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Abstract—There are several students who give up exercises 

because they cannot specify their program errors to fix. We 

considered the reason were the following. One is that the 

students do not have enough comprehension of their programs 

– questions ask their understanding of control structure, 

computer resource control, and behavior. Another is that 

procedures to specify program errors are complex because an 

assembly program has a lot of instructions. Furthermore, 

oversight, which is caused by misunderstanding questions and 

checking a lot of items, is also the causes. The purpose of this 

study is to develop a system which generates expression for 

specifying program errors by helping students understand 

their program comprehension. The features on realizing the 

system are making use of chunks, dynamic backward slices, 

and correct answer samples. We conclude that the expression 

is helpful to specify program errors according to an evaluation 

experience.  

Keywords-programming; assembly language; program slice; 

chunk; 

I.  INTRODUCTION 

The “Systems Programming” course offered by the 
Department of Computer Science, Nagoya Institute of 
Technology, aims to help students understand hardware 
activities that occur in response to application software 
requests for computer resource control (e.g., controlling 
registers and main memory) and control structures 
(sequencing, selection, iteration, and function/procedure). 
Therefore, the class includes an assembly programming 
exercise  in which students translate high-level-language 
(e.g., C) programs, whose activities are regarded as 
application software requests, into low-level-language 
programs (e.g., assembly language CASLL-II [1], whose 
activities are regarded as hardware activities. 

In class, students solve exercises on structured 
programming using the above-mentioned control structure. 
Questions in the exercise include the requirements of 
program behavior, computer resource control, and control 
structure in the form of text and C programs. Students’ 
answers (hereafter, “answer program”) are considered 
correct if they do not contain all of the following error types. 

・ Behavior error: answer program does not behave 

according to the requirements of questions. 

・Computer resource control error: computer resources 

are not used according to the requirements of questions. 

・ Control structure error: control structure is not 

designed according to the requirements of questions. 
We developed a programming exercise system that can 

automatically detect these error types [2]. This enables 
students to immediately confirm whether their answers are 
correct. First, the system obtains two detailed “trace data” 
(i.e., a sequence of pairs of instructions that are executed 
stepwise and the computer resources that are updated by the 
execution) by the stepwise execution of the answer program 
and the correct answer program (hereafter, simply “correct 
program”) with test cases. Each pair of trace data for a given 
step in the sequence is called “step data”. Next, the system 
extracts characteristic points (e.g., order of label appearance, 
variable values, relation between locations of instructions) 
from both trace data. If differences are detected between 
corresponding characteristic points, the system judges that 
the answer includes errors. After the evaluation is completed, 
the results are displayed to the student; if errors are present, 
the test case is also displayed. A student whose answers are 
incorrect is expected to try to specify the causes of errors by 
using her/his program, question, and test case. S/he should 
analyze control structures, trace the dependency of computer 
resource control, simulate the test case behavior, and so on. 
S/he should consider whether these satisfy the requirements 
of the question. If not, s/he should specify error instructions 
in her/his program. 

However, several students are unable to complete these 
tasks. We believe that some students lack an understanding 
of the control structure, computer resource control, and 
program behavior (we collectively term this as “program 
comprehension”). Others find the procedures for specifying 
causes of errors too complex because an assembly program 
contains many instructions. Finally, some problems are due 
to oversight stemming from, say, misunderstanding of 
program requirements and the need to check many items. 

In this study, we develop a function that generates 
expressions that help students specify causes for their errors 
by supporting their program comprehension. We call these 
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expressions “assistance expressions.” The function detects 
errors in answer programs and classifies them as 1) control 
structure errors or 2) behavior errors and computer resource 
control errors, and it generates assistance expressions for 
each error. 

In order to implement this function, we use “chunks,” 
“dynamic backward slices,” and correct answers. A “chunk” 
is a meaningful block (sequential elements). It is easier to 
understand and memorize programs when they are expressed 
as a sequence of chunks. A “dynamic backward slice,” a type 
of program slice, is a sequence of instructions that influences 
variable v, which is defined at time r when an instruction is 
executed, when executing a program with input arguments x.  
Hereafter, we call time r the “execution point” and the triple 
of x, r, and v, the “slicing criterion (x, r, v).” The dynamic 
backward slice at an execution point where variables differ 
between the answer and the correct program includes the 
causes of errors (inclusion of error instructions and lack of 
necessary instructions). Therefore, its use can help students 
specify the causes of errors. 

The function generates the following three types of 
assistance expressions. 

