cluster

Hadoop
Cluster

Inverted
Index

Cluster

Stage
Process 1

Stage
Process 2

Stage
Process k1

D
at

a
Ac

ce
ss

Pr
ep

ro
ce

ss
in

g
Stage

Process 1

Stage
Process 2

Stage
Process k2

Stage
Process 1

Stage
Process 2

Stage
Process kn

Stage 1

Cloud
Storage

Pr
ep

ro
ce

ss
in

g

Pr
ep

ro
ce

ss
in

g

D
at

a
Ac

ce
ss

D
at

a
Ac

ce
ss

Stage 2 Stage n

Figure 1. The Framework: separation of Computational Workflow from the
Big Data Infrastructure allowing each module to scale separately in a cloud
environment.

text summarization provides richer contextual information than
categories. However, the huge dimension size makes it harder
for advertisers to prepare marketing strategies.

B. Architecture
To balance the granularity of information representation

and the ease of management, we propose a Wikipedia based
concept system to extract and match contextual tags from news
articles to the most relevant Wikipedia categories and concepts.
Instead of free text summaries, the CUE generates a set of tags
that map the contextual meanings of news articles to user-
defined and user-maintained concepts and categories.

We now describe our architecture in detail. Our architecture
separates computation-tier from the data-tier. As shown in
Fig. 1, the computation-tier consists of a sequence of stages
where each stage takes a predefined set of inputs and produces
some predefined output. Each stage can be configured to
interface with a data-tier cluster to access data-at-rest as well
as to distribute large-scale data crunching. Our Heterogeneous
Big Data Infrastructure allows us to use different technologies,
such as NoSQL Database (e.g., HBase [17], Hadoop, Inverted
Index (Solr [18] or ElasticSearch [19]) and Cloud Storage.

The same pipeline can be run in batch-mode (a list
of URLs), interactive-mode (one URL in near realtime) or
service-mode. In service-mode, a RESTful Web Service in-
terface is provided so that a run can be initiated posting a
URL. When initializing the pipeline, a configuration can be
provided to specify the sequence of stages that need to be
run and the additional parameters needed by each stage. This
framework allows us to perform comparative evaluation of
different technologies and to understand their relative merits.

The CUE is architected from first principles to address our
specific needs. Our approach allows us to combine disparate
technologies into a unified pipeline as a sequence of stages
with clearly defined input and output for each stage. The first
stage in our pipeline is a custom Fetcher that can take a list of
URLs and fetch the HTML content of the web page. In the next
stage, we extract the main textual content from the web page
using a Support Vector Machine (SVM) model trained from
many different kinds of web pages (e.g., blogs, news articles,
product reviews, etc.). Once the plain text is extracted, we
perform sentence and phrase detection followed by keyword
extraction in the next stage.

URL
Fetcher

Web-
based

Services

Text
Extraction

Keyword
Extraction

Concept
Mapping

Tag
Generation

Wikipedia
Full Dump

Wikipedia
Incremental

Dump

NoSQL
Cluster

Hadoop
Cluster

Inverted
Index

Cluster

Cloud
Storage

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Parse and
analyze XML
Build full-text

index

Monthly Job

Parse and
analyze XML

Update full-text
index

Daily JobR
ES

Tf
ul

 W
eb

 S
er

vi
ce

s
In

te
rfa

ce

Computation Flow Big Data Infrastructure

Evaluation

Batch load URL list (Batch-mode)

Interactive-
mode

Figure 2. The Content Understanding Engine: internal modules and interfaces.

As part of this project, we have built an inverted index
of the Wikipedia content, including the titles (concepts) and
categories. Thus, in the next stage, we search the inverted index
using the extracted keywords (and phrases) from the previous
stage. This provides us with the list of Wikipedia concepts and
categories related to the original content of the web page. In
the final stage, we propagate the relevance scores attached to
the concepts through the category hierarchy and find the most
relevant categories representative of the original article. Next,
we describe the stages of the pipeline in detail.

C. Web Service Interface
As shown in Fig. 2, the CUE offers a RESTful Web Service

interface so that it can be integrated into other services. This
service can be invoked either in interactive mode or bulk mode.
Several applications as mentioned before can be integrated
with this service to gain a contextual understanding of a web
page. In interactive mode, the service provides a browser
interface to view the detailed output from each stage of the
pipeline. In bulk mode, a batch of URLs (e.g., from a weblog)
can be posted to the service to be processed in the background.
For processing very large URL batches, a file location can
be provided as input. Files can be local, network-mounted or
cloud-based (e.g., Amazon S3). With the latter approach, a
large URL batch file can be uploaded to a cloud storage first
and CUE can be requested to process this file and send the
final output to another local, network-mounted or cloud-based
file system.

