
 

 

The Anatomy Study of Load Balancing in Cloud Computing Environment 

 

Shu-Ching Wang, Ching-Wei Chen  

Department of Information Management 

Chaoyang University of Technology 

Taiwan, R.O.C. 

{scwang; s10114901}@cyut.edu.tw 

Kuo-Qin Yan, Shun-Sheng Wang 

Department of Business Administration 

Chaoyang University of Technology 

Taiwan, R.O.C. 

{kqyan; sswang}@cyut.edu.tw 

 

 
Abstract—In recent years, network bandwidth and quality 

have improved dramatically, in fact, much faster than the 

enhancement of computer performance. Cloud computing is an 

Internet-based resource sharing system in which virtualized 

resources are provided as a service to users over the Internet. 

Cloud computing refers to a class of systems and applications 

that employ distributed resources for use in various 

applications; these computing resources (service nodes) are 

utilized over a network to facilitate the execution of 

complicated tasks. However, Cloud computing resources are 

heterogeneous and dynamic, connecting a broad range of 

resources. Thus, when selecting nodes for the execution of a 

task, the dynamic nature of Cloud computing nodes must be 

considered. To most effectively utilize the available resources, 

they have to be properly selected according to the 

requirements of each task. This study proposes a hybrid load 

balancing policy to maintain the efficient performance and 

stability of a Cloud computing environment. 

Keywords-Distributed System; Cloud Computing; Scheduling; 

Load Balancing; Makespan 

I. INTRODUCTION 

The Internet is a constantly and rapidly developing global 
network system, and in order to keep pace with its 
development, network bandwidth must also constantly 
develop. Cloud computing is one of such developments, 
allowing for more applications for Internet users [1,6,7]. 
Cloud computing environments consist of many commodity 
nodes that can cooperate to perform specific services. 

Users are able to access operational capabilities in Cloud 
computing environments much faster than they could with 
Internet applications [3]. However, the infrastructure of the 
Internet is continuously growing and evolving, 
progressively allowing the provision of ever more Internet 
application services. In a distributed computing system, 
components allocated to different places or in separate units 
are connected so that they may collectively be used to 
greater advantage [4]. In addition, Cloud computing has 
greatly encouraged distributed system design and 
applications to support user-oriented service applications [7]. 
Furthermore, many Cloud computing applications, such as 
YouTube, offer greater user convenience [7]. 

As technology advances, Cloud computing provides 
better large-scale resource sharing in a broad-field Internet 
access environment [1,14]. The limitation of space on 
conventional distributed systems can thus be eliminated in 

order to achieve cross-platform compatibility, and to fully 
exploit the significant resources of all available computers 
[1,14]. 

Cloud computing over the Internet provides many 
applications for users, like Facebook, YouTube, etc. 
Therefore, determining how best to utilize the advantages of 
Cloud computing and to ensure that each task is assigned 
the required resources in the shortest possible time is an 
important task.  

Resources are distributed in a Cloud computing 
environment, and the stability and performance of each 
resource varies. In other words, Cloud computing 
environments are dynamic and composed of heterogeneous 
resources. Thus, resource selection and task distribution are 
of particular importance. This study proposes a hybrid load 
balancing policy that selects an effective node set in the 
static load balancing stage in order to lower the odds of 
ineffective nodes being selected, and makes use of the 
dynamic load balancing stage to ensure that tasks and 
resources are efficiently balanced. When a node status is 
changed, a new substitute can be located in the shortest time 
to maintain execution performance. 

The remainder of this paper is organized as follows. 
Section II focuses on related works. The proposed hybrid 
load balancing policy is described in Section III. Section IV 
discusses the design of the simulation experiment. Section V 
provides the experiment results. Finally, conclusions are 
presented in Section VI. 

