
Redundancy-Driven Vertical Domain Explorer

Celine Badr
Dipartimento di Ingegneria

Università Roma Tre
Rome - Italy

badr@dia.uniroma3.it

Abstract—Entities, generally, represent real-world concepts, such
as a person (writer, singer, etc.), a product (book, camera, etc.),
a business, etc. In large data-intensive websites, sections related
to an entity in a given vertical domain consist of a thousands of
data-rich pages, each displaying attribute values for one instance
of the given entity. Ideally, to build a rich repository of entity
instances that serves the unlimited search needs of Web users,
data aggregators aim to collect all the possible instances available
for that given entity and apply data extraction for its attributes.
A manual approach would be costly in time and effort. In this
work, we propose a system that automatically discovers new
large websites publishing pages about a conceptual entity, by
exploiting the large amount of overlap on the Web among sources
in the same vertical domain. Starting with information from one
training site, specific queries are generated and results returned
by search engines are analyzed and filtered. The sources retained
from these search results undergo then a semantic, syntactic, and
structural evaluation to detect data-intensive pages for the domain
entity. Semi-structured attributes location is also identified on the
discovered entity pages. Our approach can thus be exploited by
vertical search engines in pre-processing to enhance web page
crawling, as well as in data extraction.

Keywords–entity discovery; vertical domain; search; keywords.

I. INTRODUCTION

Large data-intensive websites are composed of categories,
each listing thousands of pages related to real-world conceptual
entities. We refer to this set of pages, generally sharing a
common structure or template, as entity pages. In Web data
extraction, inferred wrappers extract selected attribute values
on a subset/all of the site’s entity pages. However, the extracted
attribute values remain limited to the data available from the
site’s repository. Ideally, to build a rich vertical warehouse of
instances of a given entity, data aggregators aim to collect all
the possible instances available for that entity and extract its
attributes on a large web scale. A manual approach would
be costly in time and effort. Figure 1 shows, for example,
a page representing an instance of the Book entity offered
on a book selling website. Common attributes for the Book
entity, like title, price, ISBN, publisher, etc., are listed on each
such page. The actual values displayed on the page pertain
to one Book instance and originate from one record in the
underlying database. We use instance page to refer to one
individual example of the entity pages.

In order to complement, enrich, or validate data gathered
from a training site, it is useful to find instance data available
on other sites that offer similar information on the same type
of entities. This requires performing two main operations:

1) Find other large data-intensive websites offering
pages on the given entity,

2) Download entity pages to extract their instance data.
Given one large website in a vertical domain, we presented
in [2] a synergic method to locate its entity pages and
extract instance data on them, with our CoDEC system that
implemented it. The approach was facilitated by exploiting
redundancies in the site’s HTML structure, navigation paths,
and content tokens. To extend it to other websites, in this
work we address the problem of automatically locating large
data-intensive sources in a given vertical domain. For that, we
propose an approach that can be exploited by vertical search
engines to enhance web page crawling and filtering by using
domain knowledge in a pre-processing phase. Our solution
uses as input the information collected during inference on
a training site to find other large websites containing instance
pages about the entity of interest. This is based on the fact that
there is a large amount of overlap on the Web among sources in
the same vertical domain [1], so information we have from one
site, or possibly more, can lead to overlapping information in
sources not yet discovered. For example, if our training website
in the Book domain contains distinct instances of Jane
Eyre book, Oliver Twist, and Madame Bovary, and
we can find another website that also lists instance pages for
these 3 books, it is very likely that this new website is a data-
intensive source in the Book domain.

Figure 1: Data-Rich Instance Page of the Book Entity

The search is made possible by extracting from the col-
lected information repository, keywords that represent the
domain, the entity of interest, and a few selected instances,
in order to run queries through a search engine. Many of
the returned results are not data-intensive entity pages (e.g.,
blogs, news, reviews), which are of no relevance to our
targeted approach. Thus we need to apply a two-level filtering
mechanism to confirm or discard a result page based on its
relevance: First, at the level of the returned URLs to determine
the subsets of search results to be further examined; second,
the pages pointed to by these URLs need be checked for

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

semi-structured data formatting to be considered candidates
for eventual data extraction tasks.

