
A system to help students analyze errors in their programs by supporting

programming comprehension in assembly programming exercises

Yuichiro Tateiwa

Graduate School of Engineering

Nagoya Institute of Technology

Nagoya, Japan

tateiwa@nitech.ac.jp

Daisuke Yamamoto

daisuke@nitech.ac.jp

Naohisa Takahashi

naohisa@nitech.ac.jp

Abstract—There are several students who give up exercises

because they cannot specify their program errors to fix. We

considered the reason were the following. One is that the

students do not have enough comprehension of their programs

– questions ask their understanding of control structure,

computer resource control, and behavior. Another is that

procedures to specify program errors are complex because an

assembly program has a lot of instructions. Furthermore,

oversight, which is caused by misunderstanding questions and

checking a lot of items, is also the causes. The purpose of this

study is to develop a system which generates expression for

specifying program errors by helping students understand

their program comprehension. The features on realizing the

system are making use of chunks, dynamic backward slices,

and correct answer samples. We conclude that the expression

is helpful to specify program errors according to an evaluation

experience.

Keywords-programming; assembly language; program slice;

chunk;

I. INTRODUCTION

The “Systems Programming” course offered by the
Department of Computer Science, Nagoya Institute of
Technology, aims to help students understand hardware
activities that occur in response to application software
requests for computer resource control (e.g., controlling
registers and main memory) and control structures
(sequencing, selection, iteration, and function/procedure).
Therefore, the class includes an assembly programming
exercise in which students translate high-level-language
(e.g., C) programs, whose activities are regarded as
application software requests, into low-level-language
programs (e.g., assembly language CASLL-II [1], whose
activities are regarded as hardware activities.

In class, students solve exercises on structured
programming using the above-mentioned control structure.
Questions in the exercise include the requirements of
program behavior, computer resource control, and control
structure in the form of text and C programs. Students’
answers (hereafter, “answer program”) are considered
correct if they do not contain all of the following error types.

・ Behavior error: answer program does not behave

according to the requirements of questions.

・Computer resource control error: computer resources

are not used according to the requirements of questions.

・ Control structure error: control structure is not

designed according to the requirements of questions.
We developed a programming exercise system that can

automatically detect these error types [2]. This enables
students to immediately confirm whether their answers are
correct. First, the system obtains two detailed “trace data”
(i.e., a sequence of pairs of instructions that are executed
stepwise and the computer resources that are updated by the
execution) by the stepwise execution of the answer program
and the correct answer program (hereafter, simply “correct
program”) with test cases. Each pair of trace data for a given
step in the sequence is called “step data”. Next, the system
extracts characteristic points (e.g., order of label appearance,
variable values, relation between locations of instructions)
from both trace data. If differences are detected between
corresponding characteristic points, the system judges that
the answer includes errors. After the evaluation is completed,
the results are displayed to the student; if errors are present,
the test case is also displayed. A student whose answers are
incorrect is expected to try to specify the causes of errors by
using her/his program, question, and test case. S/he should
analyze control structures, trace the dependency of computer
resource control, simulate the test case behavior, and so on.
S/he should consider whether these satisfy the requirements
of the question. If not, s/he should specify error instructions
in her/his program.

However, several students are unable to complete these
tasks. We believe that some students lack an understanding
of the control structure, computer resource control, and
program behavior (we collectively term this as “program
comprehension”). Others find the procedures for specifying
causes of errors too complex because an assembly program
contains many instructions. Finally, some problems are due
to oversight stemming from, say, misunderstanding of
program requirements and the need to check many items.

In this study, we develop a function that generates
expressions that help students specify causes for their errors
by supporting their program comprehension. We call these

244Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

expressions “assistance expressions.” The function detects
errors in answer programs and classifies them as 1) control
structure errors or 2) behavior errors and computer resource
control errors, and it generates assistance expressions for
each error.

In order to implement this function, we use “chunks,”
“dynamic backward slices,” and correct answers. A “chunk”
is a meaningful block (sequential elements). It is easier to
understand and memorize programs when they are expressed
as a sequence of chunks. A “dynamic backward slice,” a type
of program slice, is a sequence of instructions that influences
variable v, which is defined at time r when an instruction is
executed, when executing a program with input arguments x.
Hereafter, we call time r the “execution point” and the triple
of x, r, and v, the “slicing criterion (x, r, v).” The dynamic
backward slice at an execution point where variables differ
between the answer and the correct program includes the
causes of errors (inclusion of error instructions and lack of
necessary instructions). Therefore, its use can help students
specify the causes of errors.

The function generates the following three types of
assistance expressions.