II. RELATED WORKS 

Cloud computing is a form of distributed computing in 
which massively scalable IT-related capabilities are 
provided to multiple external customers “as a service” using 
Internet technologies [14]. Amazon [10] provides many 
applications through Amazon Web Services (AWS) as a 
Cloud computing environment, allowing users to rent 
required infrastructure or application services [11]. With 
AWS, users can request computing power, storage and other 
services, and then access suitable IT infrastructure services 
on demand [11].  

Cloud providers have to achieve a large, general-purpose 
computing infrastructure and virtualization of that 
infrastructure for different customers and services in order 
to provide multiple application services. Furthermore, a 
software package developed by ZEUS allows Cloud 
providers to easily and cost-effectively offer every customer 
a dedicated application delivery solution [15]. The network 

230Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 

 

framework provided by ZEUS can also be used to develop 
new Cloud computing methods [13-15]. Based on the ZEUS 
network framework and the properties of Cloud computing 
structures, this study uses a three-level hierarchical topology. 

However, since a multi-level hierarchical network 
topology can increase the resource cost of data storage [2], 
Wang et al. proposed a three-level hierarchical framework 
[8]. In this framework, service nodes in the third level of the 
framework are used to execute subtasks, service managers 
in the second level are used to divide the task into logical 
independent subtasks and a request manager in the first level 
is used to assign tasks to a suitable service manager. 

The system performance of a Cloud computing 
environment can be managed and enhanced based on 
comprehensive status information of each node in the 
system. There are several methods of collecting the relevant 
information from nodes, including broadcasting, polling and 
agents. 

Agents have been used extensively in recent years [9]. 
They have inherent navigational autonomy, and can ask to 
be sent to other nodes. In other words, an agent does not 
have to be installed on each visited node, and can collect the 
relevant information from each node participating in a 
Cloud computing environment, such as CPU utilization, 
remaining CPU capability, remaining memory, transmission 
rate, etc. Therefore, when an agent is dispatched, it does not 
require any control or connection, and travel flow in 
maintaining system can be reduced [13]. In this study, the 
agent is used to gather relevant information, and to reduce 
wasted resources. 

This study also includes a system load balancing policy, 
and a scheduling algorithm for heterogeneous resources [5, 
13]. Generally, load-balancing policies for distributed 
systems can be categorized into static and dynamic policies 
[5]. Static load balancing uses simple system data, and 
based on these data, tasks are distributed through 
mathematic formulas or other adjustment methods [5]. 
Dynamic load balancing determines how best to assign tasks 
to each node in the distributed system. When the system is 
overloaded, the task causing the overloading will be moved 
to other nodes and processed for dynamic balance. However, 
this migration of tasks induces extra system overhead [5].  

Therefore, task scheduling will affect the load balancing 
performance of a system. The following are two typical 
task-scheduling methods: 

(1)Minimum Completion Time (MCT) assigns each task, 
together with the minimum expected completion time 
of each task, to nodes in arbitrary order [5]. This 
results in some tasks being assigned to nodes that do 
not have the required minimum execution time for 
that task [3]. 

(2) Min-min establishes the minimum completion time 
for every unscheduled task, and then assigns the tasks 
to nodes based on the minimum completion offered 
by each node. The minimum completion time for all 
tasks is considered, and Min-min can schedule tasks 
in such a way as to achieve the lowest overall make-
span [3]. 

Many load balancing polices and scheduling algorithms 
are used to maintain system performance. However, the 
number of available nodes changes constantly. System 
performance maintenance, therefore, becomes a complex 
and difficult process in this dynamic environment. This 
paper, therefore, proposes a hybrid load balancing policy in 
order to achieve efficient load balancing. 

III. THE HYBRID LOAD BALANCING POLICY 

In this section, the proposed hybrid load balancing policy is 

explained. The structure of the proposed system consists 

mainly of a dispatcher and nodes. The relationship of roles 

in this hybrid load balancing policy is described in Figure 1. 

 

 

 

 

 

 

 
Symbol Construction 

 Node sends message to dispatcher: 

 

(a) When any node can provide its resources, a 

“join” message and related hardware information 

will be transmitted to the dispatcher. 