We aim to perform these tasks in a fully automated way,
independently of the training website. Our system, then, out-
puts a set of similar instance pages found on newly discovered
websites and points out content nodes on them.

II. PROPOSED SYSTEM MODEL

Entity instance pages are spread out on the Web, popu-
lating many large data-intensive websites. Thus finding and
collecting these pages in a repository for a pre-determined
domain consists mainly of a targeted web search activity,
followed by an appropriate result filtering process. To conduct
the above activities, we propose a system that exploits the
data and domain knowledge collected on a training website.
The gathered information is then used to facilitate discovering
other potential large websites in the same vertical domain and
eventually extract instance data from their entity pages.

Figure 2: System components

The system is conceived of 4 main components illustrated
in Figure 2. The components’ goal is to direct and enhance
the entity page search and filtering process as follows:

• The input to the first component is the information
obtained from the training website, in particular, the
template tokens from the sample pages. This compo-
nent then analyzes these tokens in combination with
the domain identifying terms and with the help of a
semantic evaluator to output keywords for the entity
of interest (Section III).

• Keywords are then passed to the query generator
component that builds a series of boolean queries and
sends them to a web search engine (Section IV).

• The URL results from the respective queries are
passed as input to the following component, the URL
analyzer. The latter applies a clustering algorithm on
the set of URL results and keeps only relevant clusters
for further analysis (Section V).

• These are then passed to the page evaluator component
that downloads the pages from the Web and identifies
entity-related semi-structured content (Section VI).

When various instance pages are identified on a website, a
customized crawler can find the page that links to them on that
site and download all the other instances that it contains. In
addition, the system keeps record of the location (containers) of

instance data on the pages, facilitating further data extraction
efforts. The following sections describe in more detail each
system component and the functionality that it implements.

III. FINDING ENTITY KEYWORDS

In general, any effort to find content on the Web passes
through a search engine by providing keywords. Search en-
gines today use implicit techniques (contextualization, approx-
imation, search history, PageRank, etc.) to offer useful results
in a ranking order estimated relevant to the information need.
However, keywords remain essential to state the initial intent
of the search, and choosing “good” search terms minimizes the
distance between what’s sought and what’s found in the search
engine’s indexed content repository. This section presents the
keyword extractor component for selecting query terms likely
to generate relevant results. Results are relevant if they lead
the system to discover new data-intensive large websites for
the given domain entity.

In our case, we would like to use search engines to find
semi-structured instance pages for a given entity. For an effi-
cient web search, we need to have well formulated queries and
a subsequent mechanism to confirm or discard a returned result
page based on its relevance. For this operation, a user’s manual
intervention would not scale. Consequently, in our automated
approach, it is the system’s responsibility to formulate the
queries by choosing a combination of “useful” keywords likely
to lead to new web pages for the entity of interest. In later
sections, we also explain how the system automatically filters
returned search results. Our result acceptance criteria combines
both the page content and the format in which it is presented.

To automatically select entity keywords for our search
queries, that is, keywords tightly associated with the entity of
interest, we rely on the information derived from the training
site. We aim to find terms that are both quantitatively and
qualitatively related to that entity. Common tf-idf measures are
counter-intuitive here as we want template words occurring
frequently on all sample pages, and not the opposite. When
estimating fixed template tokens during the inference process
[2], the system kept text nodes appearing frequently at the same
location in the set of sample pages as potential template tokens,
while tokens that were particular to one or few pages were
considered to be variable content. Many may be labels typical
of the domain, while others may be more general. Some may
be stop words or extra information present on the page but not
related to the domain entity. The recurring text fields collected
constitute then a good starting point to find candidate domain
keywords related to the entities. We propose to narrow down
on entity vocabulary with the help of a semantic evaluator.
The semantic evaluator takes two words or sets of words and
returns a value that represents their semantic distance. The
closer they are semantically, the higher the score returned by
the evaluator. Since the domain identifier token is already given
to the system as input, the system is able to rate, for each of
the words collected, its relationship to the domain identifier
expression. The words that score highest are kept. After also
cross-evaluating these top-scoring words, the final keyword
candidates set consists of terms that

• Appear frequently on instance pages of the vertical
domain,

• Are closely related to the domain identifier string,

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

• And, additionally, are closely related among each
other from a semantical aspect.