(1) Chunk expression of programs: It is important to read
and understand programs in order to specify the causes of
errors. However, as mentioned above, assembly programs
are difficult to read and understand. We solve this problem
by explicitly expressing control structures in a program and
meaningful instruction sequences in control structures by
using chunks. A chunk containing instructions is called a
“static chunk.” Expressing programs using static chunks
helps in understanding control constructions and specifying
causes of errors, in addition to reading programs. For
example, although instructions of “readout arguments” are
connoted by the control structure “sequence,” it is possible to
show a composition of the control structure “sequence” to
students by defining a static chunk “readout arguments.” In
addition, it is possible to show the control structures that
contain errors to students by defining a static chunk of error
implementations. This function generates an expression that
is a static chunk sequence of both an answer and a correct
program, and the expression includes instructions that
constitute the chunks of the answer program. The aim of the
expression is to help students notice the differences in
control structures and specify the causative instructions.

(2) Chunk expression of trace data: Trace data is useful
for specifying the causes of behavior error and computer
resource control errors. However, it is difficult to read and
understand because it is large in amount, and it is
troublesome to match to a program because of the use of
different expressions. We solve this problem by expressing
trace data using chunks that are related to static chunks.
Hereafter, a chunk containing trace data is called a “dynamic
chunk.” This function generates an expression that is a
dynamic chunk sequence of both an answer and a correct
program to help students notice the difference between the
two.

(3) Projection expression of error steps: Some
instructions, called as an “error instruction sequence,”
contain important clues for specifying the causes of program

behavior error and computer resource control errors, and
their execution results influence the difference between the
trace data of an answer and a correct program. A student
specifies the causes of errors in the answer program by
confirming the relationships between the error instruction
sequence and the remaining instructions and by comparing
the execution results of the answer and the correct program.
However, (1) and (2) are not suitable for such procedures.
The former does not show error instruction sequences and
their execution results to a student, and therefore, it is
difficult to compare an execution result between the answer
and the correct program. The latter does not show all
instructions of the answer program, and therefore, it is
difficult to confirm the relationships between instructions in
the answer program. Accordingly, we try to solve the
problems by computing an error instruction sequence and
expressing it and its execution result for the answer program.
The function generates an expression that is based on (1)
with an error instruction sequence of an answer program, the
execution results of it and a correct program.

II. RELATED WORKS

A “program slice” is a set of instructions that influences a
certain instruction in a program [3][4][5]. Program slices are
used for program debugging and program comprehension. A
dynamic backward slice in this study is characterized by its
slicing criterion which is a point that causes difference of
program behavior and computer resource control between an
answer and a correct program. Namely, its feature is to use
not only an answer program but also a correct program.
Using this criterion, we can compute a slice that includes the
causes of errors.

Static chunks are calculated by pattern matching between
a program and a pattern that defines a rule of a static chunk.
As a related study that uses pattern matching in assembly
programs, W.Kozaczynski et al. proposed the replacement of
frequently used instruction sequences with simple
expressions and comments for easy readability and
understandability [6]. We, however, propose a method to
generate information that simplifies the reading and
understanding of programs and trace data and the
correspondence between programs and trace data using static
chunks.

III. FUNCTION FOR GENERATING ASSISTANCE

EXPRESSIONS

A. Placement in our programming exercise system

Fig. 1 shows the structure of our system. The exercise
system consists of an exercise server on a machine, and web
browsers for each student and teacher on their PCs. And the
machine and the PCs are connected to the Internet. A student
receives a question from the exercise server (“b”), composes
an answer to the question, and submits it to the server (“c”).
The server detects errors in the answer, and generates
assistance expressions that depends on the error type by
using the answer program, a correct program, test cases,
“static chunk conditions,” and “evaluation item sets” (“d”).
A “static chunk condition” is a condition for extracting

245Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

instructions from a program. An “evaluation item set” is a set
of input/output variables in static chunks that are compared
between the answer and the correct program. The student
confirms the true/false judgment of her/his answer; if the
answer is false, s/he corrects it on a Screen using assistance
expressions. A teacher registers questions, correct programs,
test cases, static chunk conditions, and evaluation item sets
with the exercise server before the student starts the
exercises (“a”).