(1) Chunk expression of programs: It is important to read 
and understand programs in order to specify the causes of 
errors. However, as mentioned above, assembly programs 
are difficult to read and understand. We solve this problem 
by explicitly expressing control structures in a program and 
meaningful instruction sequences in control structures by 
using chunks. A chunk containing instructions is called a 
“static chunk.” Expressing programs using static chunks 
helps in understanding control constructions and specifying 
causes of errors, in addition to reading programs. For 
example, although instructions of “readout arguments” are 
connoted by the control structure “sequence,” it is possible to 
show a composition of the control structure “sequence” to 
students by defining a static chunk “readout arguments.” In 
addition, it is possible to show the control structures that 
contain errors to students by defining a static chunk of error 
implementations. This function generates an expression that 
is a static chunk sequence of both an answer and a correct 
program, and the expression includes instructions that 
constitute the chunks of the answer program. The aim of the 
expression is to help students notice the differences in 
control structures and specify the causative instructions. 

(2) Chunk expression of trace data: Trace data is useful 
for specifying the causes of behavior error and computer 
resource control errors. However, it is difficult to read and 
understand because it is large in amount, and it is 
troublesome to match to a program because of the use of 
different expressions. We solve this problem by expressing 
trace data using chunks that are related to static chunks. 
Hereafter, a chunk containing trace data is called a “dynamic 
chunk.” This function generates an expression that is a 
dynamic chunk sequence of both an answer and a correct 
program to help students notice the difference between the 
two. 

(3) Projection expression of error steps: Some 
instructions, called as an “error instruction sequence,” 
contain important clues for specifying the causes of program 

behavior error and computer resource control errors, and 
their execution results influence the difference between the 
trace data of an answer and a correct program. A student 
specifies the causes of errors in the answer program by 
confirming the relationships between the error instruction 
sequence and the remaining instructions and by comparing 
the execution results of the answer and the correct program. 
However, (1) and (2) are not suitable for such procedures. 
The former does not show error instruction sequences and 
their execution results to a student, and therefore, it is 
difficult to compare an execution result between the answer 
and the correct program. The latter does not show all 
instructions of the answer program, and therefore, it is 
difficult to confirm the relationships between instructions in 
the answer program. Accordingly, we try to solve the 
problems by computing an error instruction sequence and 
expressing it and its execution result for the answer program. 
The function generates an expression that is based on (1) 
with an error instruction sequence of an answer program, the 
execution results of it and a correct program. 

II. RELATED WORKS 

A “program slice” is a set of instructions that influences a 
certain instruction in a program [3][4][5]. Program slices are 
used for program debugging and program comprehension. A 
dynamic backward slice in this study is characterized by its 
slicing criterion which is a point that causes difference of 
program behavior and computer resource control between an 
answer and a correct program. Namely, its feature is to use 
not only an answer program but also a correct program. 
Using this criterion, we can compute a slice that includes the 
causes of errors. 

Static chunks are calculated by pattern matching between 
a program and a pattern that defines a rule of a static chunk. 
As a related study that uses pattern matching in assembly 
programs, W.Kozaczynski et al. proposed the replacement of 
frequently used instruction sequences with simple 
expressions and comments for easy readability and 
understandability [6]. We, however, propose a method to 
generate information that simplifies the reading and 
understanding of programs and trace data and the 
correspondence between programs and trace data using static 
chunks. 

III. FUNCTION FOR GENERATING ASSISTANCE 

EXPRESSIONS 

A. Placement in our programming exercise system 

Fig. 1 shows the structure of our system. The exercise 
system consists of an exercise server on a machine, and web 
browsers for each student and teacher on their PCs. And the 
machine and the PCs are connected to the Internet. A student 
receives a question from the exercise server (“b”), composes 
an answer to the question, and submits it to the server (“c”). 
The server detects errors in the answer, and generates 
assistance expressions that depends on the error type by 
using the answer program, a correct program, test cases, 
“static chunk conditions,” and “evaluation item sets” (“d”). 
A “static chunk condition” is a condition for extracting 
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instructions from a program. An “evaluation item set” is a set 
of input/output variables in static chunks that are compared 
between the answer and the correct program. The student 
confirms the true/false judgment of her/his answer; if the 
answer is false, s/he corrects it on a Screen using assistance 
expressions. A teacher registers questions, correct programs, 
test cases, static chunk conditions, and evaluation item sets 
with the exercise server before the student starts the 
exercises (“a”). 