D. URL Fetcher
This stage (Stage 1 in Fig. 2) takes a list of URL as

input and stores the contents of that page in original form
including the HTML or other markup present in the document.
The fetcher can be configured to deal with the complexities
involved in crawling a web page (such as setting the user
agent, dealing with scripts, images, etc.). We use the well
known techniques for fetching the contents given a set of
URLs [6][20]. The harvested raw web content is stored in the
NoSQL cluster with the URL plus timestamp as a key and the
raw content as the value.

E. Text Extraction
This is an important stage (Stage 2 in Fig. 2) in the

pipeline where we wanted to evaluate and use different

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

technologies for extracting text from the downloaded page
content from the Fetcher. After evaluating several solutions in
this space [6][21][22], we settled on the open source project
Boilerpipe [23] since this library yielded the best results for
our purposes. The Boilerpipe library provides us a way to strip
out all the boilerplate content, such as irrelevant tags, scripts,
and ads from the web page and extract only the main content
(e.g., the main article of a news page) with high accuracy [24].
This library, under the covers, uses an SVM classifier trained
from thousands of web pages to extract the main content of a
web page.

F. Keyword Extraction

This stage (Stage 3 in Fig. 2) performs sentence detection,
tokenization, phrase detection and keywords extraction. First,
we segment the extracted text from the previous stage into
sentences by applying several rules to detect the sentence
boundary. Then we tokenize each sentence and detect the
most frequent one to three word phrases. We experimented
with several ways of finding the significant phrases from the
extracted text including TF-IDF scores. From this sorted list
of phrases, we select the top N (with N = 20, say) as the
extracted keywords from the original text document. This stage
can be configured with the rules for sentence segmentation,
stemming or stopword removal [25].

G. Concept Mapping

This stage (Stage 4 in Fig. 2) constructs a query based
on the extracted keywords and performs a full-text search.
We utilize the Open Source search engine ElasticSearch that
uses the Lucene [26] toolkit to build a full-text index of a
document collection. Using the Wikipedia Plugin provided by
ElasticSearch we have built a full-text index of the entire
Wikipedia content. This provides us the ability to search a
set of keywords and find the matching Wikipedia Articles and
retrieve the Concepts (Titles) and Categories with the highest
scores. The underlying Lucene Engine provides scores for the
matching concepts that we use as a way of ranking the results.
We apply a boosting factor to keyword matches in article titles
in order to improve the accuracy of the search results.

H. Tag Generation

This stage (Stage 5 in Fig. 2) finds the related higher-
level Wikipedia Categories from the highest ranked Wikipedia
concepts from the previous stage. The Wikipedia categories are
first cleaned to remove categories that do not represent a mean-
ingful concept (e.g., lists of famous dead people) and to remove
cycles. We also perform case normalization since categories
for the same concept are present with different capitalization
(e.g., Computer science and Computer Science). After these
preprocessing steps, we get a clean graph representation of
the Wikipedia category hierarchy.

With the concepts as the leaf-nodes of this graph structure,
we propagate the Lucene scores associated with each concept
to find the most significant categories that are present at the
intersection of several concepts [9]. These categories will be
taken as representative of the contents of the page, providing
the semantic meaning of the original page.

I. Evaluation Module
Evaluation is the core component of the framework that

bridges the automated system and the business applications.
A flexible framework has to be able to support variety of
evaluation methods. The architecture design of our framework
sets evaluation module as a pluggable component which com-
municates with modules via RESTful services.

IV. DEPLOYMENT

We deployed our Web Content Understanding Framework
to different cloud environments and compared our experiences.
For this part of our evaluation, we deployed our system on
the following cloud services and conducted experiments with
various workloads: (1) Internal Private Cloud, (2) Amazon
Web Services, and (3) HP Cloud Services.

Our development environment is an internal private cloud
and the computational stages are distributed as shown in Fig. 2.
Each stage can be scaled by adding more nodes as necessary.
For instance the ElasticSearch server used in the Concept
Mapping stage is shared across four nodes to index the entire
Wikipedia dump and search matching articles given a set of
keywords. With this configuration we were able to reduce the
search time to be < 100ms. Moreover, we are able to deploy
this architecture to an AWS cloud using medium-powered EC2
instances as well as to deploy to an HPCS cloud using a
similar server configuration. We are able to deploy and be
operational within a day and are able to scale both horizontally
and vertically depending on the workload.

