ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

A Web Service Migration Framework

M. Mohanned Kazzaz
Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
Email: ikazzaz@fit.vutbr.cz

Abstract—Service-oriented software systems that operate in
highly dynamic or mobile environments have to be able to adapt
at runtime to changing environmental conditions. This includes
not only adaptability of their individual services, but also ability
of the whole systems as service compositions to preserve their
integrity and to keep their best performance. This paper presents
a concept of service migration in service-oriented architecture as
an approach to enable the adaptation of service-oriented systems
in changing environments. Moreover, a description of migratable
services and service providers by means of migration conditions is
proposed and used by service-oriented systems to keep function-
ality and quality of their services. Finally, the paper describes
a prototype design of a framework for the service migration
according to the migration conditions and to an user-defined
migration decision strategy.

Keywords—Web services; Quality of service; Adaptive systems.

I. INTRODUCTION

In order to operate effectively in mobile environments, a
software application has to be able to adapt at runtime to
changing environmental conditions such as high volatility and
fluctuation of available resources, variable quality of utilised
services, unstable network topology, etc. In the case of a
distributed component-based system, the changing environ-
mental conditions means not only adaptability of the system’s
individual components, but also ability of the whole system to
preserve its integrity and to keep the best performance [1].

Currently, information systems designed as the component-
based systems often utilise service-oriented architecture (SOA)
and Web service technology. The service orientation allows
to decompose a complex software system into a collection of
cooperating and autonomous components known as services.
These services cooperate with each other to provide a particular
functionality of the implemented system with defined quality.

This paper deals with service migration in SOA as an
approach to enable the adaptation of component-based and
service-oriented systems in highly dynamic and heterogeneous
environments. While traditional models of SOA assume that
services are provided permanently by service provides which
are predefined at a system’s deploy-time or found in service
registries at its runtime [2], the service migration enables
services to be transparently moved across various network
nodes that act temporarily as service providers according to their
availability and their resources. Through the service migration,
the system is able to cope with the inherent environmental
dynamics and to keep functionality and quality of its services
(e.g., to employ temporarily available mobile devices as service

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

Marek Rychly
Department of Information Systems
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
Email: rychly @fit.vutbr.cz

providers, to react to possible failures of service providers with
unreliable resources, etc.).

The rest of this paper is organised as follows. Section II
describes a process of service migration including our logical
model for migration decision process. The migration process
is implemented in Section III as a framework for Web service
migration. In Section IV, we review the main approaches that
are relevant to our subject. Section V discusses advantages
and disadvantages of the proposed framework, especially in
comparison with other state-of-the-art approaches. Section VI
outlines ongoing implementation of the framework and future
research work. Finally, Section VII concludes the paper with
summary of our work.

II. PROCESS OF WEB SERVICE MIGRATION

The migration of a particular service should be considered
if its provider is not able to guarantee the functionality or
quality of the service and there is no alternative service or
service composition that will match a semantic and qualitative
description of the original service, i.e., that can provide the
same functionality and required quality.

A. Migration Conditions and Migration Decision

We define two groups of migration conditions, i.e., the con-
ditions which indicate the need of service migration. The first
group contains predefined conditions concerning a provider’s
runtime state, e.g., network traffic, memory usage, CPU usage,
and battery state. The second group consists of user-defined
migration conditions, which can be used together with an user-
defined migration decision strategy to fully customise a process
of decision making for potential service migrations.

The migration decision whether start the migration of
services provided by particular service providers and how to
find target service providers (that will provide the services after
the migration) is based on required quality of the services and
on optimal and actual states of the service providers.

At the beginning, a migration controller is periodically gath-
ering information about current state of each service provider
(e.g., current battery state or resource utilisation) and about its
migration conditions (e.g., minimal battery level or maximal
resource utilisation to keep fully/optimally functional provider).
According to this information and a particular migration deci-
sion strategy, the migration controller finds the most underper-
forming provider which needs migration of its services (this
step will be referred later as “origin provider” decision).

58

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

After that, the controller checks every migratable service of
the provider selected in the previous paragraph. The migratable
services have to publish descriptions of required resources
by means of the above defined migration conditions (e.g., the
conditions can describe that a particular service can be provided
by a provider with at least 180 kB of free RAM memory).
According to the information provided by these services of
the selected provider and according to a particular migration
decision strategy, the controller finds the most appropriate
service to be migrated (this step will be referred later as
“migrated service” decision).