This automatically selected collection of terms replaces the
need to manually select entity attribute labels for each domain
without knowing the relevance or frequency of these labels
when applying the search to the remaining pages on the Web.

Figure 3: Entity keywords

Examples of resulting word sets for 4 domains are shown in
Figure 3. Two entity keywords (highlighted) are derived from
the related words pool, such that, with the domain keyword,
they have pairwise a high semantic correlation.

IV. CONSTRUCTING QUERIES

Since we are interested in finding large websites containing
entity instances of one vertical domain, we build on the obser-
vation in [1] that there is a significant amount of connectivity
and redundancy in content among data sources within the
same domain on the Web. The existence of overlapping entities
among different sources permits the discovery of new websites
starting with entities already discovered, operating with a set-
expansion approach. Based on this fact, we propose to start
with the entities gathered from our inference website and
conduct a search for overlapping entities on the Web.

The domain knowledge acquired on the training website
consists of the domain identifier terms, the entity keywords
described in Section III, and all the values of the entity
attributes extracted on the instance pages by the inferred
wrappers. With this knowledge, we propose to build search
queries for different instances that are likely to find other pages
on the Web describing these respective instances. When some
discovered instances are determined to belong to a new data-
intensive website, they can constitute the seeds for a crawler
tailored to find the rest of its instances.

Each query is composed of the domain identifier terms, the
entity keywords extracted for that domain, and one record from
the instance attributes stored in the information repository.
Various queries, each for a specific instance in the repository,
run in parallel. For each instance query, pages returned by
a search engine are considered relevant if they are semi-
structured pages about the same or a similar entity instance.
To restrain the search scope, we require that attribute values
used in the query be matched on the result pages as they are
part of the instance-related content. The identifying attribute is
required, while other attributes can be optionally added to the
query terms. The domain and entity identifier terms are rather
descriptive and not necessarily expected to be in the content
of an instance page. Therefore, in each query composition,
attribute instances are combined with logic AND, while the
domain and entity terms are joined with the OR conjunction.

For example, in the book domain, the domain identifier
term is book. The entity keywords derived from our infer-
ence website are publish and write. A random instance
extracted on the inference site has the attribute values Great
Expectations for title and Charles Dickens for au-
thor. The title attribute is the instance identifier. The query
composition for this example is then:
‘‘Great Expectations’’ AND ‘‘Charles
Dickens’’ ‘‘book’’ ‘‘publish’’ ‘‘write’’

The OR operator is implied by default. Queries are con-
structed for a number of different instances and each is sent to
the search engine. The search results URLs are collected for
each query, but results pages are not yet downloaded.

We note that some attribute values are likely to yield
less matching search results than others, due to differences
in dates or measures format, for example, or the presence of
abbreviations and spelling variations in the values of search
phrases. This can be mitigated by diversifying instance values
and attributes selection for a wider search coverage.

V. FILTERING URL RESULTS

In this section, we explain how the system goes about the
numerous query results returned by the search engine, and how
the first step of the automatic filtering is performed. The main
idea is to select only a useful subset of the URLs collected
from different instance queries for further processing, instead
of downloading all the web pages listed in the results.

When a query is sent out to a search engine, the latter
returns a very large number of results in response. Because
of the entity redundancy principle discussed in section IV,
the more frequently a website appears in the result sets, the
higher the probability of it being a large website with content
redundancy responding to our search needs. Equally, the more
overlap there is, the more frequently that website will show up
in the result sets. We aim to exploit similarities among URLs
to group result pages into clusters, such that pages in a cluster
respond to distinct instance queries, but belong to a single
website and have little dissimilarity in their URL patterns.
Each qualifying cluster is then analyzed to see if it contains
candidate pages belonging to a large website.