B. Function structure

Fig. 2 shows the structure of the function for generating
assistance expressions in “d” of Fig. 1. “d2” extracts
instructions of answer and correct programs and converts
their formats to that shown in Fig. 3. The function then
extracts bodies of “routines” from both converted programs
(Section III.C.1). Henceforth, a “routine” is a main routine or
a subroutine that is a sequence of instructions from “start” to
“end.” In addition, the body of a routine (called a routine
body) is a sequence that consists of machine instructions and
macro instructions. “d1” generates each step data by
stepwise execution of an answer and a correct program with
test cases (Section III.C.2). “d4” extracts static chunks of an
answer and a correct program by comparing instructions of a
routine body with static chunk conditions (Section III.C.3).
“d3” extracts dynamic chunks by comparing stepwise
executed instructions with instructions that consist of static
chunks (Section III.C.4). “d5” compares input/output
variables between an answer and a correct program in the
order of executed instructions. In the comparison, the
variables are selected in accordance with an evaluation item
set, and their values are computed using step data. When
“d5” detects a difference in the comparison, it computes a
dynamic backward slice of the variable that causes the
difference, and it regards the slice as an error instruction

sequence (Section III.C.5). “d6” classifies an answer
program as being correct or as containing a control structure
error or behavior/computer resource control error, and it
generates assistance expressions (Section III.C.6).

Hereafter, this paper describes a new data type using a
structure in the C language. However, “struct” is omitted in
the member and variable declarations. For example, a data
structure X with int type members a and b is described as
“struct X {int a; int b;}.” A variable z of data type X is
described as “X z;.” A member a of z can be referred to by
“z.a.”

C. Implementation methods

1) Convert programs and extract routine bodies
Answer and correct programs conform to the CASL-II

grammar. We have extended this grammar by adding
operation codes SSP and LSP, which save and load a stack
pointer, respectively. These are necessary for the class to
implement a general procedure of a function call, which is
implemented by stack frame operations in most assembly
languages such as GNU assembly language.

The data structure of a program in our algorithms is a
character array. Instructions in a program are converted from
their original formats into the one shown in Fig. 3, and then
stored in the character array (e.g., Fig. 4). Henceforth, “<>”
indicates that the elements therein can be omitted, and “{}”
indicates that elements therein are necessary. We call

<label>{space}{operation code}<{space}{operand1}<,operand2><,operand3>>\n

Figure 3. Format of an instruction in our algorithms

a

Screen for

reading questions

Screen for

submitting answers

Screen for confirming

assistance expressions

Screen for

managing

questions

A

D

a: Register questions

b: Get questions

c: Submit answers

d: Generate assistance

expressions

A

B

C

D

D

B Question
D.B.

Answer
D.B.

b

c

d
E

Student’s PC Exercise server Teacher’s PC

A: questions, correct programs, test cases,

static chunk conditions, evaluation item sets

B: questions

C: 1) correct programs, 2) test cases, 3) static

chunk conditions, 4) evaluation item sets

D: answers programs

E: assistance expressions

Figure 1. System structure

C-1, C-2, C-3, C-4, D, E: refer to Fig. 1

F: step data of answer programs and correct programs

G: converted answer programs and converted correct programs

H: converted answer programs and correct programs, descriptors

for routine bodies of answer programs and correct programs

I: converted answer program

J: descriptors for dynamic chunks of answer programs and

correct programs

K: types and descriptors of static chunks in answer programs,

types and descriptors of static chunks in correct programs

L: descriptors for error instruction sequences

d1: generate step data

d2: convert programs and extract routine bodies

d3: extract dynamic chunks

d4: extract static chunks

d5: extract error instruction sequences

d6: generate assistance expressions

C-1

D

Question
D.B.

Answer
D.B.

d2

E d4

H

K

d3

K

J

d6

d5L

K

I

G

F

C-3

d1

F C-2

G C-4

F
d

Figure 2. Structure of function for generating assistance expressions

246Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

character strings that are located at the label, operation code,
operand1, operand2, and operand3 identifiers. Variables P_P
and A_P store the answer program and correct program,
respectively.

A routine is a main routine or a subroutine that is a
sequence of instructions from start to end. In addition, the
body of a routine (called a routine body) is a sequence that
consists of machine instructions and macro instructions.
Routine bodies are extracted from converted answer and
correct programs. The data structure of a routine body in our
algorithms is of the Block type. Block type is designed for
pointing to a sub array “sub_array” in an array “array,” and it
is defined as “struct Block{int s; int e;}.” Members s and e
are the indexes of elements in “array” that are respectively
the first and last elements of “sub_array.” P_R and A_R,
which are Block-type array variables, respectively store the
routine bodies of the answer program and correct program in
the order found in the programs. For example, a character
string that is from P_P[P_R[0].s] to P_P[P_R[0].e] is the
instruction sequence of the first routine body in P_P (Fig. 5).