B. Function structure 

Fig. 2 shows the structure of the function for generating 
assistance expressions in “d” of Fig. 1. “d2” extracts 
instructions of answer and correct programs and converts 
their formats to that shown in Fig. 3. The function then 
extracts bodies of “routines” from both converted programs 
(Section III.C.1). Henceforth, a “routine” is a main routine or 
a subroutine that is a sequence of instructions from “start” to 
“end.” In addition, the body of a routine (called a routine 
body) is a sequence that consists of machine instructions and 
macro instructions. “d1” generates each step data by 
stepwise execution of an answer and a correct program with 
test cases (Section III.C.2). “d4” extracts static chunks of an 
answer and a correct program by comparing instructions of a 
routine body with static chunk conditions (Section III.C.3). 
“d3” extracts dynamic chunks by comparing stepwise 
executed instructions with instructions that consist of static 
chunks (Section III.C.4). “d5” compares input/output 
variables between an answer and a correct program in the 
order of executed instructions. In the comparison, the 
variables are selected in accordance with an evaluation item 
set, and their values are computed using step data. When 
“d5” detects a difference in the comparison, it computes a 
dynamic backward slice of the variable that causes the 
difference, and it regards the slice as an error instruction 

sequence (Section III.C.5). “d6” classifies an answer 
program as being correct or as containing a control structure 
error or behavior/computer resource control error, and it 
generates assistance expressions (Section III.C.6). 

Hereafter, this paper describes a new data type using a 
structure in the C language. However, “struct” is omitted in 
the member and variable declarations. For example, a data 
structure X with int type members a and b is described as 
“struct X {int a; int b;}.” A variable z of data type X is 
described as “X z;.” A member a of z can be referred to by 
“z.a.” 

C. Implementation methods 

1) Convert programs and extract routine bodies 
Answer and correct programs conform to the CASL-II 

grammar. We have extended this grammar by adding 
operation codes SSP and LSP, which save and load a stack 
pointer, respectively. These are necessary for the class to 
implement a general procedure of a function call, which is 
implemented by stack frame operations in most assembly 
languages such as GNU assembly language.  

The data structure of a program in our algorithms is a 
character array. Instructions in a program are converted from 
their original formats into the one shown in Fig. 3, and then 
stored in the character array (e.g., Fig. 4). Henceforth, “<>” 
indicates that the elements therein can be omitted, and “{}” 
indicates that elements therein are necessary. We call 

<label>{space}{operation code}<{space}{operand1}<,operand2><,operand3>>\n 

Figure 3. Format of an instruction in our algorithms 
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Figure 1.  System structure 
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Figure 2.  Structure of function for generating assistance expressions 

246Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services



character strings that are located at the label, operation code, 
operand1, operand2, and operand3 identifiers. Variables P_P 
and A_P store the answer program and correct program, 
respectively. 

A routine is a main routine or a subroutine that is a 
sequence of instructions from start to end. In addition, the 
body of a routine (called a routine body) is a sequence that 
consists of machine instructions and macro instructions. 
Routine bodies are extracted from converted answer and 
correct programs. The data structure of a routine body in our 
algorithms is of the Block type. Block type is designed for 
pointing to a sub array “sub_array” in an array “array,” and it 
is defined as “struct Block{int s; int e;}.” Members s and e 
are the indexes of elements in “array” that are respectively 
the first and last elements of “sub_array.” P_R and A_R, 
which are Block-type array variables, respectively store the 
routine bodies of the answer program and correct program in 
the order found in the programs. For example, a character 
string that is from P_P[P_R[0].s] to P_P[P_R[0].e] is the 
instruction sequence of the first routine body in P_P (Fig. 5). 

2) Generate step data 
A step datum is a result that is generated by stepwise 

executing a program with a test case as input. It consists of 
an executed instruction, names of computer resources that 
are updated by executing the instruction, and their values. 
The data structure of a computer resource in our algorithms 
is defined as “struct CmpRes{char[] n;char[] v;}”; members 
n and v are the first addresses of character arrays that stores a 
computer resource name and computer resource value, 
respectively . The data structure of a step datum is defined as 
“struct Step{int i;CmpRes[] cr;}”; member cr is the first 
address of a list that stores computer resources that are 
updated by stepwise execution on an instruction whose first 
character is the i+1st character in a program. Step type arrays 
P_S and A_S respectively store step data of the answer and 
the correct program in order of stepwise execution. For 
example, P_S[k] is a step datum of the k+1th stepwise 
execution in answer program P_P. P_P[P_S[k].i] is the first 
character that is an executed instruction; the character string 
whose first address is pointed to by P_S[k].cr[0].n is a 

computer resource name that is the first updated by the 
executed instruction; and P_S[k].cr[0].v points to the 
character string of its value (Fig. 6). 

