
Context-Aware Leisure Service:

A Case-Study based on a SOA 2.0 Infrastructure

Guadalupe Ortiz, Juan Boubeta-Puig

UCASE Software Engineering Group

Department of Computer Science and Engineering

University of Cádiz

Cádiz, Spain

{guadalupe.ortiz, juan.boubeta}@uca.es

Adrián Brenes Ureba

Higher School of Engineering

University of Cádiz

Cádiz, Spain

 adrian.brenesureba@alum.uca.es

Abstract— Service-Oriented Architectures (SOAs) have settled

as an efficient solution for the implementation of systems in

which modularity, loose-coupling and communication among

third parties are key factors. However, although there are

excellent tools and frameworks for service development, their

adaptation to context has not been properly focused on to date.

In this paper, we have made use of a SOA 2.0, where the core

element is an enterprise service bus, in order to improve

context-awareness for services. The proposal is illustrated

trough a real case-study scenario implementation, where the

results show the benefits of using such an architecture for web

service context-awareness.

Keywords- Web Service; Context-Awareness; Service-

Oriented Architecture; Enterprise Service Bus.

I. INTRODUCTION

In recent years, Service-Oriented Architectures (SOAs)
have settled as an efficient solution for the implementation of
systems in which modularity, loose-coupling and
communication among third parties are key factors. This fact
has led to the increasing development of distributed
applications composed of reusable and sharable components
(services). These components have well-defined platform-
independent interfaces, which allow SOA-based systems to
quickly and easily adapt to changing business conditions.

However, although there are excellent tools and
frameworks for service development, their adaptation to
context has not been properly focused on to date. Even
though this is a field in which many industry and scientific
community are starting to provide their proposals [1]–[5],
there are no clear solutions in the scope of web services. To
illustrate the need for adaptation, let us provide an example:
for instance, we may have services that would be suitable for
their adaptation to the invoking client’s specific context-
such as his location or the weather conditions in his location.
This would imply that service answers should be adapted
depending on these contextual situations. In the past, we
proposed a method for adapting services to the invoking
device [6], as well as to adapt them to the client-specific
context in general [7]. These approaches are good for the
specific type of context dealt with – adapting to device and
client-specific context – but are not prepared to deal with the
external context.

In this regard, adapting services to context and current
conditions might require the analysis of context information
very often. Nevertheless, SOAs are not suitable for
environments where it is necessary to continuously analyze
the information flowing through the system, a key factor for
an appropriate context-aware service implementation. This
limitation may be solved by the joint use of Complex Event
Processing (CEP) [8] together with SOA, the so-called
event-driven service-oriented architecture or SOA 2.0 [9]: an
extension of SOA to respond to events that occur as a result
of business processes. However, most approaches
implementing context-aware services do not take advantage
of the use of CEP and SOA 2.0, therefore having to
continuously access a context manager [1]–[3], [10]. See
Section III analysis on related work for further details.

We already envisaged an architecture for this purpose in
[11], in which the key element is an Enterprise Service Bus
(ESB), which currently is the core of SOA 2.0. The main
contribution of this paper is the definition of the exact
architecture required and its implementation through a real
case-study scenario. To this end, we have chosen a service
which provides leisure activities. Particularly, the provided
activities will be based on the location and weather
conditions of the user; weather conditions will also be used
to send special offers to subscribers.

The rest of this paper is organized as follows. Section II
provides some background on the paper main areas of
interest: context-awareness and event-driven SOAs.
Afterwards, Section III describes and compares more
relevant related work to the one presented in this paper. Then
Section IV addresses the implemented architecture, first of
all including the case-study description, secondly the
architecture definition and finally the flows required in the
ESB for materializing the good use of the SOA 2.0
architecture. Following, Section V provides the final
application overview from the point of view of the different
user roles, specially focusing on how context-awareness is
dealt with. The article ends with Section VI, which discusses
the proposal and conclusions.

II. BACKGROUND

In this section, we will introduce the main concepts of
context-awareness and event-driven SOA.

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

A. Context-Awarenes

Dey et al.’s context definition in [12] is specially well-
known: “Context is any information that can be used to
characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction
between a user and an application, including the user and
applications themselves”.

Context-awareness supports the fact that the context
information provided by the client, or taken from the
environment, is properly used by the system so as to improve
its quality; that is, using such contextual information to
customise system outputs to improve final user satisfaction.
Therefore, a system is context-aware if it uses the context to
provide relevant information or services to the user, adapting
the system behavior to the user particular needs.

