
About an Architecture That Allows to Become a Mobile Web Service Provider

Marc Jansen

Computer Science Institute

University of Applied Sciences Ruhr West

Bottrop, Germany

marc.jansen@hs-ruhrwest.de

Abstract—The role of mobile devices as Web Service

consumers is widely accepted and a large number of mobile

applications already consume Web Services in order to fulfill

their task. Nevertheless, no reasonable approach exists, as yet,

to allow deploying Web Services on mobile devices and thus

uses these kinds of devices as Web Service providers. This

paper presents an approach that allows deploying Web

Services on mobile devices by the usage of the well-known

protocols and standards and, at the same time, can overcome

problems that usually occur when mobile devices are used as

service providers. Here, we provide both the description of an

implementation with results of a first performance test. The

test shows that the described approach provides a reasonable

way to introduce Web Service provisioning for mobile devices.

Keywords - mobile devices; Web Services; mobile Web

Service provider.

I. INTRODUCTION

In recent years, the number of reasonably powerful
mobile devices has much increased. According to [1], the
number of smartphones worldwide counts about 300 million
units.

On the other hand, this huge number of smartphones
represents a large number of heterogeneous devices with
respect to the operating systems smartphones are currently
using. According to [2], there were at least five different
operating systems for smartphones available on the market in
2010, and their distribution is shown in Fig. 1.

Figure 1. Distribution of different operating systems for smartphones in

2010

It thus seems to be necessary to have a platform-

independent mechanism for the communication with services
provided by smartphones in order to not re-implement each
service for each of the mentioned operating systems.

Usually, Web Services are used in order to provide a
standardized and widely used methodology that is capable of
achieving a platform-independent way to provide services.
Unfortunately, in contrast to consuming Web Services on
mobile devices, providing Web Services on mobile devices
is not yet standardized due to several problems that occur
when a service runs on a mobile device.

This paper presents the description of a framework that
allows providing Web Services on mobile devices. The
outline of the paper is as follows: the next section provides
an overview of related work, after which the scenario -
together with the problems that usually occur should Web
Services be provided by a mobile device - is explained. The
following section explains the implementation of the
framework in detail and the results of a first performance test
are presented. The paper is closed by a conclusion.

II. STATE OF THE ART

The idea of providing Web Services on mobile devices
was probably presented first by IBM [3]. This work presents
a solution for a specific scenario where Web Services are
hosted on mobile devices. More general approaches for
providing Web Services on mobile devices are presented in
[4] and [5]. In [6], another approach, focusing on the
optimization of the HTTP protocol for mobile Web Services
provisioning, is presented.

Importantly, none of the mentioned approaches manages
to overcome certain limitations of mobile devices, as
demonstrated in the next section.

The major difference between previous research and the
approach presented in this paper is that, to the best of our
knowledge, previous research focused very much on
bringing Web Services to mobile devices by implementing
server side functionality to the mobile device in question.
The approach presented here follows a different line: from a
technical and communication point of view, the mobile Web
Service provider communicates as a Web Service client with
a dynamically generated Web Service proxy.

This approach provides an advantage for overcoming
certain problems with mobile Web Services as described in
the next section. Furthermore, this approach does not rely on
an efficient server side implementation of Web Services on
the mobile device, and thus allows to implement a very
lightweight substitution to a common application server
where a common Web Service is running.

Since nothing comes for free, this approach has some
drawbacks as well, e.g., it implements a polling mechanism
that permanently polls for new service requests. Therefore,

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

this approach produces an overhead with respect to the
network communication and the computational power of the
mobile device. The computational overhead, though, can be
dramatically reduced by adjusting the priority of the polling
mechanism according to the priority of the provided Web
Service.

Another drawback of the presented approach is that it
relies on a publicly available proxy infrastructure for the part
of the framework that dynamically generates the Web
Service proxies. This drawback can be overcome if, for
example, mobile telecommunication companies provide this
kind of infrastructure centrally.

In contrast to the before mentioned approaches, the
approach presented in this paper differs with respect to one
major aspect: from a network technical point of view there is
no server instance installed on the mobile device. Therefore,
a certain Web Service client does not call the Web Service
on the mobile device directly but calls a centrally deployed
proxy. The Web Service running on the mobile device polls
in regular intervals for any new message requests of interest.
The sequence of the Web Service request from the client
point of view and from the Web Service point of view is
shown in the sequence diagram in Fig. 2.