Finally, the controller starts looking for the best candidate
provider which will serve as the migration destination (this
step will be referred later as “destination provider” decision).
This provider is selected according to a particular migration
decision strategy, the state information previously provided
by the providers (which describes their available resources),
and the information provided by the migrated service (which
describes the required resources).

B. Migration Decision Modelling

The migration decision can be described by Linear Time
Logic (LTL) [3] as a sequence of states which are related to time.
LTL formulae are combinations of terms using logical operators
A and — and temporal operators [J, ¢, and o. Formulae Ulp
and op means that p always or sometimes holds in the future,
respectively, and op means that p is true in the next state.

Our work is based on [4] which provided a service migra-
tion logical framework based on LTL. We focus on the first
migration phase and logically describe migration decisions by
LTL meanwhile [4] dealt with the rest of the migration phases.

Let P = {P,P,,..., Py} is a set of existing providers
and S = {51, 52,...,5,} is a set of the migratable services.
Migration decision process D, which has been described infor-
mally in the previous section, can be defined as follows:

D = (D 1 AOriginProvider 1 NT,)
A o (OriginProvider | AMigratedService T ATp)
A o (MigratedService | ADestination Provider 1 AT.)
A o (Destination Provider | ATy) (1)

In the formula above, 1 and | represent the start event and the
end event of each process, respectively, and T, < T, < T, < Ty
represent the corresponding events’ times.

The migration decision process is described in accordance
with the previous section as a composition of three sub-
processes, namely: OriginProvider to find the most critical
provider in the system that needs to migrate its services re-
garding its current state and its migration conditions; Migrat-
edService to find the most appropriate migratable service to be
migrated from the “OriginProvider”; and DestinationProvider
to find the best destination provider for “MigratedService”.

The low performance condition of provider P; will be met
sometime in the future when the migration decision process will
start. Then, the current provider’s performance Provider Level
will not satisfy preferred performance DefaultLevel of the
provider according to a migration decision strategy:

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

[ProviderLevel(P;) = DefaultLevel(P;)] => Search

[Migration Strategy A { \
VS, 3P, s.t. (D > \

D((SermceLevel(Sk P)> Search [Migration Strategy A
DefaulLLevel(S,() VP, s.t. ProviderLevel(P;) <
(providertevel(s) %/ Defaultievel(P))

=> OriginProvider
DefaultLevel(P;)
]=>Search
Destination Ongm
Provider Provider
Decision Decision
~
[Migration Strategy A ™\ / [Migration Strategy A
VSy, Py s.t.ServiceLevel(Sy, P;) < Migrated | OriginProvider]
DefaultLevel(Sy)] Service => MigratedService
=> DestinationProvider Decision
" /

Figure 1. The migration-decision as a finite state automata.

VP; s.t. (ProviderLevel(P;) < DefaultLevel(P;)) — oD
@)
Sub-process MigratedService will be started sometime in the

future to determine the most appropriate service to be migrated
after a decision about “OriginProvider” has been made:

(D A OriginProvider) — oMigratedService — (3)

The necessity condition, the pre-condition of Destination-
Provider process, becomes true when Service Level describing
the current quality of service Sy for k € {1,... n} running
on provider P; for ¢ € {1,... m} is no longer in its preferred
level which is denoted as De faultLevel:

VSk, P; s.t. ((ServiceLevel(Sk, P;) < DefaultLevel(Sy))
A OriginProvider) — oDestinationProvider (4)

The post-condition of decision process DD guarantees ac-
ceptable performace of destination provider P;, where j €

{1,...,m}\ {4}, and the necessity condition of its service Sk:
Sy, 3P; s.t. (D — 0
(ProviderLevel(Pj) > De faultLevel (P;))

A (ServiceLevel(Sk, Pj) > DefaultLevel(Sk))) (5)

When the migration controller service starts the migra-
tion decision process, the output of each sub-process is de-
termined by evaluating provider’s and service’s conditions.
Figure 1 shows the controller’s four states (“search”, “origin
provider decision”, “migrated service decision”, and ‘“‘desti-
nation provider decision”) as a finite state automata with
corresponding pre- and post-conditions. The transitions are
labelled by [Conditions] = Process where Conditions are
the migration conditions of providers and services and Process
is a particular sub-process of the migration decision process.