(b) When a node can no longer provide resources, 

it transmits an “exit” message to the dispatcher. 

The progressive stages of static load balancing are 

as follows: 

(1) When a request to execute a task is proposed, 

the dispatcher dispatches an agent to collect the 

relevant information of each node. 

(2) The agent collects the relevant information of 

the node, such as remaining CPU capability, 

remaining memory, etc. 

(3) The node send its information to the agent. 

(4) The agent provides all node-related 

information to the dispatcher. 

(5) The dispatcher builds a table of effective 

nodes. 

(6) The dispatcher selects an effective node set 

from the table of effective nodes by node 

selection. 

 

 

 

 

 

 

 

 

 

(7) The dispatcher assigns subtasks to the selected 

nodes. 

Figure 1. The interaction of roles 

The objectives of the dispatcher include maintaining the 

load balance, monitoring the status of each node, selecting 

the nodes for task execution, and assigning tasks for each 

node. In order to ensure the efficiency of the dispatcher in 

performing these tasks, an agent will be designed as follows:  
(1) The mechanism of an agent mainly collects the 

relevant information of each node. The information 
will be provided to the dispatcher to maintain the 
load balancing of system. 

(2) Many factors are considered when a node is selected. 
Thus, a Value Function (VF) [9] is given to 

231Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 

 

determine the value of each candidate node, and to 
provide a reference for selecting effective nodes.  

(3) All candidate nodes will be organized into a table of 
effective nodes. Whenever each node joins or exits 
the system, the node table will be updated. When any 
node in the execution aggregate accomplishes its 
assigned task, it will be transferred to the waiting 
aggregate, ready for another assignment. 

 
Nodes assist in the execution of tasks in this system. 

When any node is available or in a busy state, it must 
transmit its status message to the dispatcher. 

In order to maintain system load balancing, this study 

proposes a hybrid load balancing policy. The proposed 

policy is carried out in two phases. In the first phase, a static 

load balancing policy selects an appropriate node for each 

task. In the second phase, a dynamic load balancing policy, a 

new node is found to take over the task as soon as the task 

cannot be completed by the assigned node. 
When a request for task execution is made, the task must 

be divided into several subtasks. The lowest requirements of 
each subtask determine the threshold on the table of 
candidate nodes. Nodes passing the threshold are considered 
as candidate nodes. All candidate nodes can be organized 
and built into a table of nodes optimized for the proposed 
task, and the number of required nodes can be determined. 
If the total number of nodes in the table is smaller than the 
required number, a portion of subtasks will first be assigned 
to effective nodes, and the remaining subtasks will be 
processed when new nodes are added to the table of 
candidate nodes. 

In a dynamic distributed system, the effectiveness of 
nodes may vary with time. The variation of node status can 
be identified in two conditions. First, when the dispatcher 
receives the message that a certain node can no longer 
provide resources, and second, when the execution of a 
certain node exceeds the expected time. When either of the 
above conditions occurs, the dispatcher will launch the 
agent mechanism for confirmation. If the node remains 
effective, the distribution of tasks will not be readjusted, but 
the node's execution of the task will re-estimated. If the 
node is confirmed to be ineffective, the highest value 
available node will be selected to replace the ineffective 
node.  

IV. DESIGN SIMULATION EXPERIMENT 

In a heterogeneous Cloud computing environment, the 
performance of nodes varies. In addition, subtasks actually 
vary in size. Thus, task completion time may vary with the 
execution order. The properties of both MCT and Min-min 
are suitable for this experiment, and will be employed and 
compared with our proposed method. The progression of the 
experiment is as follows: 

(1) The task is divided into 10 independent subtasks. 
(2) 10 nodes are selected and assigned tasks by the 

three different task-scheduling methods. 

(3) If any of nodes cannot complete the assigned 
subtask, new nodes are selected to take over, and 
the task is then redistributed and re-executed. 