Figure 4: Sample query result URLs

There are some existing works that propose algorithms to
cluster large websites [3]. However, these approaches assume
that the website is already given and they try to discover its
structure. Inspired by Blanco et al. [4] that combine URL
analysis with some simple content features, we use URLs
clustering as a starting point for a further website exploration.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

By looking at a reduced sample set of URLs gathered from
a results pool for queries in the book domain (Figure 4), we
can already spot some recurrences. To operate on a large scale,
the system has to automatically determine which URLs have
similar patterns and group them together. Thus, we opt for
a hierarchical agglomerative clustering (HAC) algorithm to
process the result URLs collected from all the instance queries.
HAC is a simple “bottom-up” technique that fits our data set,
where the percentage of results to be merged into clusters is
small with respect to the entire set of URLs returned by the
search engine for the instance queries. We need to specify
for our problem a metric defining a distance measure for two
URLs. A URL can be broken into different parts (protocol,
host, port number, path, query string, etc.), some of which are
optional. We define the distance, or dissimilarity, between two
URLs based on the parts they have in common and those that
are different, as shown in Figure 5. For successive iterations,

Figure 5: Measuring Dissimilarity of Two URLs

a linkage criterion needs to be defined for the algorithm
to compute the distance between two sets of elements as a
function of the distance of the elements these sets contain. A
possible function is the minimum distance between elements
of each cluster, referred to as single-linkage clustering. For
clusters C1 and C2, their distance is:

∀x ∈ C1,∀y ∈ C2 : d(C1, C2) = min(d(x, y)) (1)

where x and y are URLs. Hence, at a given iteration, the
two clusters separated by the shortest distance are merged.
This implies that for a subsequent iteration, the minimum
distance between clusters is larger than that at the previous
step. A stopping condition for the algorithm can be either
a threshold that says clusters have become too distant to be
merged, or, when applicable, a predefined number of clusters to
reach. Based on the URL distance metric, we set our stopping
condition as a small integer, between 1 and 3.

From the clusters generated by HAC, we can consider as
valid candidates for instance pages those URLs that:
• Occur in multiple distinct instance search results,
• Originate from the same website,
• Share a pattern with low dissimilarity value.
URLs satisfying these properties make it through the first

filtering step of the system and are then further examined to de-
termine if they constitute semi-structured instance pages from

a data-intensive website. URLs occurring only occasionally or
not matching any cluster (other than their own singleton) are
not considered of interest and their pages are not downloaded.

VI. PAGE EVALUATION

In this section, we describe how pages at the resulting
URLs undergo the second stage of filtering through our system.
We adopt as a reasonable pre-condition the fact that pages
belonging to large data-intensive websites are generated by
regular templates with some level of structure. The respon-
sibility of the page evaluator is then to determine whether
the pages at the given URL addresses contain semi-structured
data sections that can be of interest for the data extraction
task. Pages not contaning any data sections with structure can
be discarded for our purposes. For each URL in the clusters
returned by the previous system component, the corresponding
web page is downloaded to be analyzed. To separate interesting
from non-interesting pages, we proceed in three steps:

• Locate relevant fragment(s) on the page,
• Extract features from page fragment(s),
• Classify the page based on extracted features.

Given a downloaded page, the first task in this component’s
process consists in identifying in its content the fragments to
evaluate with regards to the originating search purposes. In
large data-intensive websites, instance pages have at least a
section that displays the entity attributes in semi-structured
format. Since our data extraction goal is to retrieve semi-
structured attributes values where available, we need first to
locate the HTML part where they are displayed on the page.
Some works propose vision-based analysis and DOM tree
alignment, but we opt for a less complex approach. Instead,
we take the query that generated this result page and we search
for the least common ancestor HTML container of the attribute
values in that query on the given result page.

Depending on the occurrence of the attribute values, the
following are the possible scenarios that can be encountered:

• Attribute values are located in one page fragment:
the corresponding HTML container is returned for
analysis.

• Attribute values are found in several page fragments:
a list of HTML containers is returned and each will
be analyzed separately.

• Attribute values are not found on the page: the given
result page is discarded.