3)  Extract static chunks 
As mentioned in Section I, static chunks help in 

reading/understanding programs, understanding control 
structures, and specifying causes of control structure errors. 
The control structure in the class includes the sequence, 
selection, repetition, and function/procedure. To extract other 
static chunks, it is necessary to define new static chunk 
conditions and register them in the system. 

A static chunk is an instruction sequence that has a 
meaning in toto. The data structure of a static chunk in our 
algorithms is defined as “struct SChunk{int t; struct Block 
b;}”; member t is a type (Tabel 1), and member b is a 
character string that is from the b.s+1th character to the 
b.e+1th character, and this character string is an instruction 
sequence that constitutes this static chunk. SChunk type 
arrays P_SC and A_SC respectively store static chunks of an 
answer and a correct program in the order of extraction. For 
example, a character string that is from P_P[P_SC[i].b.s] to 
P_P[P_SC[i].b.e] is an instruction sequence that consists of 
the i+1th static chunk that is extracted from an answer 
program.  P_SC[0] in Fig. 5 is extracted first; its type is a 
sequence according to P_SC[0].type=0, and it consists of a 
character string that is from P_P[P_SC[0].b.s] to 
P_P[P_SC[0].b.e]. 

The data structure of a static chunk condition in our 
algorithms is a pair of a static chunk type and a condition for 
extracting instruction sequences (called the “instruction 
sequence condition”). Because the identifier and number of 
instructions depend on the questions, it is difficult to define 
instruction sequence conditions using only instructions of 
CASL-II; it is necessary to define many conditions. Regular 
expressions and pattern matching are effective ways to solve 
this problem. However, it is necessary to consider the 
following points. 

Requirement 1: It is necessary to extract instruction 
sequences that include arbitrary and same identifiers at 
multiple points of the sequence. For example, in an 

 
Figure 4. An example of a variable P_P that contains a program 
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Figure 5.  An example of the arrays P_P, P_R, and P_SC 

P_DC[m]

P_P[j]

¥
n

¥
n

instructions of
the m+1th dynamic chunk

step data of
the m+1th dynamic chunk

block
•s
•e

step
•i
•cr

P_S[k]

step
•i
•cr

P_S[l]
CmpRes
•n
•v

G
R

1
4

P_P[h]

cr[0]

cr[1]

n[0]
n[1]

v[0]
v[1]

 
Figure 6.  An example of the arrays P_S and P_DC 
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instruction sequence selection, the operand of the operation 
code branch and label of the branch destination are an 
arbitrary and same identifier. 

Requirement 2: It is necessary to extract a character 
string that is matched to a particular part in a regular 
expression. This is used for specifying a character string, 
extraction target, by the character before and after it. For 
example, Fig. 7-a) shows that the instruction sequence from 
line 1–4 is the chunk selection. The tail of the chunk is 
characterized by an instruction immediately in front of the 
branch destination (line 5). In such cases, the first 5 lines are 
extracted, and then, line 5 is removed. 

We adopted Perl, whose regular expressions enable a 
character string extracted by a regular expression to be 
referred to from the back of the expression itself (for 
requirement 1). It is possible to refer to a character string that 
is matched to a group by group numbers after completing the 
matching (for requirement 2). Therefore, an instruction 
sequence condition consists of a regular expression and a 
group number. 

Fig. 7-b) shows an example of an instruction sequence 
condition for the chunk selection. It expresses 1 line 
character string by dividing it into multiple lines owing to 
space limitations. The first group is a regular expression 
from the left parenthesis in line 1 to the right parenthesis in 
line 4, and it is designed to extract an instruction sequence of 
a chunk selection. The second group is “(\w+)” in line 2, and 
it is referred to by "\2" in lines 3 and 5. When it applies this 
regular expression to the instruction sequence in Fig. 7-a), 
because line 2 in Fig. 7-a) matches the line 2 in Fig. 7-b), a 
character string that matches the second group is considered 
as “L1,” and “\2” in lines 3 and 5 is specified as “L1.” In 
addition, the character string from lines 1–4 in Fig. 7-a) 
matches the first group, and it is extracted as the instruction 
sequence of a chunk selection. 

The data structure of a static chunk condition in our 
algorithms is defined as “struct ChunkCond{int t;char[] ptn; 
int g;}”; member t is a type of a static chunk (Table 1), 
member p is the first address of a character string of an 
instruction sequence, and member g is a group number for 
designating a character string in the extraction. A 
ChunkCond type array CC stores static chunk conditions. 