A context-classification can be found in [13]; in this
work, we will focus on dealing with the environmental
context: sensors and/or specific services are currently used in
order to provide such kind of information as location,
temperature, precipitations, wind, etcetera. This type of
context will imply filtering the information sent to the client;
for instance, if location is taken into account when looking
for leisure activities, the result would be restricted to those
available within a limited distance; when taking into account
weather conditions, the results might be narrowed and only
activities suitable for these conditions might be provided.

B. Event-Driven SOA (SOA 2.0)

Event-driven architectures promote the detection of
events and the subsequent intelligent reaction to them [14].
These architectures rely on complex event processing, a
technology that provides a set of techniques to help discover
complex events by analyzing and correlating other basic and
complex events [8]. Therefore, CEP allows detecting
complex and meaningful events in a particular context and
inferring valuable knowledge for end user interests. Let us
suppose again that we are looking for leisure activities for
today; kite-surfing is fine when is windy; however it is not
the same that it is windy when you are going to kite-surf,
than that it is windy and raining more than 10 cm

3
/h. This is

an example on how complex events may help make
decisions on the information to be provided to the user.

Currently, the integration of Event-Driven Architecture
and SOA is known as Event-Driven SOA or SOA 2.0 [9].
SOA 2.0 will ensure that services do not only exchange
messages between them, but also publish events and receive
event notifications from others. For this purpose, an
Enterprise Service Bus (ESB) will be vastly helpful to
process, enrich and route messages between services of
different applications. Further information on the integration
of CEP with SOA in other scenarios can be found in [15].

III. RELATED WORK

In this section, we will focus on the main research for
CEP and SOA integration and context-aware service
implementations.

Several works on CEP and SOA integration in different
domains can be found in the literature; for instance, Taher et

al. [16] develop an architecture that integrates a CEP engine
and input/output adapters for SOAP messages in order to
adapt Web service messages between incompatible
interfaces: input adapters receive messages sent by Web
services, transform them into the appropriate representation
to be manipulated by the CEP engine and send them to the
latter. Accordingly, output adapters receive events from the
engine, transform them into SOAP messages and send them
to the corresponding to Web services.

There are some approaches which use CEP for
monitoring such as the one from Xu et al. [17], where CEP is
used to detect events in an Ambient Assisted Living (AAL)
domain so that proper palliative actions can be taken in real
time. The paper from Li et al. [18] is also worth a special
mention. They provide an adaptive approach to context
provisioning and automatic generation of actions. The latter
definitely bears similarities with our proposal; however we
focus on non-intrusive service result adaptation rather than
action taking.

Most of the work found in the context adaptation area
specially focuses only on websites [19] or in general on
client side adaptation. We can mention, for instance, the
paper from Laakko and Hiltunen [1] where content
adaptation is done through a proxy; we can also mention the
one by Mohomed et al. [2] where the system can learn about
context through the interaction with the user. Both are
interesting works, but they overhead the client computation;
opposite to our proposal which deals with all the heavy tasks
in the server side. Another example is the proposal from
Keidl et al. [3], which consists of an approach for services to
deal with client contextual information through a context
framework. In their case, the context is always included in
the client SOAP header, as well as in service messages. This
implies that not only services, but also clients have to
process the context included in the header; however they do
not explore how the client can deal with the received context,
and again they are overheading client communications.

 Bucchiarone et al. [4] focus on the role of context in
adaptation activities and describe a life-cycle for designing
and developing adaptable service-based applications. They
consider necessary to build contextual monitors and adaption
mechanisms to detect context changes and trigger the
subsequent actions. Furthermore, they propose rule engines
as possible candidates for this purpose. However,
implementations using rule engines are slower and less
efficient in handling and receiving notifications, compared to
those using CEP engines [20].

Sheng et al. [5] proposes ContextUML: a modeling
language for context-aware model-driven web services.
Several years later they improved their proposal supplying a
platform for developing context-aware web services [21].
This platform, named ContextServ, is based on ContextUML
and provides an integrated environment where developers
can specify and deploy context-aware services, as well as
generating Business Process Execution Language code. The
main drawback of this proposal is the high learning curve
required for their modelling methodology; in addition, it
does not take any advantage of the use of the ESB and CEP,

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

which leverages the context-aware system scalability,
usability and maintenance.

There are also several approaches which only consider
location and personal preferences [22], [23], but no other
environmental contexts; those are not relevant in this scope.

To summarize, our proposal mainly differs from others in
benefiting from the advantages of the use of CEP and an
ESB to adapt services to context information in a decoupled
and scalable way, where the context can be automatically
detected through real time events.