Given an HTML fragment where these attribute values ap-
pear, the automatic page filtering sequence proceeds to analyze
it with respect to some structural and content features that are
commonly observed on data-intensive web pages. Occurrences
in text sections are not of any interest for our data extraction
purposes. Recurrent characteristics have been identified and
used to train a classifier in order to automatically distinguish
structured from non-structured content. Namely, we look into
the text length, recurrence of characters such as the column,
usage of lists or table cells, and other HTML formatting
aspects. A result page is boosted as potential instance page
if at least one of its extracted fragments is classified as
semi-structured. Otherwise, the page is not considered a valid
candidate and is discarded.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

The output from the page evaluator component consists
then of search result pages already retained in a URL cluster,
where the respective query attribute terms occur in a semi-
structured layout. These are the final candidate instance pages
of the system. Clusters with more classified candidate pages
will have higher priority to be processed by the site explorer
for crawling more instances from the discovered website to
populate the vertical domain repository.

VII. EXPERIMENTS

We describe here our Vertical Domain Explorer system
(VerDE) implementation, the experiments we conducted, and
the results obtained, with some analysis and comments.

VerDE system is implemented in Java as a set of packages.
For the semantic evaluator, we use the semantic similarity
service provided by the University of Maryland, Baltimore
County, which combines Latent Semantic Analysis (LSA)
and knowledge extracted from WordNet to evaluate word
similiarity. For the clustering module in the URL analyzer,
we opt for the HAC algorithm with single linkage, and base
our implementation on the Java library provided by the Sape
research group at the University of Lugano. Support scores
are computed for each URL results cluster to reflect their
coverage of the different instance queries. Clusters with a
score below a set threshold are not processed any further.
Finally, the page evaluation component requires a classifier to
assess the structure of the page content where the instance
attributes are located. Because of the binary nature of the
expected output (semi-structured content or not), the classifier
is implemented as a logistic regression. Eight features related
to text length, punctuation, and HTML formatting are used. We
report the accuracy scores listed in Table I for the performance
of our classifier model on positive and negative HTML content
collected on various pages on the Web. All the implemented
VerDE components are integrated to smoothly deliver the
functionalities of the automated search and filter approach that
the entire system builds on.

TABLE I: CLASSIFIER ACCURACY

Training set accuracy 81.82%
Cross-validation set accuracy 93.75%
Test set accuracy 100.00%

We evaluate the results obtained from VerDE by running
experiments in 4 vertical domains: Restaurant, University,
Book, and NBA Player. Once retrieved from the inference site
tokens, entity keywords are stored for future use to enhance
performance. For attribute values, random records are selected
from the database to formulate queries during the system
execution. A match for these values is then sought in the search
results. For evaluation, we include in query constructions an
entity identifier attribute and a variable second attribute and
we run experiments with 5 and 50 random instances for each
domain. The instance number and attribute selection of each
run are specified in the experiment configuration.

In total, 10104 URLs were collected during the experi-
ments, while only about 15% of them became part of clusters
with URL redundancies and 11.73% were finally classified as
semi-structured. This translates into a considerable effort saved
from downloading unuseful pages. From the pages where the
attribute values were matched in the first phase of automatic

filtering, 79.6% were classified positive in the second filtering
phase, highlighting the benefit of the URL pre-processing step.

Table II lists the percentage of examined pages with
respect to the total URLs collected from search engine results,
precision of the semi-structured classification, and number of
distinct new discovered sources. The results reflect a clear

TABLE II: EXPERIMENT RESULTS

Domain % Examined Precision # Discovered
RESTAURANT 3.32 0.83 54
UNIVERSITY 25.89 0.91 342
BOOK 8.03 0.83 245
NBA PLAYER 26.32 0.84 469

optimization in the automated effort of exploring websites for
crawling and data extraction, allowing a site explorer to focus
the processing on likely candidates of large data-intensive
websites. Due to the huge amount of results returned by the
search engine, recall is hard to evaluate, but an estimate of
73.4% was calculated by manual verification on a sample URL
subset. We note that we observed poor accuracy on numerical
attributes, e.g., height, phone numbers, etc., mostly due to wide
variations in formatting on the Web and our heuristics being
based on exact matching. However, diversifying the attribute
selection in queries for a given entity can compensate any loss
in results coverage. For example, queries with books title and
publisher would find matching sources that queries with title
and ISBN numeric values did not find. Another option would
be to relax the boolean search with approximation or regular
expressions when matching values on pages.