 

According to the above assumptions, this experiment is 

carried out in two stages. In the first stage, the network 

simulator, Network Simulation Version 2 (NS-2) [12], is 

used to dynamically create a Cloud computing environment. 

In the second, Cloud computing environments with 100, 200, 

300, 400, 500, 600, 700, 800, 900 and 1000 nodes are 

dynamically created with NS-2. Randomly sized data 

packages are generated and transmitted at a constant bit rate. 

The transmission rates between the dispatcher and each 

node are tested. To simulate the heterogeneity of nodes in 

Cloud computing environments, the CPU capability, 

memory size, CPU usage and memory usage, and past task 

completion rate of each node are randomly generated. In 

addition, the effective time of each node is generated at 

random, and then multiplied by the past task completion rate 

in order to reflect the relation between the past task 

completion rate and the effective time of the node. 
According to the Computing Resources (CR) and 

Amount of Data Transmission (ADT) required to execute 
the task [7], four scenarios are given: 

Scenario 1: CR is large, and ADT is small  
Scenario 2: CR is small, and ADT is large  
Scenario 3: CR and ADT are large 
Scenario 4: CR and ADT are small 
 
In the VF, decision variables can be given different 

settings, according to the factor focused in the actual 
application. In the experiment, the available CPU capacity, 
size of available memory, transmission rate and the past 
completion rate were the four factors regarded as the 
threshold for the VF to select nodes and the decision 
variables for the nodes to estimate their values. 

After the decision variables of VF are determined, to 
make every decision variable comparable, each variable 
must be quantified. In this experiment, the available CPU 
capacity and the size of available memory are quantified by 
the percentage of remaining CPU capacity and memory of 
each node. Because the transmission rate between the 
dispatcher and each node is limited to their network 
bandwidth, the network bandwidth of the dispatcher is taken 
as the denominator to quantify the transmission rate of each 
node. 

Based on the abovementioned four scenarios, task 
completion time and number of task redistributions are 
factors for evaluation. To verify that the nodes selected by 
VF perform better than those selected by other methods, 
VFs of different sets of weight are evaluated, and each set is 
simulated 100 times to obtain objective data. Of the VFs of 
different weights, the worst weight set that produces the 
longest completion time (VF-MAX), the average 
completion time of all weights set (VF-AVG) and the best 
weight set that produces the minimal completion time (VF-
MIN) will be compared to other task-scheduling methods 

232Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 

 

using the task completion time and number of task 
redistributions. 

V. EXPERIMENT RESULTS AND ANALYSES 

The experiment results of Scenario 1 (Figures 2 and 3) 
indicate that the nodes with the largest CPU resources are 
selected first, disregarding the execution order for subtasks 
in MCT. The Min-min selects the combination with the 
node and subtask that consume the shortest time, so the 
required task completion time is shorter than in MCT. 
However, Min-min does not consider the memory provided 
by the node; subtasks may be re-distributed to nodes with 
insufficient memory. In addition, the VF considers not only 
CPU capacity, but also memory and transmission rate and 
past task completion rate of each node. Even if the task 
completion time with the worst weight set is close to Min-
min, VF still consumes a shorter completion time than Min-
min does, and the number of task redistributions are fewer 
than in Min-min. Thus, VF is more effective in maintaining 
the load balance. 

When the amount of data transmitted is very large, a 
significant amount of time may be spent on data 
transmission. This will result in a node being unable to 
complete the assigned subtask in the effective time, and the 
subtask will have to be redistributed and re-executed 
(Scenario 2). As the VF considers these factors, under the 
various weight sets, fewer task redistributions (Figure 4) 
and a lower task completion time (Figure 5) are required.  

From Figures 6 and 7, it is known that MCT does not 
consider the execution order. The largest subtask may not be 
able to find the node with the largest resources, and 
appropriate nodes cannot be searched for, or assigned to 
subtasks (Scenario 3). Min-min selects nodes by the shortest 
completion time instead of the order of subtasks. Therefore, 
it requires a shorter task completion time than does MCT. 
As the VF considers multiple factors, nodes that can provide 
stable resources will be selected first. Even in the worst 
weight set, task completion time is greater than in Min-min, 
but with fewer task re-distributions. Therefore, the nodes 
selected by the VF may not be able to produce the best 
results in all weight sets; however, they are still effective in 
maintaining the load balance of a system. 