C. Migration of a Serivce

The service migration itself can start when a particular
service is selected to be migrated to a particular destination
service provider, which is described in the previous section.
Then, the migration controller starts migrating the service by

59

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

<<Interface>>
MigrationDecisionStrategy
+ getProviderMigrationNecessity (providerStatus : ProviderStatus) : byte
+getServiceMigrationNecessity(providerStatus : ProviderStatus, serviceStatus : ServiceStatus) : byte
+getDestinationSuitability(providerStatistics : ProviderStatus, serviceDescription : ServiceSemanticDescription) : ...

1

<<Interface>>
MigrationController
+ setMigrationDecisit rategy(migrationDe: rategy : MigrationDecisionStrategy) : void
+findProviderWithMigrationNecessity(providers : MigrationProvider []) : MigrationProvider
+ findServicesWithMigrationNecessity(services : MigratableServices []) : MigratableServices []
+ findSuitableMigrationDestination(providers : MigrationProvider [], service : MigratableService) : MigrationProvi...
+migrateServiceToProvider(migratedService : MigratableService, destinationProvider : MigrationProvider) : void

<<Interface>>

MigratableService
+getStatus() : ServiceStatus
+getSemanticDescription() : SemanticServiceDescription
+getDeploy ge() : ServiceDeploy Package
+migrateToDestination(servicelnDestination : MigratableService) : void
-getinternalStatus() : ServicelnternalState
#initiatelnternalStatus(status : ServicelnternalState) : void
#start() : void
-redirectToAnotherService(redirectionTarget : MigratableService) : void 0.%
stop() : void

<<Interface>>
ServiceSemanticDescription

> << Interface> >
Serializable

|
<<Interface>>
ServiceStatus

<<Interface>>
MigrationProvider
+ getStatus() : ProviderStatus
+getHostedServices() : MigratableService []
+deployService(package : ServiceDeploy Package) : Migrat ice
+removeService(service : MigratableService) : void

1
<<Interface> >
ServiceDeploymentPackage

1
<<Interface>>
ServicelnternalState

<<Interface>>
ProviderStatus

L

Figure 2. The interface of a control service provided by the framework and
the interfaces implemented by participating services and service providers to
enable the service migration.

getting a deployment package of the service and deploying it
to the destination provider. During this process, the migrating
service is stopped and its internal state is stored and sent to
the destination provider. All further incomming calls of the
service are postponed until the migration is completed, i.e.,
until the migrated service is initiated in the new location, its
internal state is restored, and until the service is able to handle
incomming messages.

III. A FRAMEWORK FOR WEB SERVICE MIGRATION

To support the proposed process of Web service migration,
we designed a generic framework, which is introduced in this
section. The framework describes an overall service-oriented
architecture supporting the service migration and defines in-
terfaces which can be implemented to adapt the framework to
a particular Web service implementation technology. It also
provides extension points for user-defined migration decision
strategies, i.e., the strategies deciding when the migration of a
particular service is needed and how it will be performed. The
framework’s architecture is described in Figure 2 by classes
representing specific services with defined interfaces.

To utilise the framework, an implementation of interface
MigrationDecisionStrategy and auxiliary classes with interfaces
ProviderStatus, ServiceStatus, and ServiceSemanticDescription,
representing state and semantic information, have to be pro-
vided. Migration decisions are based on state information ex-
tracted from service providers (e.g., available resources, system
workload, battery state, etc.) and their services (e.g., utilised
resources, number of requests per an unit of time, etc.) and on
the services’ semantic descriptions (e.g., provided functionality,
inputs and outputs, required runtime conditions, etc.). The
migration decision strategy has to be able to acquire instances
of the mentioned classes (i.e., the objects representing the state

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

and semantic information) from providers supporting service
migration and migratable services.

Interface MigrationDecisionStrategy defines methods gez-
ProviderMigrationNecessity, getServiceMigrationNecessity, and
getDestinationSuitability. The first two methods decide whether
some services of a particular service provider or a particular
service of this provider, respectively, need to be migrated for
some reasons. The third method decides whether a particular
provider can be a migration destination for a particular service
(i.e., whether a given service can be provided by a given
provider after the migration). Returning values of the methods
are directly proportional to the necessity of migration of the
services or the suitability of the migration destinations.