VIII. RELATED WORK

The VerDE system we presented touches on many subjects
in information retrieval. The research work in [5][6][7][8]
presents topical crawlers that filter the portions of the Web to
be crawled. However, topical crawlers do not necessarily find
large data-intensive websites. Challenges are also highlighted
in selecting non-biased crawl seeds and the ability of the
crawler to distinguish relevant from non-relevant documents.
Our approach relies on filtering the URLs to be downloaded
by identifying redundancies. It automatically selects candidate
URL seeds likely to yield entity pages matching the crawling
objectives. It also allows to limit the crawl to sections of the
website that satisfy constraints both on content and format.

In recent years, the need for vertical search engines
dedicated to topical services like news, finance, shopping,
etc., has motivated efforts for highly accurate information
retrieval techniques. Nie et al. [9] build object search engines
in the academic and product search vertical domains. They
statistically estimate that 12.6% of randomly crawled pages
are product pages. This echoes the estimation range we also
report in our result findings. Similarly, Nguyen et al. [10]
consider the issues of data extraction, schema reconciliation,
and data fusion, in building a system that synthesizes products
for shopping verticals or product search engines. Hao et al.
[11] start with one labeled example site from a given vertical
and trains a system to extract data from unseen sites in that
same vertical, independently of the domain. Also, Song et al.
[12] exploit entity redundancy in different websites to learn
entity attributes from inner- and cross-site features. In all these
works, input pages are provided either by topical crawlers
or by manually specifying the web source to analyze. No

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

optimization is performed at the search and download stages
to only target data-intensive and semi-structured entity pages,
which would reduce considerably the amount of later page
processing. On the other hand, our approach discovers new
data-intensive sites automatically, thus reducing human effort
and also avoiding unnecessary page downloads. Moreover,
VerDE individuates the HTML containers where the semi-
structured data are displayed. This can resolve some extraction
obstacles the other systems face where an attribute like book
title appears several times on the page with different values,
as various recommended instances are listed on the same page
with the entity instance data.

One approach similar to ours is by Blanco et al. [13]. While
both our work and theirs address the domain-independent page
gathering task, the two approaches differ in several aspects:

• They analyze several similar websites to perform
quantitative keyword extraction and bootstrap the sys-
tem. Our approach uses data from one training site
with a quantitative and qualitative semantic evaluation
to find meaningful keywords for the vertical domain.

• Their system determines instance pages based on en-
tity keyword appearance and hyperlinks location. This
may lead to false positives in websites that do not offer
semi-structured data-intensive pages, while our page
filtering is based on a trained classifier that evaluates
sections of interest considering content, structure, and
formatting, which also reduces noise.

• For each URL result returned by the search engine,
they run a full website evaluation, which is not a trivial
task, especially when the URL belongs to a large
website composed of thousands of pages. The website
exploration is even repeated if a derived template
evaluates as a potential instance page. In contrast, we
minimize the number of candidate URLs before they
are processed any further. The second step of page
classification avoids exploring a website if no semi-
structured content is detected.

Another related work is by Weikum and Theobald [14].
They present a knowledge harvesting technique to construct a
comprehensive knowledge base of facts by extracting semantic
classes, mutual relations, and temporal contexts of named
entities. In this context, the semi-structured nature of data-
intensive pages cannot be exploited in a pattern-based facts
extraction without substantial postprocessing of the output.

Some recent data extraction approaches address wrapper
generation using visual content features from the web sources
[15][16][17]. Such approaches examine the resemblance of
data records to build a block tree, then proceed to data record
extraction and data item extraction, assuming the relevant
information block is centered in one main region on the page.
In contrast, our page evaluator component detects and classifies
the block containing relevant attribute values.