2) Generate step data
A step datum is a result that is generated by stepwise

executing a program with a test case as input. It consists of
an executed instruction, names of computer resources that
are updated by executing the instruction, and their values.
The data structure of a computer resource in our algorithms
is defined as “struct CmpRes{char[] n;char[] v;}”; members
n and v are the first addresses of character arrays that stores a
computer resource name and computer resource value,
respectively . The data structure of a step datum is defined as
“struct Step{int i;CmpRes[] cr;}”; member cr is the first
address of a list that stores computer resources that are
updated by stepwise execution on an instruction whose first
character is the i+1st character in a program. Step type arrays
P_S and A_S respectively store step data of the answer and
the correct program in order of stepwise execution. For
example, P_S[k] is a step datum of the k+1th stepwise
execution in answer program P_P. P_P[P_S[k].i] is the first
character that is an executed instruction; the character string
whose first address is pointed to by P_S[k].cr[0].n is a

computer resource name that is the first updated by the
executed instruction; and P_S[k].cr[0].v points to the
character string of its value (Fig. 6).

3) Extract static chunks
As mentioned in Section I, static chunks help in

reading/understanding programs, understanding control
structures, and specifying causes of control structure errors.
The control structure in the class includes the sequence,
selection, repetition, and function/procedure. To extract other
static chunks, it is necessary to define new static chunk
conditions and register them in the system.

A static chunk is an instruction sequence that has a
meaning in toto. The data structure of a static chunk in our
algorithms is defined as “struct SChunk{int t; struct Block
b;}”; member t is a type (Tabel 1), and member b is a
character string that is from the b.s+1th character to the
b.e+1th character, and this character string is an instruction
sequence that constitutes this static chunk. SChunk type
arrays P_SC and A_SC respectively store static chunks of an
answer and a correct program in the order of extraction. For
example, a character string that is from P_P[P_SC[i].b.s] to
P_P[P_SC[i].b.e] is an instruction sequence that consists of
the i+1th static chunk that is extracted from an answer
program. P_SC[0] in Fig. 5 is extracted first; its type is a
sequence according to P_SC[0].type=0, and it consists of a
character string that is from P_P[P_SC[0].b.s] to
P_P[P_SC[0].b.e].

The data structure of a static chunk condition in our
algorithms is a pair of a static chunk type and a condition for
extracting instruction sequences (called the “instruction
sequence condition”). Because the identifier and number of
instructions depend on the questions, it is difficult to define
instruction sequence conditions using only instructions of
CASL-II; it is necessary to define many conditions. Regular
expressions and pattern matching are effective ways to solve
this problem. However, it is necessary to consider the
following points.

Requirement 1: It is necessary to extract instruction
sequences that include arbitrary and same identifiers at
multiple points of the sequence. For example, in an

Figure 4. An example of a variable P_P that contains a program

block
•s
•e

[1]

P_P

¥n

¥n

static_chunk
•type(=0)
•b

P_SC
instructions
of the 1st

static chunk
block
•s
•e

block
•s
•e

[0]

P_R

[0]

[0][i]
[i+1]

[j]

[0]

[k]
instructions
of the 1st

routine body

instructions
of the 2nd

routine body

Figure 5. An example of the arrays P_P, P_R, and P_SC

P_DC[m]

P_P[j]

¥
n

¥
n

instructions of
the m+1th dynamic chunk

step data of
the m+1th dynamic chunk

block
•s
•e

step
•i
•cr

P_S[k]

step
•i
•cr

P_S[l]
CmpRes
•n
•v

G
R

1
4

P_P[h]

cr[0]

cr[1]

n[0]
n[1]

v[0]
v[1]

Figure 6. An example of the arrays P_S and P_DC

247Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

instruction sequence selection, the operand of the operation
code branch and label of the branch destination are an
arbitrary and same identifier.

Requirement 2: It is necessary to extract a character
string that is matched to a particular part in a regular
expression. This is used for specifying a character string,
extraction target, by the character before and after it. For
example, Fig. 7-a) shows that the instruction sequence from
line 1–4 is the chunk selection. The tail of the chunk is
characterized by an instruction immediately in front of the
branch destination (line 5). In such cases, the first 5 lines are
extracted, and then, line 5 is removed.

We adopted Perl, whose regular expressions enable a
character string extracted by a regular expression to be
referred to from the back of the expression itself (for
requirement 1). It is possible to refer to a character string that
is matched to a group by group numbers after completing the
matching (for requirement 2). Therefore, an instruction
sequence condition consists of a regular expression and a
group number.

Fig. 7-b) shows an example of an instruction sequence
condition for the chunk selection. It expresses 1 line
character string by dividing it into multiple lines owing to
space limitations. The first group is a regular expression
from the left parenthesis in line 1 to the right parenthesis in
line 4, and it is designed to extract an instruction sequence of
a chunk selection. The second group is “(\w+)” in line 2, and
it is referred to by "\2" in lines 3 and 5. When it applies this
regular expression to the instruction sequence in Fig. 7-a),
because line 2 in Fig. 7-a) matches the line 2 in Fig. 7-b), a
character string that matches the second group is considered
as “L1,” and “\2” in lines 3 and 5 is specified as “L1.” In
addition, the character string from lines 1–4 in Fig. 7-a)
matches the first group, and it is extracted as the instruction
sequence of a chunk selection.