V. USE CASE: PROFILING WEBLOGS

In this section, we will describe a use case for the CUE
- web usage mining to analyze the behavioral patterns and
profiles of users interacting with web sites. With the continual
growth and proliferation of mobile devices and the Internet of
things, the volume of interaction logs generated by web-based
service providers has reached several petabytes in size.

Analyzing such data can help organizations determine the
life-time value of customers, design cross-marketing strategies,
evaluate effectiveness of campaigns and personalize content
to visitors. This type of analysis involves the automatic dis-
covery of meaningful patterns and relationships from very
large collection of weblogs collected from various operational
data sources. Such weblogs typically contain a list of URLs
accessed by each user along with information such as (1) the
user’s IP address, (2) the user’s authentication name, (3) the
date and time stamp of the access, (4) the HTTP request, (5)
the response status, (6) the size of the requested resource, and
optionally, (7) the referrer URL and (8) the user’s browser
identification.

Mobile service providers are collecting these logs from
multiple sources. We are using CUE in several projects to
enhance user experience with the goal of increasing customer
retention and revenue (ARPU) (see Fig. 3). URL collections
are processed through CUE to contextualize each URL with
concepts and categories. This information can then be associ-
ated with user profiles to ascertain the interests of the users.

A. Evaluation
Evaluating the effectiveness of a contextual service is a

difficult task. Unlike traditional evaluation of text classification

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

CUE

eCommerce

Co
nt

ex
tu

al
 T

ag
s

Web Portal

Online
Advertising

Ag
gr

eg
at

ed
W

eb
lo

g

Profile
Database

Social Networks

Personalization

Recommendation

Web-based Services

Profile Updates

Batch load URL list
Scheduled Operation

Figure 3. The Content Understanding Engine (CUE) in Context. The figure
shows how CUE is deployed along with existing web based services.

systems where the metric is the accuracy of articles being
classified to a predefined category, the effectiveness of a
contextual service can be measured from different perspectives
when they are used for different goals. Accuracy does not
always translate to marketing strategies and goals directly.
In digital advertising, marketing strategies and goals lead to
different measurements of successfulness.

The effectiveness of the contextual profiling from web
usage logs can be examined from different perspectives when
the results are used in different applications. The contextual
profiling of web users is typically used for online advertising.
Advertisers can design marketing strategies based on users’
content consumption and trends. For the advertising applica-
tion use case, we implemented three evaluation modules, con-
sistency, accuracy, and usefulness, to measure the effectiveness
of the system.
We use three metrics to evaluate our CUE system:

1) Consistency, the ability of a tagging system to pro-
duce similar results for similar contents, is one of the
most important measures in advertising applications.
The wording of news articles can be significantly dif-
ferent for different news sources. The free text based
approach may generate very different summaries for
the same news content from different sources, while
the classification based approach typically fails at
capturing the details of the content and the model
can rapidly become outdated.
We want the output of CUE conceptual tags of, for
example, the “Crimea Crisis” news story from New
York Times and from CNN to be similar, so that
advertisers are assured that users on different websites
are consuming the same content.
For a given topic, the consistency evaluation module
collects news articles from several news sources. La-
bel these articles 1, . . . ,K, say. For the kth article, let
Ak denote the set (actually, ranked list) of conceptual
tags output by CUE from this article. The CUE
outputs the same number n (= 10, say) of conceptual
tags from each article, so |Ak| = n for all k. For each
topic, we compute two consistency metrics:

a) The overlap consistency for each pair (i, j):

the Sørensen-Dice similarity of Ai and Aj ,

Coverlap
i,j = D(Ai, Aj) =

2|Ai ∩Aj |
|Ai|+ |Aj |

. (1)

The overlap consistency shows the degree of
overlap of tags for a given topic.

b) The average rank correlation: the average of
the Kendall tau rank correlation coefficient
τ(Ai, Aj) over all distinct tags for the topic,

C
rank

=

∑K−1
i=1

∑K
j=i+1 τ(Ai, Aj)

| ∪Kk=1 Ak|
. (2)

The average rank correlation shows the con-
sistency of the ranking of tags for a topic.