 Fig. 8 shows an algorithm for extracting static chunks. 
The program in the class conforms to the rule of structured 
programming, and it is not allowed to jump between routines 
by operation code jump. Therefore, we developed a simple 
algorithm that extracts static chunks from every routine 
because there is no chunk through multiple routines. A 
function “int N (T[] array1)” returns the number of elements 
in arbitrary type T array array1. A function “void merge(T[] 

array1, T[] array2)” merges the elements of arbitrary type T 
arrays array1 and array2 so that the elements of array2 are 
appended to the end of array1. A function “void add(T[] 
array1, T elem1)” appends arbitrary type T elem1 to the end 
of arbitrary type T array array1. When P_P and P_R, or A_P 
and A_R, are respectively stored in P and R and static chunk 
conditions are stored in CC, following which static_chunk(P, 
R, CC) is executed, an SChunk type variable that contains 
static chunks is obtained. 

4) Extract dynamic chunks 
A dynamic chunk is a sequence of step data that is 

generated by single stepwise execution of instructions from 
the start to the end of a static chunk. The data structure of a 
dynamic chunk in our algorithms is Block type; members s 
and e in P_S and A_S indicate that step data from P_S[s] to 
P_S[e] or A_S[s] to A_S[e] is included in the extracted 
dynamic chunk. Dynamic chunks of an answer and a correct 
program are stored in Block-type arrays P_DC and A_DC, 
respectively, in order of extraction. For example, a Step-type 
array from P_S[P_DC[m].s] to P_S[P_DC[m].e] is a step 
data instruction of the m+1th dynamic chunks that are 
extracted. Fig. 9 shows an algorithm for extracting dynamic 
chunks. When P_SC and P_S, or A_SC and A_S, are 
respectively stored in SC and S, following which 
dynamic_chunk(SC, S) is executed, a Block-type array that 
contains dynamic chunks is obtained. 

5) Extract error instruction sequences 
An “error instruction sequence” is a sequence of 

instructions that affects the difference between the trace data 
of an answer and a correct program. We call such 
instructions “candidates for error instructions.” Error 
instruction sequences and their execution results are 
important clues for specifying the causes of program 
behavior errors and computer resource control errors. Trace 
data of an answer and a correct program are compared based 
on evaluation item sets. An evaluation item set is a 
designation of computer resources that are compared 

TABLE I.  STATIC CHUNKS 

type chunk name 

0 sequence processing 

1 start processing of function 

2 start processing of function (with errors) 

3 end processing of function 

4 end processing of function (with errors) 

5 readout processing of arguments 

6 readout processing of arguments (with errors) 

7 repetition processing 

8 selection processing 

 
Figure 7.  An example of instructions and an instruction sequence condition for selection processing 
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between an answer and a correct program in the input or 
output. 

The data structure of an error instruction sequence in our 
algorithms is a Block-type array. An element e of the array 
indicates a candidate for error instruction, which is a 
character string from the e.s+1th to the e.e+1th character in a 
program. An error instruction sequence is stored in the order 
extracted from a dynamic backward slice. The data structure 
of an evaluation item set in our algorithms is a char-type 
four-dimensional array. CK is designed for holding 
evaluation item sets; CK[a][0][c] points to the first address 

of the c+1th variable name that is compared between an 
answer and a correct program in the input of the a+1th static 
chunk that is extracted, such as P_SC[a] and A_SC[a]. 
CK[a][1][c] points to the first address of the c+1th variable 
name that is compared between an answer and a correct 
program in the output of the a+1th static chunk that is 
extracted, such as P_SC[a] and A_SC[a]. 

Fig. 10 shows an algorithm for extracting an error 
instruction sequence. A function “error_ins” first judges, in 
the order of executing instructions, whether an answer 

1 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Block[] dynamic_chunk(SChunk[] SC,Step[] S){ 
  Block DC[0]; 
  for(int j=0;j<N(SC);j++){ 
    for(int i=0;i<N(S);i++){ 
      if(S[i].i==SC[j].b.s){ 
        Block dc = {i, -1}; 
        while((i+1<N(S)) && 
             (S[i].i<S[i+1].i) && 
             (S[i+1].i<=boi(SC[j].b.e))){ 
          i++; 
        } 
        dc.e = i; 
        add(DC, make_array(dc)); 
      }}} 
  return DC; 
} 