IV. CASE-STUDY DESCRIPTION

In this section, we are going to describe the case-study
requirements and the proposed architecture to implement it.

A. Description

The goal is having a service-based application which
offers leisure activities, as well as special offers depending
on the weather conditions in a particular location.

The application manager (web master) will be the one in
charge of defining a set of categories corresponding to
weather conditions; for instance, wind speed above 40km/h
means it is a windy day; otherwise it is not.

The activity providers will define on the one hand which
activities are suitable under specific weather conditions (for
instance a camera obscura is not a place to recommend when
it is already dark whilst it is really nice in a sunny day). On
the other hand, special offers which might be triggered under
specific weather categories: the camera obscura provider
might recommend it as long as there is day light, but since
many people would not go there when suddenly raining or
cloudy, he might be interested in sending a special price
offer in such conditions (to attract some additional visitors).

The prospective application users are several:
First of all, a visitor might check what he can do

now/today in the visited city. The result should take into
account both weather-based recommended options and any
available offer. This kind of user should not be required to
get registered in the platform, since most of prospective users
would not register for a short visit.

Secondly, a local user might be interested in receiving
suggestions and offers in his city continuously; he should
register for this purpose. He also has the chance to indicate
under which weather conditions he is interested in doing
leisure activities, to therefore receive customised alerts in his
email account.

Finally, another kind of user would be future visitors who
might check what is possible to visit in a location before they
go there. For these visitors, the activities might be based on
the weather forecast or on the weather historic data when no
forecast information is available.

We would like to highlight that the system should be
readily accessible both from a computer and a mobile device.

B. Architecture

If we start from the top-left of Figure 1, we can see that
weather information is constantly arriving to the system (1);
this information might be provided by sensors or any other
event producer element; we have used web suppliers.

Therefore, in this system, the events reaching the system
consist of the weather information. This information is
transformed in the required objects of the system (2) and
filtered to keep only the information/events of interest (3).
Then these events are automatically redirected to the Esper
CEP engine [24] (4a) in order to detect the predefined
complex events pattern, as well as to a non-SQL database
(4b) in order to keep a history table. Such patterns (5a) and
their correspondence to the system weather categories have
been designed by the system manager and stored
permanently in the database (5b); besides they can be
updated at any time.

If the patterns of interest are detected then two things
happen: on the one hand categories are activated for their use
in the web site (6); on the other the corresponding alert
emails are sent to the subscribed users (7).

The provider has previously established the conditions
for the alerts to be triggered or the activities to be offered at
special prices (8). Activities and their associated conditions
are stored in a SQL database.

The web service is used as the intermediary between the
user and the system. The user, when looking for leisure
activities in the web site is transparently invoking the web
service which provides this information (9), the latest is
already adapted in real time – thanks to our architecture – to
the current weather conditions.

C. Flows in the Enterprise Service Bus

Most of the business logic of the system has been
implemented inside the enterprise service bus, specifically as
Mule flows. This provides us with a twofold benefit: on the
one hand, Mule facilitates the interoperation of multiple
inputs/outputs formats; on the other, all the core functionality
will be located together in the ESB. In Figure 2, we have
included the most relevant flows in the bus.

Particularly, we have a specific flow for weather
information collection/detection, which is shown in Figure
2(a). In this flow, information from several locations is
obtained every minute; then it is immediately processed and
transformed into the required format and immediately after
sent to the non-SQL database, as well as to the complex

(1)

(2)

(3)

(4a)

(5b)

(6)

(7)

(8)

(9)

(4b)

(5a)

Figure 1. System Architecture

Weather Information

Mule ESB

Web Application

Web Service

CEP
Engine

Events

Databases

Email Delivery

Category/Alert
Activated

Event
Patterns

User/Provider/Webmaster

Transformation

Filtering

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

event processing engine. We have filtered the information
sent to the engine, so that only relevant information related
to current leisure activities in the system reach the CEP
engine. Please also bear in mind that additional sources could
be added at any time should it be necessary.

Figure 2(b) shows the flow corresponding to the leisure
web service. The client (in our case the web site) can invoke
the service; the implementation of the service in Mule
already takes into account the patterns detected in the engine,
adapting the results to the weather conditions.

Finally, Figure 2(c) shows how suggestions and offers
are sent based on the alerts triggered by the complex event
processing patterns: first of all, we extract the alerts detected
by the CEP engine according to the weather patterns defined
in the system and to the weather events entering into the
latest. Then, based on this information, and on the client
interests stored in the system, the corresponding suggestions
and offers are sent to their email accounts. The emails sent to
the users are by default limited to one per day.