Figure 1: Sequence diagram of the Web Service calls in the presented

approach

The exact sequence of the different messages and events

will be described in more detail later. Since especially
polling mechanisms cause a certain drawback, one of the
major questions concerning the presented approach is the
question of benefits and drawbacks of the polling mechanism
and, in particular, whether the benefits justify the drawbacks.

As already mentioned, one of the major problems of
dealing with Web Services on mobile devices is the fact that
mobile devices often switch between networks. Therefore,
the Web Service running on a mobile device is usually not
available under a fixed address, a fact that leads to a number
of problems for the consumer of a mobile Web Service:
Besides the usual network switch, the fact that mobile
devices are usually not meant to provide 24/7 availability,
but are designed towards providing the user with the
possibility to exploit certain services, e.g., phone calls, short
messages, writing and receiving emails, etc., yields the

problem that mobile devices might get switched off by the
user. Hence, not only that the provided Web Service might
be unavailable under different network addresses, but it
might not be available at all.

All these drawbacks can be solved by using the approach
presented here. By using the central proxy, the service
requests of a certain Web Service client can be stored and if
the mobile Web Service is running, it can pull for service
requests that are of interest to it. Since from a technical point
of view the Web Service provider only acts as a client to the
Web Service proxy, the potentially changing network
addresses of the mobile device do not pose a problem at all.

In addition, one of the major drawbacks of the described
polling mechanism can be limited by adjusting the priority of
the Web Service running on the mobile device, resulting in a
lower frequency of the polling for the service request.

To conclude, in our opinion, the advantages of the
described mechanism justify the drawbacks that are inherent
to the approach.

III. SCENARIO DESCRIPTION

The major idea behind the implementation of the
middleware is to provide a Web Service proxy, according to
the proxy design pattern [7], in order to overcome certain
problems in mobile scenarios as described by [8]. One major
problem here is that mobile devices often switch networks,
e.g., at home the mobile phone might be connected to a WiFi
network, at work the connection might be established
through another WiFi network and on the way home from
work the mobile phone might be connected to a
GPRS/UMTS-network. Each of these different networks
provides different IP addresses and possibly different
network constellations. For example, it can be private IP
addresses with network address translation (NAT), where the
Web Services running on the device are not directly
accessible from the internet, or public IP addresses.

Frequently switching between IP addresses might raise
certain problems for the provision of Web Services, since the
client of a certain service always needs to know the actual IP
address at which the service can be reached. More than that,
within a private network the provided Web Services are
usually not reachable at all from the internet.

Therefore, the problem, from the client point of view, is
that the service is not always accessible under the same (and
constant) IP address. The presented approach provides a
solution to overcome this problem, with the exception of the
case when a device is completely switched off. The switch
off problem can be overcome as well, in which case slight
modifications to the presented approach, together with an
asynchronous call of the Web Service, are necessary.

The approach presented here suggests solving these
problems by implementing a Web Service proxy that
dynamically creates a proxy for each Web Service that gets
deployed on a mobile device. The created proxy allows
receiving service requests as a representative to the actual
service and storing a service request along with the necessary
data. In the next step, the mobile Web Service provider
continuously polls for requests to its services, performs the
services and sends the result back to the dynamically

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

generated Web Service proxy. Receiving the result, the Web
Service proxy can send the result back to the client that
originally performed the service request.

IV. IMPLEMENTATION

The major goal of the work presented here is to provide a
solution to the described scenario. Therefore, we
implemented a middleware that allows the provision of Web
Services on mobile devices. Here, the standard protocols,
e.g., WSDL for the description of the Web Service interface,
SOAP/REST as the standard network protocol and http as
the usual transport protocol, are used such that there is no
additional effort on the client side for requesting a mobile
Web Service.

The following three sections provide a short introduction
to the services offered by the middleware, followed by a
description of the communication between the mobile Web
Service provider and the Web Service client/consumer. Last
but not least some details are presented about the Java based
implementation for the test scenario.

A. Use-Case Analysis

In order to achieve the goal of implementing a Web
Service proxy, an analysis of use-cases that this proxy will
have to support has been performed. The result of this
analysis is shown in Fig. 3.

Figure 2: Use case description of the developed middleware.