IX. CONCLUSION AND FUTURE WORK

In this work, we presented an approach to automatically
and efficiently locate large data-intensive web sources in a
given vertical domain, by starting with knowledge gathered
from a training site and exploiting redundancies in entity
occurrences on the Web. The system prototype implemented is
composed of 4 logical components: a keyword extractor and

an automatic query generator for the search tasks, then a URL
analyzer and a page evaluator for the filter step. Our exper-
iment results show a great advantage in using the automatic
2-stage filtering before exploring websites returned by search
engines, and a high level of precision of our classifier. Future
work can address the implementation of the website crawler
that exploits output page clusters, in addition to application of
data extraction techniques on the semi-structured containers
identified on the pages.

REFERENCES

[1] N. Dalvi, A. Machanavajjhala, and B. Pang, “An analysis of structured
data on the web,” Proc. of the VLDB Endowment, vol. 5, no. 7, 2012,
pp. 680–691.

[2] C. Badr, P. Merialdo, and V. Crescenzi, “Synergic data extraction and
crawling for large web sites,” in ICIW 2013, The 8th International
Conference on Internet and Web Applications and Services, 2013, pp.
200–205.

[3] I. Hernandez, C. R. Rivero, D. Ruiz, and R. Corchuelo, “A tool for link-
based web page classification,” in Advances in Artificial Intelligence.
Springer, 2011, pp. 443–452.

[4] L. Blanco, N. Dalvi, and A. Machanavajjhala, “Highly efficient algo-
rithms for structural clustering of large websites,” in Proc. of the 20th
international conference on World wide web. ACM, 2011, pp. 437–
446.

[5] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused crawling:
a new approach to topic-specific web resource discovery,” Computer
Networks, vol. 31, no. 11, 1999, pp. 1623–1640.

[6] M. Chau, “Spidering and filtering web pages for vertical search en-
gines,” in Proc. of the Americas Conference on Information Systems,
AMCIS, 2002.

[7] S. Sizov et al., “The bingo! system for information portal generation
and expert web search.” in CIDR, 2003.

[8] A. Patel and N. Schmidt, “Application of structured document parsing
to focused web crawling,” Computer Standards & Interfaces, vol. 33,
no. 3, 2011, pp. 325–331.

[9] Z. Nie, J.-R. Wen, and W.-Y. Ma, “Object-level vertical search.” in
CIDR, 2007, pp. 235–246.

[10] H. Nguyen, A. Fuxman, S. Paparizos, J. Freire, and R. Agrawal, “Syn-
thesizing products for online catalogs,” Proc. of the VLDB Endowment,
vol. 4, no. 7, 2011, pp. 409–418.

[11] Q. Hao, R. Cai, Y. Pang, and L. Zhang, “From one tree to a forest: a
unified solution for structured web data extraction,” in Proc. of the 34th
international ACM SIGIR conference on Research and development in
Information Retrieval. ACM, 2011, pp. 775–784.

[12] D. Song, Y. Wu, L. Liao, L. Li, and F. Sun, “A dynamic learning
framework to thoroughly extract structured data from web pages without
human efforts,” in Proc. of the ACM SIGKDD Workshop on Mining
Data Semantics. ACM, 2012, p. 9.

[13] L. Blanco, V. Crescenzi, P. Merialdo, and P. Papotti, “Supporting the
automatic construction of entity aware search engines,” in Proc. of the
10th ACM workshop on Web information and data management. ACM,
2008, pp. 149–156.

[14] G. Weikum and M. Theobald, “From information to knowledge: har-
vesting entities and relationships from web sources,” in Proc. of the
29th ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 2010, pp. 65–76.

[15] P. L. Goh, J. L. Hong, E. X. Tan, and W. W. Goh, “Region based data
extraction,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2012
9th International Conference on. IEEE, 2012, pp. 1196–1200.

[16] K. Simon and G. Lausen, “Viper: augmenting automatic information
extraction with visual perceptions,” in Proc. of the 14th ACM interna-
tional conference on Information and knowledge management. ACM,
2005, pp. 381–388.

[17] L. Li, Y. Liu, and A. Obregon, “Visual segmentation-based data record
extraction from web documents,” in Information Reuse and Integration,
2007. IRI 2007. IEEE International Conference on. IEEE, 2007, pp.
502–507.

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