2) Accuracy is defined as the degree of agreement be-
tween automatically generated tags and professional
editors. This metric reflects how accurate the CUE
tagging system is when processing news articles.
We collect K Wikinews articles with editor-labeled
conceptual tags and measure the accuracy as

Accuracy =
1

K

K∑
k=1

D(Ak, Bk), (3)

where for the kth article, Ak is the set of CUE tags,
while Bk is the set of editor-assigned tags.

3) Meaningfulness is defined as how a general news
reader agrees with the automatically generated tags.
To measure the meaningfulness of the CUE system,
a traditional expert rating evaluation module is at-
tached to the system. The module takes the output
of CUE system, randomly selects and ranks URLs
and corresponding conceptual tags and then presents
the results to experts. Experts rate each conceptual
tag for the level of relevance to the article pointed
by the corresponding URL. The rating results are
summarized by the module and the relevance score
will be presented automatically.

B. Experiments
To measure consistency, we use Google news as our

data source. In Google news, articles from different news
sources are grouped together. We collected 425 news topics
with 2,571 articles. CUE system generated contextual tags for
each articles. The consistency score distribution comparing to
random scoring is shown in Fig. 4 and Fig. 5. The relatively
low consistency scores are due to the strict matching rule
implemented in the module where only the exact concept
matchings are counted as success. For example, “variance”
and “standard deviation” are considered not a match although
they are conceptually close. More relaxed matching algorithms
should get a higher score.

We also collected 278 articles from Wikinews with cate-
gories assigned by editors. Our CUE system has an average
accuracy of 35.25% (see Eq. 3). Finally, 5 experts are hired to
evaluate the meaningfulness of tags generated by CUE from
411 news articles. An average of 41% of tags are considered to
be meaningful to the articles by the experts. The results show
that the CUE system is fairly useful to identify key concepts
despite the limitations of our evaluation methods. The accu-
racy and meaningfulness are greatly influenced by the strict

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

Overlap consistency score

N
um

be
r o

f t
op

ic
s

Overall
Entertainment
Sports
US
Health
Tech
Business
Science

Figure 4. Overlap consistency score distributions for the top categories of
news articles.

−1 −0.7 −0.5 −0.2 0 0.2 0.5 0.7 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Rank Correlation (τ)

D
en

si
ty

 D
is

tri
bu

tio
n

Random
CUE

Figure 5. Rank correlation consistency distribution for CUE compared to
randomly-assigned tags from top categories.

matching rule and binary judgments, where closely connected
or similar tags are not considered a match. We are working
on more fair and sophisticated matching algorithms that are
appropriate for complex hierarchical matching problems.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a scalable and modular architecture
of a web Content Understanding Engine (CUE) for finding
contextual tags for potentially large collection of URLs. There
are two key aspects to the software framework presented
in this paper: (1) computational flow that allows different
technologies to be composed into a unified pipeline and (2) Big
Data infrastructure that allows the use of different technologies
such as NoSQL Database, Hadoop, Full-text Index or Cloud
Storage. We are using CUE in several projects to enhance
the user experience of web-based services with the goal of
increased customer retention and incremental revenue. One
specific example use of CUE is to generate trending concepts
on a daily basis from URLs harvested from popular news
aggregators and to leverage this information to produce better
recommendations. Our further work is to explore alternative
technologies for each stage of the computation flow to optimize
the end-to-end scalability and performance of the CUE.

REFERENCES
[1] A. Addis, G. Armano, and E. Vargiu, “Profiling users to perform

contextual advertising,” in Proc. 10th Workshop dagli Oggetti agli
Agenti (WOA), Jul. 9–10, 2009, Parma, Italy, 2009, URL: http://cmt.
math.unipr.it/woa09/papers/Addis2.pdf [accessed: 2014-05-01].

[2] G. Armano, A. Giuliani, and E. Vargiu, “Experimenting text sum-
marization techniques for contextual advertising,” in Proc. 2nd Italian
Information Retrieval Workshop (IIR) Jan. 27–28, 2011, Milan, Italy,
ser. CEUR Workshop Proceedings, vol. 704. CEUR-WS.org, 2011,
Melucci, M., Mizzaro, S., and Pasi, G., Eds., ISSN: 1613-0073, URL:
http://ceur-ws.org/Vol-704/12.pdf [accessed: 2014-05-01].