From a technology point of view four different actors
participate in the scenario. Obviously, a provider for the
mobile Web Service is necessary. This is a piece of software
running on the mobile device that provides the Web Service
itself. This piece of software can best be compared with an
application server hosting a Web Service in a scenario where
the Web Service is provided by a common server system.

The second quite obvious actor is the consumer of the
Web Service: the Web Service client. This is a piece of
software running on the client side, performing requests to
the Web Service.

As already described, one of the major ideas of the
presented approach is to provide a proxy for the Web
Services provided by the mobile devices. Therefore, the Web
Service proxy is another actor that participates in the
scenario. The proxy represents a surrogate of the Web
Service provided by the mobile device. The basic function of

this proxy is to implement the same interface (same methods
with identical parameter lists and return values) as the Web
Service itself. Moreover, the methods provided by the proxy
(in order to register a service, de-register a service, etc.),
should be accessible via the standard network protocols of
Web Services and the description of the proxy interface
should also be available in WSDL (in the implementation
here the SOAP protocol was chosen). The proxy’s’ major
task is to receive client requests, store them in a database and
wait for the mobile Web Service to provide the result of the
service request. While in the traditional proxy pattern the
proxy would directly forward (push) the incoming service
requests to the Web Service, we have decided to just store
the requests in a database in order to allow the mobile Web
Services to pull the requests from the proxy. This change to
the traditional proxy pattern basically allows handling
constantly changing network connections (as explained
before), since within this approach neither the Web Service
proxy nor the Web Service client need to know the actual IP
address of the mobile device that provides the actual Web
Service.

Fourth and last, the database is taken to be an actor of the
middleware. Usually, the database would more likely be
modeled as a system (and not as an actor), but for the sake of
clarity and consistency, we decided to model the database
also as an actor in the system. The major task of the database
is to store the necessary information about the service
request in order to allow the Web Service running on the
mobile device to perform the requested task, and to later-on
store the return values of the service request as well. By
storing also the return value, the Web Service proxy is able
to send the result back to the client that made the request.
This is necessary since the usage of the proxy is transparent
to the client, in the sense that the client is not aware that the
actual service request is not answered by the proxy, but by
the Web Service running on the mobile device. Therefore,
the Web Service proxy needs to send the result of the service
to the Web Service client, and not the mobile Web Service
itself.

Besides the four actors, a number of use-cases need to be
implemented in order to fully run the described scenario:

First of all, a mobile Web Service provider needs to be
able to register a service to be provided. Besides the Web
Service provider, the Web Service proxy and the database
are interacting within this use-case, too. The Web Service
proxy needs to dynamically implement the interface of the
mobile Web Service and the storage of the metadata
(basically the name of the method that should be called and
its parameter values) of the service requests. The database
needs to provide certain storage for the parameter values of
each method (in case of a relational database: a table) and the
according return values of the mobile Web Service.

The second, quite obvious, use-case is that the mobile
Web Service provider needs to be able to receive service
requests. Besides the mobile Web Service provider, the Web
Service proxy participates in this use-case also, since this is
the instance that directly receives the requests from the Web
Service client and stores the necessary information in the
database. Two additional use-cases, namely, perform service

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

requests and receive service request results, participate in the
store service request metadata use-case.

Additionally, we have identified two other use-cases that
are necessary for the handling of the service request
metadata (store service request metadata) and the handling of
the return values (store service result). The first of these two
use-cases interacts with two actors: the Web Service proxy
and the database; the second one additionally interacts with
the Web Service Provider.

Beside the fact that the provision of these use-cases
allows the implementation of the described scenario, one of
the major advantages of this approach is that the Web
Service client only interacts with the preformed service
request and receives corresponding answers from the service
request result use-case. Therefore, from a client point of
view, the request to a mobile Web Service is no more than a
usual service request. No additional effort is necessary on the
client side in order to receive results from a Web Service
running on a mobile device.

B. Communication between the mobile Web Service and

its clients

In order to explain the necessary communication for a
service request from the Web Service client to the mobile
Web Service provider, we modeled the communication flow
within the sequence diagram shown in Fig. 4.

Figure 3: The UML sequence diagram for the communication between a

Web Service provider and its client.

Within the sequence diagram we have modeled an object

life line for each of the actors, to be discussed later. First of
all, the mobile Web Service provider needs to register its
service with the Web Service proxy. As part of the service
registration process the Web Service proxy creates the
necessary data structure for storing the service requests in the
database.