V. APPLICATION OVERVIEW

In this section, we describe the relevant functionality of
the resulting application from the point of view of the system
manager, the activity provider and the final user.

A. System Manager Role

The manager (web master) will be the one in charge of
administrating categories. Even though the system already
includes common categories related to weather situation; the
manager will be the one in charge of including new
categories – should it be necessary – and the patterns
matching the named category. Those patterns have to be
defined using EPL of the chosen CEP engine (Esper). The
selection of this language was not only based on the
efficiency of the CEP engine, but also on its close syntax to
the well-known SQL, as well as its native support for
multiple event format types. To give an example, if we want
to include the category “windy”, an example of pattern for a
windy day using Esper EPL would be the following:
 @Name("windy")

 insert into windy

 select ‘wind’ as alertName, a.windSpeed as

 windSpeed

 from pattern [every a =

 WeatherEvent(windSpeed > 50)]

The remaining tasks of the system manager/web master
would be usual web sites maintenance tasks.

(b) Web service flow (a) Weather information collection flow

(c) Notification flow

Figure 2. Flows in the enterprise service bus

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

B. Provider Role

The providers will include in the system the different
activities. They can fill in all the information manually per
each activity or can do it uploading a CSV file (see Figure 3
(a)). The relevant issue here is that they will indicate the
weather conditions which will trigger the offers for each
activity and the activities which will be provided under
particular weather conditions (see Figure 3 (b)).

C. User Role

Non-registered user will enter the system and will be able
to see the activities to be done now in his location, as well as
those which have a special offer for today (see Figure 4).

When the user registers he can predefine for which
weather categories he wants to receive suggestions and offers
(Figure 5).

VI. DISCUSSION

We have presented an application which satisfies both
the provider and the consumer: the first one may trigger
offers to profit from a larger number of clients when weather
conditions are not suitable for his offered activities. The
consumer not only receives information about the more
suitable activities for current weather conditions but also
might benefit from special offers.

It could be thought that limiting your plausible clients
might not be good for your business. However, imagine you
are happily visiting Granada in winter time and you are about
to decide what to do today; the system offers you the option

of visiting the Alhambra or going to ski. You go for the
second, you rent all the equipment before you go up to Sierra
Nevada and once there you discover that all the ski tracks are
closed due to the blizzard. What would you do next time?
Would it have not been better that the system had not
suggested skiing for such a day?

Regarding the limitations of our proposal, we are aware
of the difficulty for the system manager to create new event
patterns in the system. This is why (1) we provided a large
set of categories predefined in the system and (2) we pretend
to integrate this architecture with other results of our
research: the user-friendly editor for complex event pattern
which will generate and deploy automatically the code in the
CEP engine for the patterns to be detected [25].

Figure 3. Application functionality from the point of view of the activity provider

(a) Activities uploaded by the provider

(b) Activity configuration by the provider

Figure 4. User activity search result

Figure 5. User preferences configuration

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an event-driven service-
oriented architecture and case-study implementation for
providing a context-aware leisure service. Thanks to the use
of an ESB to connect the different inputs and outputs of the
system and to the use of a CEP engine, we can provide the
activities adapted to the weather conditions in real time.
Even more, activity providers benefit from a system which
may send offers and suggestions to prospective clients based
on weather condition real time changes, therefore improving
their revenues, as well as the users satisfaction.

In our future work, we plan to extend the architecture
with additional features which facilitate different contexts
dealing and adaptation mechanism. As we mentioned before,
we also pretend to integrate this architecture with a user-
friendly editor for event pattern definition.

ACKNOWLEDGMENT

G. Ortiz and J. Boubeta-Puig acknowledge the support
from the Spanish Ministry of Science and Innovation under
the National Program for Research, Development and
Innovation, project MoD-SOA (TIN2011-27242).

REFERENCES

[1] T. Laakko and T. Hiltunen, “Adapting Web Content to

Mobile User Agents,” IEEE Internet Comput., vol. 9, no. 2,

pp. 46–53, Mar. 2005.

[2] I. Mohomed, J. C. Cai, S. Chavoshi, and E. de Lara,

“Context-aware interactive content adaptation,” in

Proceedings of the 4th international conference on Mobile

systems, applications and services - MobiSys 2006,

Uppsala, Sweden, 2006, p. 42.

[3] M. Keidl and A. Kemper, “Towards context-aware

adaptable web services,” presented at the 13th international

World Wide Web conference on Alternate track papers &

posters, New York, NY, USA, 2004, pp. 55–65.