The data structure of a static chunk condition in our
algorithms is defined as “struct ChunkCond{int t;char[] ptn;
int g;}”; member t is a type of a static chunk (Table 1),
member p is the first address of a character string of an
instruction sequence, and member g is a group number for
designating a character string in the extraction. A
ChunkCond type array CC stores static chunk conditions.

 Fig. 8 shows an algorithm for extracting static chunks.
The program in the class conforms to the rule of structured
programming, and it is not allowed to jump between routines
by operation code jump. Therefore, we developed a simple
algorithm that extracts static chunks from every routine
because there is no chunk through multiple routines. A
function “int N (T[] array1)” returns the number of elements
in arbitrary type T array array1. A function “void merge(T[]

array1, T[] array2)” merges the elements of arbitrary type T
arrays array1 and array2 so that the elements of array2 are
appended to the end of array1. A function “void add(T[]
array1, T elem1)” appends arbitrary type T elem1 to the end
of arbitrary type T array array1. When P_P and P_R, or A_P
and A_R, are respectively stored in P and R and static chunk
conditions are stored in CC, following which static_chunk(P,
R, CC) is executed, an SChunk type variable that contains
static chunks is obtained.

4) Extract dynamic chunks
A dynamic chunk is a sequence of step data that is

generated by single stepwise execution of instructions from
the start to the end of a static chunk. The data structure of a
dynamic chunk in our algorithms is Block type; members s
and e in P_S and A_S indicate that step data from P_S[s] to
P_S[e] or A_S[s] to A_S[e] is included in the extracted
dynamic chunk. Dynamic chunks of an answer and a correct
program are stored in Block-type arrays P_DC and A_DC,
respectively, in order of extraction. For example, a Step-type
array from P_S[P_DC[m].s] to P_S[P_DC[m].e] is a step
data instruction of the m+1th dynamic chunks that are
extracted. Fig. 9 shows an algorithm for extracting dynamic
chunks. When P_SC and P_S, or A_SC and A_S, are
respectively stored in SC and S, following which
dynamic_chunk(SC, S) is executed, a Block-type array that
contains dynamic chunks is obtained.

5) Extract error instruction sequences
An “error instruction sequence” is a sequence of

instructions that affects the difference between the trace data
of an answer and a correct program. We call such
instructions “candidates for error instructions.” Error
instruction sequences and their execution results are
important clues for specifying the causes of program
behavior errors and computer resource control errors. Trace
data of an answer and a correct program are compared based
on evaluation item sets. An evaluation item set is a
designation of computer resources that are compared

TABLE I. STATIC CHUNKS

type chunk name

0 sequence processing

1 start processing of function

2 start processing of function (with errors)

3 end processing of function

4 end processing of function (with errors)

5 readout processing of arguments

6 readout processing of arguments (with errors)

7 repetition processing

8 selection processing

Figure 7. An example of instructions and an instruction sequence condition for selection processing

248Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

between an answer and a correct program in the input or
output.

The data structure of an error instruction sequence in our
algorithms is a Block-type array. An element e of the array
indicates a candidate for error instruction, which is a
character string from the e.s+1th to the e.e+1th character in a
program. An error instruction sequence is stored in the order
extracted from a dynamic backward slice. The data structure
of an evaluation item set in our algorithms is a char-type
four-dimensional array. CK is designed for holding
evaluation item sets; CK[a][0][c] points to the first address

of the c+1th variable name that is compared between an
answer and a correct program in the input of the a+1th static
chunk that is extracted, such as P_SC[a] and A_SC[a].
CK[a][1][c] points to the first address of the c+1th variable
name that is compared between an answer and a correct
program in the output of the a+1th static chunk that is
extracted, such as P_SC[a] and A_SC[a].

Fig. 10 shows an algorithm for extracting an error
instruction sequence. A function “error_ins” first judges, in
the order of executing instructions, whether an answer

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Block[] dynamic_chunk(SChunk[] SC,Step[] S){
 Block DC[0];
 for(int j=0;j<N(SC);j++){
 for(int i=0;i<N(S);i++){
 if(S[i].i==SC[j].b.s){
 Block dc = {i, -1};
 while((i+1<N(S)) &&
 (S[i].i<S[i+1].i) &&
 (S[i+1].i<=boi(SC[j].b.e))){
 i++;
 }
 dc.e = i;
 add(DC, make_array(dc));
 }}}
 return DC;
}

Figure 9. An algorithm for extracting dynamic chunks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