Figure 9.  An algorithm for extracting dynamic chunks 
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SChunk[] static_chunk(char[] P,Block[] R, ChunkCond[] CC){ 
  SChunk SC[0]; 
  for(int i=0;i<N(R);i++) 
    merge(SC, f(P,R[i],CC,0)); 
  return SC;} 
SChunk[] f(char[] P,Block b,ChunkCond[] CC,int cc_i){ 
  SChunk SC[0]; 
  if(cc_i == N(CC)){ 
    SChunk sc = {0, b}; 
    add(SC, sc); 
    return SC; 
  } 
  Block m = match(P,b,CC[cc_i]); 
  if(m.s == -1 && m.e == -1) 
    merge(SC,f(P,b,CC,cc_i+1)); 
  SChunk sc = {CC[cc_i].t, m}; 
  add(SC, sc); 

Block next = {m.e+1, b.e}; 
Block prev = {b.s, m.s-1}; 
  if(b.s == m.s && m.e < b.e){ 
    merge(SC,f(P,next,CC,cc_i)); 
  }else if(s < m.s && m.e < e){ 
    merge(SC,f(P,prev,CC,cc_i+1)); 
    merge(SC,f(P,next,CC,cc_i)); 
  }else if(s < m.s && m.e == e){ 
    merge(SC,f(P,prev,CC,cc_i+1)); 
  } 
  return SC;} 

Block match(char[] P, Block b, ChunkCond cc){ 
  Block m = {-1,-1}; 
Extract character string ss that matches the cc.g-th group in 

cc.ptn from the character string that is from P[b.s] to P[b.e]; 
if (ss exists) 
m.s=x and m.e=y on the condition that ss is the character 

string that is from P[x] to P[y], and b.s<=x and y<=b.e 
return m;} 

Figure 8.  An algorithm for extracting static chunks 
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Block[] error_ins(char[] P_P, char[] A_P, SChunk[] 
P_SC,SChunk[] A_SC,Step[] P_S,Step[] A_S,char [][][][] CK){   
for(int i=0,k=0;i<N(A_S)||k<N(P_S);){ 

Using j and l, which are A_S[i].i == A_SC[j].b.s and P_S[k].i 
== P_SC[l].b.s, for(int m=0;m<N(CK[j][0][m];m++){ 

if(value(P_S,k-1,CK[j][0][m]) differs from value(A_S,i-
1,CK[j][0][m])){ 

int s = def(P_S,k-1,CK[j][0][m]); 
if(s!=-1){ 

b[w]={x,y} on the condition that the instruction that is 
from P_P[x] to P_P[y] is equal to the w+1th instruction 
in a dynamic backward slice on slicing criterion=(s, 
CK[j][0][m], the test case); 
return b; 

}else{ 
b[w]={x,y} on the condition that the instruction that is 
from P_P[x] to P_P[y] is equal to the w+1th instruction 
from the first instruction in P_SC[l]; 
return b; 

}}} 
Using j and l, which are A_S[i].i == boi(A_P,A_SC[j].b.e) and 
P_S[k].i == boi(P_P,P_SC[l].b.e), for(int m=0; 
m<N(CK[j][1][m]; m++){ 

if(value(P_S,k-1,CK[j][1][m]) differs from value(A_S,i-
1,CK[j][1][m])){ 

int s = def(P_S,k-1,CK[j][1][m]); 
if(s!=-1){ 

b[w]={x,y} on the condition that the instruction that is 
from P_P[x] to P_P[y] is equal to the w+1th instruction 
in a dynamic backward slice on slicing criterion=(s, 
CK[j][1][m], the test case); 
return b; 

      }else{ 
b[w]={x,y} on the condition that the instruction that is 
from P_P[x] to P_P[y] is equal to the w-th instruction 
from the last instruction in P_SC[l]; 
return b; 

}}} 
if(i<N(P_DC))  i++; 
if(j<N(A_DC))  j++; 

}} 
int def(Step[] S,int i,char[] n){ 

for(;0<=i;i--) 
for(int j=0;j<N(S[i].CR);j++) 

if(the character string that is pointed to by S[i].CR[j].n is 
equal to the character string that is pointed to by n) 
return i; 

return -1;} 
char[] value(Step[] S,int i,char[] n){ 

int j=def(S,i,n); 
if(j!=-1) 
  for(int k=0;k<N(S[j].CR);k++) 

if(the character string that is pointed to by S[j].CR[k].n is 
equal to the character string that is pointed to by n) 
return S[j].CR[k].v; 