[4] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. di Nitto,

and V. Mazza, “A context-driven adaptation process for

service-based applications,” presented at the 2nd

International Workshop on Principles of Engineering

Service-Oriented Systems, New York, NY, USA, 2010, pp.

50–56.

[5] Q. Z. Sheng and B. Benatallah, “ContextUML: a UML-

based modeling language for model-driven development of

context-aware web services,” in International Conference

On Mobile Business, 2005, pp. 206–212.

[6] G. Ortiz and A. García De Prado, “Improving device-aware

Web services and their mobile clients through an aspect-

oriented, model-driven approach,” Inf. Softw. Technol., vol.

52, no. 10, pp. 1080–1093, Oct. 2010.

[7] G. Ortiz and A. García de Prado, “Web Service Adaptation:

A Unified Approach versus Multiple Methodologies for

Different Scenarios,” presented at the Fifth International

Conference on Internet and Web Applications and Services

(ICIW), 2010, pp. 569 –572.

[8] D. C. Luckham, The power of events: an introduction to

complex event processing in distributed enterprise systems.

Addison-Wesley, 2002.

[9] B. Sosinsky, Cloud Computing Bible. John Wiley & Sons,

2011.

[10] Q. Z. Sheng, S. Pohlenz, J. Yu, H. S. Wong, A. H. H. Ngu,

and Z. Maamar, “ContextServ: A platform for rapid and

flexible development of context-aware Web services,” in

International Conference on Software Engineering, 2009,

pp. 619–622.

[11] G. Ortiz, J. Boubeta-Puig, A. García de Prado, and I.

Medina-Bulo, “Towards Event-Driven Context-Aware Web

Services,” in Adaptive Web Services for Modular and

reusable Software Development: Tactics and Solutions, IGI

Global, 2012, pp. 148–159. DOI: 10.4018/978–1–4666–

2089–6.ch005.

[12] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,

and P. Steggles, “Towards a Better Understanding of

Context and Context-Awareness,” London, UK, 1999, pp.

304–307.

[13] A. García de Prado and G. Ortiz, “Context-Aware Services:

A Survey on Current Proposals,” in The Third International

Conferences on Advanced Service Computing, Rome, Italy,

2011, pp. 104–109.

[14] H. Taylor, Ed., Event-driven architecture: how SOA enables

the real-time enterprise. Upper Saddle River, NJ: Addison-

Wesley, 2009.

[15] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “An

Approach of Early Disease Detection using CEP and SOA,”

in Service Computation 2011, The Third International

Conferences on Advanced Service Computing, 2011, pp.

143–148.

[16] Y. Taher, M.-C. Fauvet, M. Dumas, and D. Benslimane,

“Using CEP technology to adapt messages exchanged by

web services,” New York, NY, USA, 2008, pp. 1231–1232.

[17] Y. Xu, P. Wolf, N. Stojanovic, and H.-J. Happel,

“Semantic-based Complex Event Processing in the AAL

Domain.,” in ISWC Posters&Demos, 2010, vol. 658.

[18] F. Li, S. Sehic, and S. Dustdar, “COPAL: An adaptive

approach to context provisioning,” 2010, pp. 286 –293.

[19] D. Carlson and L. Ruge, “Towards Augmenting Legacy

Websites with Context-awareness,” presented at the 10th

International Conference on Mobile and Ubiquitous

Systems: Computing, Networking and Services,, Tokyo,

Japan, 2013.

[20] K. M. Chandy and W. R. Schulte, Event Processing:

Designing IT Systems for Agile Companies. USA: McGraw-

Hill, 2010.

[21] Q. Z. Sheng, J. Yu, A. Segev, and K. Liao, “Techniques on

developing context-aware web services,” Int. J. Web Inf.

Syst., vol. 6, no. 3, pp. 185–202, 2010.

[22] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C.

Efstratiou, “Developing a context-aware electronic tourist

guide: some issues and experiences,” 2000, pp. 17–24.

[23] R. A. Abbaspour and F. Samadzadegam, “Building a

context-aware mobile tourist guide system based on a

service oriented architecture,” Int Arch. Photogramm.

Remote Sens. Spat. Inf. Sci., vol. XXXVII, no. B4, pp. 871–

874, 2008.

[24] E. Inc, Esper - Reference Documentation. 2014.

[25] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “A model-

driven approach for facilitating user-friendly design of

complex event patterns,” Expert Syst. Appl., vol. 41, no. 2,

pp. 445–456, Feb. 2014.

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-361-2

ICIW 2014 : The Ninth International Conference on Internet and Web Applications and Services