SChunk[] static_chunk(char[] P,Block[] R, ChunkCond[] CC){
 SChunk SC[0];
 for(int i=0;i<N(R);i++)
 merge(SC, f(P,R[i],CC,0));
 return SC;}
SChunk[] f(char[] P,Block b,ChunkCond[] CC,int cc_i){
 SChunk SC[0];
 if(cc_i == N(CC)){
 SChunk sc = {0, b};
 add(SC, sc);
 return SC;
 }
 Block m = match(P,b,CC[cc_i]);
 if(m.s == -1 && m.e == -1)
 merge(SC,f(P,b,CC,cc_i+1));
 SChunk sc = {CC[cc_i].t, m};
 add(SC, sc);

Block next = {m.e+1, b.e};
Block prev = {b.s, m.s-1};
 if(b.s == m.s && m.e < b.e){
 merge(SC,f(P,next,CC,cc_i));
 }else if(s < m.s && m.e < e){
 merge(SC,f(P,prev,CC,cc_i+1));
 merge(SC,f(P,next,CC,cc_i));
 }else if(s < m.s && m.e == e){
 merge(SC,f(P,prev,CC,cc_i+1));
 }
 return SC;}

Block match(char[] P, Block b, ChunkCond cc){
 Block m = {-1,-1};
Extract character string ss that matches the cc.g-th group in

cc.ptn from the character string that is from P[b.s] to P[b.e];
if (ss exists)
m.s=x and m.e=y on the condition that ss is the character

string that is from P[x] to P[y], and b.s<=x and y<=b.e
return m;}

Figure 8. An algorithm for extracting static chunks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Block[] error_ins(char[] P_P, char[] A_P, SChunk[]
P_SC,SChunk[] A_SC,Step[] P_S,Step[] A_S,char [][][][] CK){
for(int i=0,k=0;i<N(A_S)||k<N(P_S);){

Using j and l, which are A_S[i].i == A_SC[j].b.s and P_S[k].i
== P_SC[l].b.s, for(int m=0;m<N(CK[j][0][m];m++){

if(value(P_S,k-1,CK[j][0][m]) differs from value(A_S,i-
1,CK[j][0][m])){

int s = def(P_S,k-1,CK[j][0][m]);
if(s!=-1){

b[w]={x,y} on the condition that the instruction that is
from P_P[x] to P_P[y] is equal to the w+1th instruction
in a dynamic backward slice on slicing criterion=(s,
CK[j][0][m], the test case);
return b;

}else{
b[w]={x,y} on the condition that the instruction that is
from P_P[x] to P_P[y] is equal to the w+1th instruction
from the first instruction in P_SC[l];
return b;

}}}
Using j and l, which are A_S[i].i == boi(A_P,A_SC[j].b.e) and
P_S[k].i == boi(P_P,P_SC[l].b.e), for(int m=0;
m<N(CK[j][1][m]; m++){

if(value(P_S,k-1,CK[j][1][m]) differs from value(A_S,i-
1,CK[j][1][m])){

int s = def(P_S,k-1,CK[j][1][m]);
if(s!=-1){

b[w]={x,y} on the condition that the instruction that is
from P_P[x] to P_P[y] is equal to the w+1th instruction
in a dynamic backward slice on slicing criterion=(s,
CK[j][1][m], the test case);
return b;

 }else{
b[w]={x,y} on the condition that the instruction that is
from P_P[x] to P_P[y] is equal to the w-th instruction
from the last instruction in P_SC[l];
return b;

}}}
if(i<N(P_DC)) i++;
if(j<N(A_DC)) j++;

}}
int def(Step[] S,int i,char[] n){

for(;0<=i;i--)
for(int j=0;j<N(S[i].CR);j++)

if(the character string that is pointed to by S[i].CR[j].n is
equal to the character string that is pointed to by n)
return i;

return -1;}
char[] value(Step[] S,int i,char[] n){

int j=def(S,i,n);
if(j!=-1)
 for(int k=0;k<N(S[j].CR);k++)

if(the character string that is pointed to by S[j].CR[k].n is
equal to the character string that is pointed to by n)
return S[j].CR[k].v;

return "";}

Figure 10. An algorithm for extracting an error instruction

249Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

program is equal to a correct program in terms of the input
and output, which are designated in CK. Lines 3–5 search
the first step data of a static chunk in the order of executing
instructions, and lines 6–7 compare variables, which are
designated in an evaluation item set, between an answer and
a correct program at the input point that is immediately
before the stepwise execution of the first instruction of a
static chunk. In addition, lines 3 and 21–23 search the end
step of the static chunk in the order of executing instructions,
and lines 24–25 compare variables, which are designated in
an evaluation item set, between an answer and a correct
program at the output point that is immediately after the
stepwise execution of the end instruction of a static chunk.
Lines 10–13 and 28–31 compute a dynamic backward slice
when the compared computer resource at the input or output
point differs between the answer and the correct program,
and the compared resource is defined at the comparison time.
Otherwise, when the compared resource is not defined at the
comparison time, lines 16–18 and 34–36 consider
instructions that are from the instruction at the comparison
time to the first instruction of a program as an error
instruction sequence. When instructions from P[x] to P[y]
include P[e], a function “int boi(char[] P, int e)” returns x.
When error_ins(P_P,P_SC,A_SC, P_S, A_S, CK) is
executed, a Block-type array that contains an error
instruction sequence is obtained.