return "";} 

Figure 10.  An algorithm for extracting an error instruction 

249Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services



program is equal to a correct program in terms of the input 
and output, which are designated in CK. Lines 3–5 search 
the first step data of a static chunk in the order of executing 
instructions, and lines 6–7 compare variables, which are 
designated in an evaluation item set, between an answer and 
a correct program at the input point that is immediately 
before the stepwise execution of the first instruction of a 
static chunk. In addition, lines 3 and 21–23 search the end 
step of the static chunk in the order of executing instructions, 
and lines 24–25 compare variables, which are designated in 
an evaluation item set, between an answer and a correct 
program at the output point that is immediately after the 
stepwise execution of the end instruction of a static chunk. 
Lines 10–13 and 28–31 compute a dynamic backward slice 
when the compared computer resource at the input or output 
point differs between the answer and the correct program, 
and the compared resource is defined at the comparison time. 
Otherwise, when the compared resource is not defined at the 
comparison time, lines 16–18 and 34–36 consider 
instructions that are from the instruction at the comparison 
time to the first instruction of a program as an error 
instruction sequence. When instructions from P[x] to P[y] 
include P[e], a function “int boi(char[] P, int e)” returns x. 
When error_ins(P_P,P_SC,A_SC, P_S, A_S, CK) is 
executed, a Block-type array that contains an error 
instruction sequence is obtained. 

6) Generate assistance expressions 
Our system first tries to detect a control structure error. If 

such errors are not detected, next, it tries to detect a behavior 
error and a computer resource control error. A control 
structure error is detected when a static chunk sequence of an 
answer program differs from that of a correct program. If 
such an error is detected, the system generates a chunk 
expression of the program by using static chunks of the 
answer and the correct program, and the answer program. A 
chunk expression of the program places static chunk 
sequences of the answer and the correct program side-by-
side with the instructions of the answer program. A behavior 
error and a computer resource control error are detected 
when an error instruction sequence contains instructions. 
When such an error is detected, the system generates a chunk 
expression of trace data by using the answer program and 
dynamic chunks of the answer and the correct program. A 
chunk expression of trace data places dynamic chunk 
sequences of the answer and the correct program side-by-
side. In addition, the system generates a projection 
expression of error steps by using the answer program, 
evaluation item sets, static chunks of the answer and the 
correct program, and step data of the answer and the correct 
program. A projection expression of error steps adds a chunk 
expression of the program to an error instruction sequence of 
the answer program and its execution results, and the 
execution result of a correct program. 

IV. PROTOTYPE SYSTEM 

This system holds the following static chunk conditions; 
sequence processing, start processing of function, start 
processing of function (with errors), end processing of 
function, end processing of function (with errors), readout 

processing of arguments, readout processing of arguments 
(with errors), repetition processing, selection processing. The 
question shown in Fig. 11 requires the implementation of a 
function sum that adds two arguments and stores the result in 
GR1. The behavior of the function in assembly is specified 
by a question sentence and a C program. For computer 
resource control, the use of all registers in the assembly 
program is specified by the corresponding C program. For 
example, the use of GR1 is specified by “assign GR1 to 
variable x” in the question sentence and variable x in the C 
program, which is assigned to the first argument. 

Fig. 12 shows a correct answer (a) for the question shown 
in Fig. 11 and three incorrect answers (b, c, and d). In terms 
of behavior error, addition is correct instead of subtraction at 
line 6. In terms of control structure error, the instructions 

Develop a function sum by CASL-II programming; the function is 

expressed by the following C program, and arguments of the function 

are held in the stack shown in the image below.

However, your program should conform to the following conditions.

・ Store the return value in GR1

・ Consider GR7 as a stack frame pointer

・ Consider GR1 as variable x

・ Consider GR2 as variable y

・ Implement readout processing of arguments and the end processing 

of function by using the stack frame pointer

・ Implement save processing of a stack frame pointer in the readout 

processing of arguments by operation code PUSH

・ Implement load processing of a stack frame pointer in the end 

processing of function by operation code POP

・ Consider P11 as the label of the function sum
 

Figure 11.  A question on function implementation 

 
Figure 12.  A correct answer and incorrect answers of the question in Fig. 

11 
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described at lines 4 and 5 in the answer program are missing. 
The two instructions are used for readout of the arguments. 
In terms of computer resource error, the control structure is 
correct but the second operands of LD at lines 4 and 5, which 
are used for the readout of arguments, are incorrect. 

Fig. 13 shows an assist expression for an answer program 
that contains a construction structure error (Fig. 12-c). A 
chunk “readout processing of arguments” is not shown 
because the answer program lacks instructions for the 
readout of arguments. A student notices this by comparing 
the chunk sequences of the answer and the correct paper.  