Figures 8 and 9 show that MCT and Min-min only 
consider CPU capability, and not the memory and 
transmission rate (Scenario 4). Thus, during task execution, 
subtasks may be redistributed and a longer task completion 
time may be incurred. The VF considers multiple factors, so 
a shorter completion time is required than in almost all the 
other methods. In addition, task redistribution is almost 
unnecessary. In other words, the task can be completed in 
the effective time in almost all cases.  

In a Cloud computing environment, the nodes are 

composed of resources. Since each node has a different 

hardware structure, nodes cannot be selected based on a 

single condition (such as available CPU capacity). 

Therefore, the properties of the task to be executed must be 

considered. It is known from the above results that when 

selecting nodes, if the properties of a task and the resources 

that nodes can provide are not considered, the task to be 

executed will be repeatedly reassigned and re-executed, thus 

prolonging the task completion time and lowering the 

execution performance of system. The VF, however, takes 

the node resources, transmission rate and past completion 

rate into consideration. By estimating the value of each node 

using these factors, the nodes that can provide relatively 

better resources will be selected. The results of the 

experiments prove that the hybrid load balancing policy, 

whether in terms of the best weight set, the worst weight set, 

or the average time, is far more effective than the other 

methods in reducing the number of task redistributions and 

completion time, as well as enhancing the execution 

performance of the system. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2. Number of task re-distributions in Scenario 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Task completion time in Scenario 1 

 

 

 

 

 

 

 

 

 

Figure 4. Number of task redistributions in Scenario 2 

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600 700 800 900 1000

Number of nodes

T
im

es
 o

f 
ta

sk
 r

e-
d

is
tr

ib
u

ti
o

n
(t

im
es

)

MCT MinMin VF-MAX VF-AVG VF-MIN

0

5000

10000

15000

20000

25000

30000

100 200 300 400 500 600 700 800 900 1000

Number of nodes

C
o
m

p
le

ti
o

n
 t

im
e(

m
in

i 
se

co
n
d
)

MCT MinMin VF-MAX VF-AVG VF-MIN

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600 700 800 900 1000

Number of nodes

T
im

es
 o

f 
ta

sk
 r

e
-d

is
tr

ib
u

ti
o

n
(t

im
es

)

MCT MinMin VF-MAX VF-AVG VF-MIN

233Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Task completion time in Scenario 2 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Number of task redistributions in Scenario 3 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7. Task completion time in Scenario 3 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Number of task redistributions in Scenario 4 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Task completion time in Scenario 4 

 
 

VI. CONCLUSION AND FUTURE WORK 

Cloud computing environments offer many available 

resources; however, the availability of nodes that provide 

these resources dynamically changes over time. In this paper, 

a hybrid load balancing policy is proposed for Cloud 

computing environments in order to efficiently distribute 

tasks to available nodes with the required resources for the 

completion of those tasks in the shortest possible time. The 

proposed policy is carried out in two phases. In the first 

phase, a static load balancing policy selects an appropriate 

node for each task. In the second phase, a dynamic load 

balancing policy, a new node is found to take over the task as 

soon as the task cannot be completed by the assigned node. 
Since Cloud computing environments are more 

complicated than traditional distributed systems, it follows 
that if this policy can achieve efficient load balancing in 
Cloud computing environments, then it can also solve load 
balancing issues in other distributed systems. 
 

ACKNOWLEDGMENTS 

This work was supported in part by the Taiwan National 
Science Council under Grants NSC101-2221-E-324-032. 

REFERENCES 

[1] Y. Gong, Z. Ying, and M. Lin, “A survey of cloud computing,” 
Lecture Notes in Electrical Engineering, vol. 225, 2013, pp. 79-84. 