6) Generate assistance expressions
Our system first tries to detect a control structure error. If

such errors are not detected, next, it tries to detect a behavior
error and a computer resource control error. A control
structure error is detected when a static chunk sequence of an
answer program differs from that of a correct program. If
such an error is detected, the system generates a chunk
expression of the program by using static chunks of the
answer and the correct program, and the answer program. A
chunk expression of the program places static chunk
sequences of the answer and the correct program side-by-
side with the instructions of the answer program. A behavior
error and a computer resource control error are detected
when an error instruction sequence contains instructions.
When such an error is detected, the system generates a chunk
expression of trace data by using the answer program and
dynamic chunks of the answer and the correct program. A
chunk expression of trace data places dynamic chunk
sequences of the answer and the correct program side-by-
side. In addition, the system generates a projection
expression of error steps by using the answer program,
evaluation item sets, static chunks of the answer and the
correct program, and step data of the answer and the correct
program. A projection expression of error steps adds a chunk
expression of the program to an error instruction sequence of
the answer program and its execution results, and the
execution result of a correct program.

IV. PROTOTYPE SYSTEM

This system holds the following static chunk conditions;
sequence processing, start processing of function, start
processing of function (with errors), end processing of
function, end processing of function (with errors), readout

processing of arguments, readout processing of arguments
(with errors), repetition processing, selection processing. The
question shown in Fig. 11 requires the implementation of a
function sum that adds two arguments and stores the result in
GR1. The behavior of the function in assembly is specified
by a question sentence and a C program. For computer
resource control, the use of all registers in the assembly
program is specified by the corresponding C program. For
example, the use of GR1 is specified by “assign GR1 to
variable x” in the question sentence and variable x in the C
program, which is assigned to the first argument.

Fig. 12 shows a correct answer (a) for the question shown
in Fig. 11 and three incorrect answers (b, c, and d). In terms
of behavior error, addition is correct instead of subtraction at
line 6. In terms of control structure error, the instructions

Develop a function sum by CASL-II programming; the function is

expressed by the following C program, and arguments of the function

are held in the stack shown in the image below.

However, your program should conform to the following conditions.

・ Store the return value in GR1

・ Consider GR7 as a stack frame pointer

・ Consider GR1 as variable x

・ Consider GR2 as variable y

・ Implement readout processing of arguments and the end processing

of function by using the stack frame pointer

・ Implement save processing of a stack frame pointer in the readout

processing of arguments by operation code PUSH

・ Implement load processing of a stack frame pointer in the end

processing of function by operation code POP

・ Consider P11 as the label of the function sum

Figure 11. A question on function implementation

Figure 12. A correct answer and incorrect answers of the question in Fig.

11

250Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

described at lines 4 and 5 in the answer program are missing.
The two instructions are used for readout of the arguments.
In terms of computer resource error, the control structure is
correct but the second operands of LD at lines 4 and 5, which
are used for the readout of arguments, are incorrect.

Fig. 13 shows an assist expression for an answer program
that contains a construction structure error (Fig. 12-c). A
chunk “readout processing of arguments” is not shown
because the answer program lacks instructions for the
readout of arguments. A student notices this by comparing
the chunk sequences of the answer and the correct paper.

Fig. 14 shows trace data of the correct and the answer
program containing a behavior error (Fig. 12-b). A student
specifies the causes of errors by confirming the difference
between the trace data of his/her program and the correct
program. Line 1 in Fig. 14 indicates the start of the readout
of the argument. Lines 8 and 12 indicate the processing. Line
17 indicates the start of the end of the processing of the
function. Furthermore, the student can notice the difference
between the variables in his/her program and the correct

program at line 29. The student can notice that lines 1–5 in
his/her program in Fig. 12-b are correct because lines 1–14
in the chunk expression of the trace data of his/her program
and the correct program are identical. Additionally, the
student can notice that lines 7–9 in his/her program in Fig.
12-b are correct because lines 17–25 in the chunk expression
of the trace data of his/her program in Fig. 14 and the correct
program are identical. Therefore, the student can understand
that the error in his/her program is caused at line 6 in Fig. 12-
b.