To be able to migrate, services need to implement interface
MigratableService with the following public methods. Method
getStatus returns state information that is used in a migration
decision strategy to decide whether a particular service needs
to be migrated. Method getSemanticDescription provides a
semantic description of a migrated service which is used in
a migration decision strategy to select a appropriate destina-
tion service provider. Method getDeploymentPackage returns
a service deployment package which is used to deploy a new
instance of a migrated service at a destination service provider.
Finally, migrateToDestination transfers a service’s internal state
from the service’s old instance to its previously deployed new
instance and finalises the migration.

Service providers with migratable services need to imple-
ment interface MigrationProvider with the following public
methods. Method getStatus returns state information that is
used in a migration decision strategy to decide whether services
hosted by a particular service provider need to be migrated.
Method getHostedServices returns all migratable services of a
service provider. Method deployServiceFromPackage should be
able to deploy a service package to create a new instance of
the deployed service on a destination service provider. Finally,
method removeService removes a migrated service from its
origin provider.

A. Migration Controller Service

The migration controller is a service provided by the frame-
work which orchestrates services and service providers par-
ticipating in the service migration. The controller is provided
as a “black-box”, i.e., it can not be modified and prospective
utilisation of the framework can be done solely by implementa-
tions of particular migration strategies, migratable services, and
their providers. In this way, the controller is also technology
independent. It does not need to interpret state information
regarding migrated services or their providers and to know how
the information has been acquired, it does not need to know a
particular technology for service deployment, etc.

The controller implements interface MigrationController
and orchestrates participating services and service providers
as it is described in Figure 3. It periodically checks available
service providers for their state information and uses a migration
decision strategy to decide whether the information indicate
demands for service migration (step (2) in Figure 3). In the
case of a service provider which needs service migration, the
controller obtains state information from the provider’s services
(3) and uses the migration decision strategy to decide which

60

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

controller :
MigrationController

migrated

Migratabl

migrating
Migratabl

strategy : B target :
ce | MigrationDecisionStrategy MigrationProvider | MigrationProvider

T T T
| 1: setMigrationDecisionStrategy()

| | |

} 2 ithMigrat)
I

I

Toop] ! 2.1: getStatus()
[for each provider]]
2.2: getProviderMigrationNecessity()
<
T
| 3: getHostedServiges()
|
| | | |
| T T
! Toop ! ! <« 4 hndSevvwkes\NlthM\grauanN%cessny()
[for each service hosted by the found provider]
| | 4.1: getStatus()
[t
4.2: getServiceMigrationNecessity()
e
Toop]
i
I [for each found service with migration necessity] 5 dtion()
! ! 5.1: gefSemanticDescription() i !
| v Il Il L
I m‘ |DQDJ I I I
I |
[for each provider] 5.2: getStatus() |
5.3 ge(pesnnauonsuuabnuyo >
¢ i
6: migrategerviceToProvider()
6.1: gefDeploymentPackage() oo)
. (

6.3: thigrateToDestination()

| |
| 6.3.1: getinternalStatus()
6.3.2:|initjateInternalStatus() |

6.3.3: start()

6.3.4: redirectTdAnotherService()

7: removeService|

6.3.5: stop()

Tt

Figure 3. The controller orchestrating service migration.

services need to be migrated and in which order (4). For each
such service, the controller obtains its semantic description and
tries to find, by means of the migration decision strategy, a
service provider suitable as the service’s migration destination
(5). After that, the controller obtains a deployment package of
the migrating service from its origin provider (6.1), deploys a
new instance of the migrated service to the destination service
provider (6.2), and initiates state transfer from the service’s
old to its new instance (6.3). Finally, the controller removes
the old (inactive) instance from the origin service provider (7).

IV. RELATED WORK

Several works directly address or touch on the migration of
components in component-based systems or services in SOA.

Lange et al. [5] described an implementation of mobile
agents in Java by the Aglets framework. The framework allows
reusing system components, i.e., aglets, in different contexts,
however, without any utilisation in making migration decisions.

Hao et al. [6] developed a Web service migration envi-
ronment and used a genetic algorithm to find the optimal or
near-optimal migration decisions. The algorithm calculates the
cost of a total round trip including dependency calls for each
service request and it is used to decide migration according
to this cost. However, the authors did not take into account
user-defined conditions affecting the migration decision, e.g.,
specific requirements on a migrated service or a destination
provider.