[3] G. Armano, A. Giuliani, A. Messina, M. Montagnuolo, and E. Vargiu,
“Content-based keywords extraction and automatic advertisement asso-
ciations to multimodal news aggregations,” Studies in Computational
Intelligence, vol. 439, Jul. 2011, pp. 33–52, ISSN:1860-949X.

[4] J.-H. Lee, J. Ha, J.-Y. Jung, and S. Lee, “Semantic contextual adver-
tising based on the open directory project,” ACM Trans. Web, vol. 7,
no. 4, Oct. 2013, pp. 24:1–24:22, ISSN:1559-1131.

[5] B. Zamanzadeh, N. Ashish, C. Ramakrishnan, and J. Zimmerman,
“Semantic advertising,” CoRR, vol. abs/1309.5018, 2013, URL: http:
//arxiv.org/abs/1309.5018 [accessed: 2014-05-01].

[6] S. Chakrabarti, Mining the Web: Discovering Knowledge from Hyper-
text Data. Morgan-Kaufmann Publishers, San Francisco, 2003, ISBN:
978-1558607545.

[7] T. W. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal, “From user
access patterns to dynamic hypertext linking,” Comput. Netw. ISDN
Syst., vol. 28, no. 7-11, May 1996, pp. 1007–1014, ISSN: 0169-7552.

[8] R. Cooley, B. Mobasher, and J. Srivastava, “Web mining: information
and pattern discovery on the world wide web,” in Proc. Ninth IEEE
Intl. Conf. Tools with Artificial Intelligence, Nov. 3–8, 1997, Newport
Beach, CA, USA. IEEE, Nov. 1997, pp. 558–567, ISSN: 1082-3409.

[9] M. Strube and S. P. Ponzetto, “Wikirelate! computing semantic related-
ness using wikipedia,” in Proc. 21st Natl. Conf. Artificial Intelligence,
Jul. 16–20, 2006, Boston, ser. AAAI’06, vol. 2. AAAI Press, Jul.
2006, pp. 1419–1424, ISBN: 978-1-57735-281-5.

[10] Hadoop. [Online]. Available: http://hadoop.apache.org/
[11] Oozie. [Online]. Available: http://oozie.apache.org/
[12] Azkaban. [Online]. Available: http://data.linkedin.com/opensource/

azkaban/
[13] N. Christofides, Graph theory: An algorithmic approach. Academic

press New York, 1975, vol. 8.
[14] Cascading. [Online]. Available: http://www.cascading.org/
[15] Storm. [Online]. Available: http://storm.incubator.apache.org/
[16] Spark. [Online]. Available: http://spark.apache.org/
[17] Hbase. [Online]. Available: http://hbase.apache.org/
[18] Solr. [Online]. Available: http://lucene.apache.org/solr/
[19] Elastic search. [Online]. Available: http://www.elasticsearch.org/
[20] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu, “Intelligent crawling

on the world wide web with arbitrary predicates,” in Proc. 10th
Intl. Conf. World Wide Web, May 1–5, 2001, Hong Kong, ser. WWW
’01. ACM, May 2001, pp. 96–105, ISBN: 1-58113-348-0.

[21] S.-H. Lin and J.-M. Ho, “Discovering informative content blocks from
web documents,” in Proc. Eighth ACM SIGKDD Intl. Conf. Knowledge
Discovery and Data Mining, Jul. 23–26, 2002, Edmonton, Canada, ser.
KDD ’02. ACM, Jul. 2002, pp. 588–593, ISBN: 1-58113-567-X.

[22] S. Debnath, P. Mitra, and C. L. Giles, “Automatic extraction of
informative blocks from webpages,” in Proc. 2005 ACM Symp. Applied
Computing, Mar. 13–17, 2005, Santa Fe, USA, ser. SAC ’05. ACM,
Mar. 2005, pp. 1722–1726, ISBN: 1-58113-964-0.

[23] Boilerpipe. [Online]. Available: http://code.google.com/p/boilerpipe/
[24] C. Kohlschütter, P. Fankhauser, and W. Nejdl, “Boilerplate detection

using shallow text features,” in Proc. Third ACM Intl. Conf. Web Search
and Data Mining, Feb. 3–6, 2010, New York, ser. WSDM ’10. ACM,
Feb. 2010, pp. 441–450, ISBN: 978-1-60558-889-6.

[25] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, New York, 2008, ISBN:
978-0521865715.

[26] Apache lucene. [Online]. Available: http://lucene.apache.org/

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