Fig. 14 shows trace data of the correct and the answer 
program containing a behavior error (Fig. 12-b). A student 
specifies the causes of errors by confirming the difference 
between the trace data of his/her program and the correct 
program. Line 1 in Fig. 14 indicates the start of the readout 
of the argument. Lines 8 and 12 indicate the processing. Line 
17 indicates the start of the end of the processing of the 
function. Furthermore, the student can notice the difference 
between the variables in his/her program and the correct 

program at line 29. The student can notice that lines 1–5 in 
his/her program in Fig. 12-b are correct because lines 1–14 
in the chunk expression of the trace data of his/her program 
and the correct program are identical. Additionally, the 
student can notice that lines 7–9 in his/her program in Fig. 
12-b are correct because lines 17–25 in the chunk expression 
of the trace data of his/her program in Fig. 14 and the correct 
program are identical. Therefore, the student can understand 
that the error in his/her program is caused at line 6 in Fig. 12-
b. 

Fig. 15 shows the projection expression of error steps for 
the computer resource control error in Fig. 12-d. The 
instructions in the dashed rectangle include causes of errors, 
and they are a dynamic backward slice that is computed 
because the value of GR1 of the answer program differs 
from that of the correct program at the output point of the 
second chunk. GR7 of the answer program is equal to that of 
the correct program at the output point of the first chunk, but 
GR1 differs at the output point of the second chunk. 
Therefore, the causes are narrowed to the following; in the 
second chunk, the instructions for GR7 are missing, and the 
instructions for GR1 are missing or incorrect. In a similar 
manner, narrowing down instructions that need to be 
reviewed using a dynamic backward slice and showing 
instructions and their execution results can help students to 
specify the causes of errors. 

V. EVALUATION EXPERIMENT 

An experiment was carried out to evaluate the 
effectiveness of assistance expressions. Chunk expressions 
of programs (expression 1), chunk expressions of trace data 
(expression 2), and projection expression of error steps 
(expression 3) help students specify the causes of their errors. 
We conducted a questionnaire survey for our system in the 
“Systems Programming” class, which is for second-year 
students in our university. The class includes four assembly 
programming exercises, and the students attempted 13 
questions using our system. After finishing the fourth 
exercise, we distributed the questionnaires, which were 
aimed at determining how effective our system was in 
helping students specify the causes of their errors. The 
subjects answered the questions using the following five-
point scale: 5 - very much, 4 - a lot, 3 - somewhat, 2 - not 
much, 1 - not at all. The questionnaires also contained space 
for comments. 

24 valid responses were obtained. The average is rounded 
off to three decimal places, and the p-value is the value 
computed by a Wilcoxon test. The average and p-value of 
expression 1 are 3.88 and 0.0007, those of expression 2 are 

 
Figure 13.  Chunk expression of program 

 
Figure 14.  Chunk expression of trace data 

 

Figure 15.  Projection expression of error steps 
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4.25 and 0.0002, and those of expression 3 are 4.29 and 
below 0.0001. The averages and the p-values confirm that all 
suggested expressions helped the subjects specify the causes 
of their errors. The comment for expression 2 is “I could 
notice errors in my program behavior using the expression, 
but I spent a lot of time specifying the corresponding 
instructions in my program.” Because expression 3 is 
designed to resolve such problems, we will link expressions 
2 and 3 using a hyperlink in future work. The comment for 
expression 3 is “It is helpful to narrow down instructions that 
are related to errors.” On the other hand, “This expression 
was not very helpful to specify operand order errors.” Such a 
solution is beyond the scope of our study at this time. We 
will develop functions to solve such problems in future work. 

VI. CONCLUSION AND SUMMARY 

In this study, we proposed a system that generates 
expressions for helping students specify causes of errors by 
helping them comprehend their program; students can use 
the developed functions to automatically judge whether their 
programs are correct. We developed this system because 
some students are unable to perform the above mentioned 
tasks in assembly programming exercises. In this system 
answers, correct answers, test cases, evaluation item set, and 
static chunk conditions are provided as inputs, and true-false 
judgments, chunk expressions of programs, chunk 
expressions of trace data, and projection expressions of error 
steps are provided as outputs. To generate such expressions, 
we suggested extraction methods for static chunks, dynamic 
chunks, and error instruction sequences. Through a 
questionnaire survey, we evaluated the effectiveness of the 
suggested expressions in helping students specify the causes 
of their errors. The results suggested that the expressions 
were quite helpful. 
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