Zheng and Wu [7] presented an infrastructure for runtime
migration of services in a cloud which consists of five com-
ponents with different roles and of specific criteria to control
the migration decision. One of the components collects CPU
load data from all known hosts. Then, when the CPU load
of a particular host reaches a predefined threshold, a flag is

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

set to indicate that service migration is needed on this host.
The approach does not check compatibility of services and
providers during migration and does not address possibility of
running several services on a single provider at the same time.

Schmidt et al. [8] implemented a prototype of an adaptive
Web service migration with two types of migration possibilities,
namely context-based migration and functionality-based mi-
gration. In the context-based migration, services are migrated
to the providers which meet the services’ requirements, while
in the functionality-based migration, the services are migrated
according to their roles in a workflow (i.e., to optimise their
communication in the workflow). Both of these migration
possibilities can be implemented also in our approach by an
appropriate migration decision strategy.

Messig et al. [9] proposed to provide service migration
facility in Service Oriented Grid environment which enables
taking migration decision based on matching providers’ and
services’ needs and requirements. In this approach, services are
hosted by service providers including the resources needed for
execution of the services’ operations. The authors made several
experiments of service migration between two geographically
sparse grids where the first grid had high-performance devices
and faster network than the second one. While these experiments
demonstrated the process of service migration, they are not
suitable for the demonstration of migration decisions (e.g.,
selection of a migration destination) which should be discussed
in more detail.

V. DISCUSSION

Contrary to the previously mentioned approaches, the ap-
proach proposed in this paper provides a general framework
without preference of a particular algorithm or technology for
the service migration. The migration decision algorithm and the
service migration technology are abstracted by the proposed
interfaces (see Section III) and can be implemented and fully
customised during utilisation of the framework. The abstraction
makes our approach and the corresponding framework more
flexible and applicable to different use cases (e.g., in the case of
Web services acting as mobile agents), however, it is limited by
the proposed architecture and interfaces between the abstracted
components and the rest of the framework (e.g., the agent-
based Web services may require local migration decisions
based on their individual beliefs, desires and intentions, not the
centralised approach represented by a single migration decision
strategy). Despite the mentioned limitation, our approach is
convenient in the cases where the service migration is utilised to
keep functionality and quality of services of a service-oriented
system and to cope with its inherent environmental dynamics.

Service migration can keep survivability of a system in case
of its defect or an attack which damage the system’s components
or their resources. In this case, endangered services previously
hosted by the damaged components can be migrated and started
in new and safe locations. Our framework supports this scenario
by the migration conditions and the migration decision concepts
which allow to detect the damaged components as origins of
the migration and the safe locations as possible migration
destinations. Focusing on the migration process itself and
ignoring the preceding migration decision phase, which is
quite common for the approaches mentioned in the previous

61

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services

section, is not sufficient for the utilisation of service migration
in achieving critical system survivability.

Finally, we should discuss a cost of service migration which
has not been mentioned before, however, it is important factor
of migration decisions as well as of implementations of the
migration process. The “migration cost” can be defined as
a quantitative metric of difficulty of the service migration.
Services in SOA should be designed with respect to SOA
principles, and therefore, they should be reusable and stateless
[10] which make the service migration easier. Unfortunately, in
practice, it is often necessary to break some of these principles,
e.g., to use stateful services. In the case of breaking of the SOA
principles, migration of the resulting services is more difficult,
e.g., it may necessary to migrate resources or state information
along with a migrated stateful service. To reflect this issue,
the migration conditions and the migration decision proposed
in our approach can consider also the migration cost and, for
example, migration of stateless services can be preferred to
migration of stateful services.

VI. FUTURE WORK

The framework proposed in this paper is still a work in
progress and needs further elaboration. The future work will
focus mainly on implementation of a fully functional prototype
of the framework and on its evaluation with particular Web
service technologies and migration strategies, covering the
scenarios and open issues described in the previous section.
Specifically, the future implementation can be divided into
two stages following the migration-decision and migration
processes.