Fig. 15 shows the projection expression of error steps for
the computer resource control error in Fig. 12-d. The
instructions in the dashed rectangle include causes of errors,
and they are a dynamic backward slice that is computed
because the value of GR1 of the answer program differs
from that of the correct program at the output point of the
second chunk. GR7 of the answer program is equal to that of
the correct program at the output point of the first chunk, but
GR1 differs at the output point of the second chunk.
Therefore, the causes are narrowed to the following; in the
second chunk, the instructions for GR7 are missing, and the
instructions for GR1 are missing or incorrect. In a similar
manner, narrowing down instructions that need to be
reviewed using a dynamic backward slice and showing
instructions and their execution results can help students to
specify the causes of errors.

V. EVALUATION EXPERIMENT

An experiment was carried out to evaluate the
effectiveness of assistance expressions. Chunk expressions
of programs (expression 1), chunk expressions of trace data
(expression 2), and projection expression of error steps
(expression 3) help students specify the causes of their errors.
We conducted a questionnaire survey for our system in the
“Systems Programming” class, which is for second-year
students in our university. The class includes four assembly
programming exercises, and the students attempted 13
questions using our system. After finishing the fourth
exercise, we distributed the questionnaires, which were
aimed at determining how effective our system was in
helping students specify the causes of their errors. The
subjects answered the questions using the following five-
point scale: 5 - very much, 4 - a lot, 3 - somewhat, 2 - not
much, 1 - not at all. The questionnaires also contained space
for comments.

24 valid responses were obtained. The average is rounded
off to three decimal places, and the p-value is the value
computed by a Wilcoxon test. The average and p-value of
expression 1 are 3.88 and 0.0007, those of expression 2 are

Figure 13. Chunk expression of program

Figure 14. Chunk expression of trace data

Figure 15. Projection expression of error steps

251Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

4.25 and 0.0002, and those of expression 3 are 4.29 and
below 0.0001. The averages and the p-values confirm that all
suggested expressions helped the subjects specify the causes
of their errors. The comment for expression 2 is “I could
notice errors in my program behavior using the expression,
but I spent a lot of time specifying the corresponding
instructions in my program.” Because expression 3 is
designed to resolve such problems, we will link expressions
2 and 3 using a hyperlink in future work. The comment for
expression 3 is “It is helpful to narrow down instructions that
are related to errors.” On the other hand, “This expression
was not very helpful to specify operand order errors.” Such a
solution is beyond the scope of our study at this time. We
will develop functions to solve such problems in future work.

VI. CONCLUSION AND SUMMARY

In this study, we proposed a system that generates
expressions for helping students specify causes of errors by
helping them comprehend their program; students can use
the developed functions to automatically judge whether their
programs are correct. We developed this system because
some students are unable to perform the above mentioned
tasks in assembly programming exercises. In this system
answers, correct answers, test cases, evaluation item set, and
static chunk conditions are provided as inputs, and true-false
judgments, chunk expressions of programs, chunk
expressions of trace data, and projection expressions of error
steps are provided as outputs. To generate such expressions,
we suggested extraction methods for static chunks, dynamic
chunks, and error instruction sequences. Through a
questionnaire survey, we evaluated the effectiveness of the
suggested expressions in helping students specify the causes
of their errors. The results suggested that the expressions
were quite helpful.

REFERENCES

[1] IPA, JITEC, “Information Technology Engineers Examination,”
http://www.jitec.ipa.go.jp/1_13download/shiken_yougo_ver2_1.pdf
(in Japanese), pp. 3-8, 2011.

[2] K. Miyati, N. Takahashi, “Implementation and Evaluation of a
Computer-Aided Assembly Programming Exercise System with a
Function of Structural Anomaly Detection,” IEICE
TRANSACTIONS on Information and Systems (in Japanese),
Vol.J91-D, No.02, pp. 280-292, 2008.

[3] Mark Weiser, “Programmers Use Slices When Debugging,”
Communications of the ACM，Vol. 25，no. 7，pp. 446-452, 1982.

[4] H. Agrawal, J. Horgan, “Dynamic Program Slicing,” SIGPLAN
Notices, Vol.25, No.6, pp. 246-256, 1990.

[5] Tankut Akgul, Vincent J. Mooney III, Santosh Pande, “A Fast
Assembly Level Reverse Execution Method via Dynamic Slicing,”
Proceedings of ICSE, pp. 522-531, 2004.

[6] W.Kozaczynski, E.S.Liongosari, J.Q.Ning, “BAL/SRW：Assembler
re-engineering workbench. Information and Software Technology,”
Vol.33, no.9, pp. 675-684, 1991.

252Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