[2] C.L. Hu and T.H. Kuo, “A hierarchical overlay with cluster-based 
reputation tree for dynamic peer-to-peer systems,” Journal of 
Network and Computer Applications, vol. 35, Issue 6, November 
2012, pp. 1990-2002. 

[3] S. Nesmachnow, F. Luna, and E. Alba, “An efficient stochastic local 
search for heterogeneous computing scheduling,” Proc. IEEE 26th 
International Parallel and Distributed Processing Symp. Workshops & 
PhD Forum (IPDPSW), 21-25 May 2012, pp. 593-600. 

[4] N. Olifer and V. Olifer, Computer network: principles, technologies 
and protocols for network design. John Wiley & Sons, 2006. 

[5] B. Sahoo, D. Kumar, and S.K. Jena, “Observing the performance of 
greedy algorithms for dynamic load balancing in heterogeneous 
distributed computing system,” Proc. 1st International Conf. on 
Computing, Communication and Sensor Networks- CCSN,(2012), 
vol. 62, 2012, PIET, Rourkela, Odisha, pp. 265-269. 

0

5000

10000

15000

20000

25000

30000

100 200 300 400 500 600 700 800 900 1000

Number of nodes

C
o

m
p

le
ti

o
n

 t
im

e(
m

in
i 

se
co

n
d

)
MCT MinMin VF-MAX VF-AVG VF-MIN

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

Number of nodes

T
im

e
s 

o
f 

ta
sk

 r
e-

d
is

tr
ib

u
ti
o
n
(t

im
es

)

MCT MinMin VF-MAX VF-AVG VF-MIN

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

100 200 300 400 500 600 700 800 900 1000

Number of nodes

C
o

m
p

le
ti

o
n

 t
im

e(
m

in
i 

se
co

n
d

)

MCT MinMin VF-MAX VF-AVG VF-MIN

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

Number of nodes

T
im

es
 o

f 
ta

sk
 r

e-
d

is
tr

ib
u

ti
o

n
(t

im
es

)

MCT MinMin VF-MAX VF-AVG VF-MIN

234Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services



 

 

[6] A. Vouk, “Cloud computing- issues, research and implementations,” 
Information Technology Interfaces, June 2008, pp. 31-40. 

[7] L.H. Wang, J. Tao, and M. Kunze, “Scientific cloud computing: early 
definition and experience,” Proc. 10th IEEE International Conf. on 
High Performance Computing and Communications, 2008, pp. 825-
830. 

[8] S.C. Wang, W.P. Liao, K.Q. Yan, and S.S. Wang, “Towards a load 
balancing in a three-level cloud computing network,” Proc. 2010 3rd 
IEEE International Conference on Computer Science and Information 
Technology (IEEE ICCSIT 2010), Chengdu, China, 9-11 July 2010, 
pp. 108-113. 

[9] K.Q. Yan, S.C. Wang, C.P. Chang, and J.S. Lin, “A hybrid load 
balancing policy underlying grid computing environment,” Computer 
Standards & Interfaces, 2006. 

[10] Amazon web services, http://aws.amazon.com/, April 2, 2013. 

[11] Application delivery networking, application acceleration, Internet 
traffic management system: Zeus.com, http://www.zeus.com/, April 2, 
2013. 

[12] The network simulator - NS-2, http://www.isi.edu/ nsnam/ns/, April 2, 
2013. 

[13] Load balancing, load balancer, http://www.zeus.com/products/ 
zxtmlb/index.html, April 2, 2013. 

[14] What is cloud computing?, http://www.zeus.com/Cloud_ 
computing/Cloud.html, April 2, 2013. 

[15] ZXTM for cloud hosting providers, http://www.zeus.com/Cloud_ 
computing/ for_ Cloud providers.html, April 2, 2013. 

 

235Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-280-6

ICIW 2013 : The Eighth International Conference on Internet and Web Applications and Services