The migration-decision process which precedes the mi-
gration will utilise ontologies and ontology reasoning for de-
scription of classes, properties, and relationships, of services,
services providers, and devices potentially acting as the service
providers. The ontology reasoning will be utilised to evaluate
migration conditions, i.e., to nominate services and service
providers demanding the service migration, and to select the
best destination for migrated services as it is described in
Section II-A. We already finished the first version of the on-
tology and we are currently working on automation of the
migration-decision process by ontology reasoning tools.

The implementation of the migration process which per-
forms the actual Web service migration will consist of several
steps as it is described in Section III-A. At first, a deployment
package and an internal state representation of a migrated
service in its original location are obtained. Then, the service is
deployed from the package to its new location and the resulting
new instance of the service is set to the previously obtained
internal state. At this stage, all state-modification operations
processed by the service in original location are mirrored to the
service in the new location, which keeps internal states of both
services synchronous. Finally, the service instance in the new
location is activated and the service instance in the original
location is deactivated and removed. After that, all incoming
messages will be processed by the service in new location,
which can be ensured by updating of service registries (i.e.,
removing the old and adding the new location of the service into
a registry) and by forwarding messages going to the original
location to the service in the new location (e.g., by a forwarding

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-280-6

LT}

proxy or by HTTP response code 301 “Moved Permanently
for HTTP-based Web services).

For the service deployment package, native deployment
package formats and SOA server management interfaces will
be used, e.g., Web Application Resource (WAR) files in the
case of Web services implemented in Java EE. The service
internal state information will be represented in XML by XML
serialisation, e.g., by means of Java API for XML Binding
(JAXB) in the case of Web services implemented in Java.

VII. CONCLUSION

In this paper, we introduced the approach to migration of
Web services. We described the process of the service migration
including migration decision making and transfer of migrated
services to their destination service providers.

Contrary to the previously existing approaches, the ap-
proach proposed in this paper provides a general framework
without preference of a particular algorithm or technology
for the service migration. By introducing fully customisable
migration strategies, which evaluate migration conditions and
take migration decisions at runtime, our approach can be used
to utilise the service migration in different scenarios, e.g., to
achieve critical system survivability by the service migration
or to assess a cost of the eventual service migration.

ACKNOWLEDGMENT

This work was supported by the research programme MSM
0021630528 “Security-Oriented Research in Information Tech-
nology” and by the BUT FIT grant FIT-S-11-2.

REFERENCES

[1] F Kon, F. Costa, G. Blair, and R. H. Campbell, “The case for reflective
middleware,” Commun. ACM, vol. 45, no. 6, Jun. 2002.

[2] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards recovering the broken SOA triangle: a software engineering
perspective,” in Proceedings of the 2nd International Workshop on
Service Oriented Software Engineering. New York, NY, USA: ACM,
2007, pp. 22-28.

[3] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems. New York, NY, USA: Springer-Verlag New York, Inc., 1992.

[4] Y. Zuo, “Towards a logical framework for migration-based survivability,”
in Proceedings of the 7th Annual Symposium on Information Assurance
/ Secure Knowledge Management, Jun. 2012, pp. 29-33.

[5] D. B. Lange and M. Oshima, Programming and deploying Java mobile
agents with Aglets. Addison-Wesley, Aug. 1998.

[6] W. Hao, T. Gao, I.-L. Yen, Y. Chen, and R. Paul, “An infrastructure
for web services migration for real-time applications,” in Second IEEE
International Symposium on Service-Oriented System Engineering. Los
Alamitos, CA, USA: IEEE Computer Society, Oct. 2006, pp. 41-48.

[71 L. Zheng and S. Wu, “An infrastructure for web services migration
in clouds,” in International Conference on Computer Application and
System Modeling. Los Alamitos, CA, USA: IEEE Computer Society,
Oct. 2010, pp. 554-556.

[8] H. Schmidt, R. Kapitza, F. J. Hauck, and H. P. Reiser, “Adaptive web
service migration,” in Proceedings of the 8th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 182—-195.

[9] M. Messig and A. Goscinski, “Service migration in autonomic service
oriented grids,” in Proceedings of the sixth Australasian workshop
on Grid computing and e-research, vol. 82. Darlinghurst, Australia:
Australian Computer Society, 2008, pp. 45-54.

[10] T. Exl, Service-Oriented Architecture: Concepts, Technology, and Design.
Upper Saddle River, NJ, USA: Prentice Hall PTR, Aug. 2005.

62