After the mobile Web Service provider has registered its
service, it permanently polls the Web Service proxy for new
service requests. The Web Service proxy asks the database if
a new service request for the respective mobile Web Service
provider is available and if so, returns the request’s metadata
to the mobile Web Service provider. After receiving the
metadata of a new service request, the mobile Web Service

provider performs the service and sends the result of the
service to the Web Service proxy that directly stores the
result in the database.

From a client point of view, the Web Service client
simply calls the service provided by the Web Service proxy.
While receiving a new service request, the Web Service
proxy stores the necessary request metadata in the database.
Afterwards the Web Service proxy directly starts to
permanently poll the database for the result of the respective
service request. Once the mobile Web Service provider has
finished performing the request and has stored the result (via
the Web Service proxy) in the database, the Web Service
provider is able to send the result of the service request back
to the client.

C. A sample implementation

In order to test the described approach with respect to its
performance, we implemented the Web Service proxy in
Java. Additionally, the mobile Web Service provider was
implemented for Android. Here, we focused on an intuitive
and easy way for the implementation of the Web Service,
and have therefore, oriented ourselves by the JAX-WS (Java
API for XML-Based Web Services), as described in the Java
Specification Request 224 (JSR 224). The major idea,
adapted from JAX-WS, was that a Web Service can easily be
implemented by the use of two different annotations: the
@MobileWebService annotation marks a class as a Web
Service, and methods within this class can be marked as
methods available through the mobile Web Service with the
@MobileWebMethod annotation.

With the help of these two annotations a simple mobile
Web Service, which only calculates given integer values, can
be implemented as follows:

@MobileWebService

public class TestService {

 @MobileWebMethod

 public int add(int a, int b) {

 return a + b;

 }

}

The basic relationships between the major classes of the
sample implementation are shown in Fig. 5. For the sake of
simplicity and transparency, less important classes (and
methods of each class) have not been modeled.

Basically, the implementation consists of two packages.
Package one is the proxy package which is usually deployed
on a server that is reachable from the internet via a public IP
address. Here, we find one class that implements the
necessary methods for the registration of a new mobile Web
Service, the permanent polling from the mobile Web Service
for the service request metadata and the method that allows
storing the result of the service request in the database. All
these methods are reachable as Web Services themselves, so
that the communication between the instance running the
mobile Web Service and the Web Service proxy is
completely Web Service-based.

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Figure 4: UML class diagram of major parts of the sample implementation

Basically, the implementation consists of two packages.

One package that is usually deployed on a server that is
reachable from the internet via a public IP address, this is the
proxy package. Here, we find one class that implements the
necessary methods for the registration of a new mobile Web
Service, the permanent polling from the mobile Web Service
for the service request metadata and the method that allows
to store the result of the service request in the database. All
of these methods are themselves reachable as Web Services,
so that the communication between the instance running the
mobile Web Service and the Web Service proxy is also
completely Web Service based.

In the provider package we find, as one of the major
classes, the MobileWebServiceRunner class to which the
mobile Web Service gets deployed. This class is basically
comparable to an application server in a common Web
Service environment, but with a dramatically lower footprint.
This lower footprint is extremely important to mobile
devices due to their usually limited resources. Additionally,
this package also provides the two formerly mentioned
annotations that allow an easy marking of a class as a
mobile Web Service and, accordingly, a certain method of
such a class as a mobile Web Method. Last but not least, this
package also implements the ServiceRequestFetcher class.
This class inherits the java.lang.Thread class since its
responsibility is to permanently poll the Web Service
provider for new service requests.

V. PERFORMANCE TESTS

Since the communication is a little bit more complicated,
in comparison to a common Web Service call, one concern
of this approach is the question of its performance. In order
to get a first idea of how good or bad this implementation
behaves with respect to performance issues, we implemented
a simple performance test.

A. Description of the test scenario

For the performance test we implemented a very simple
mobile Web Service. This service only calculates the sum of
two given integers and returns the respective value as the
result. The major advantage of such a simple mobile Web

Service is that almost the entire duration of the mobile Web
Service call is dedicated to the communication, and almost
no amount of the round-trip time is used for the calculation
itself. Since the communication is the complex part of the
presented approach, we assume that this method of
performance testing would provide the best overview about
the communication performance of the presented approach.
In the test scenario a common client (running on a common
PC) had to put a number of service requests to the mobile
Web Service.

In order to compare the results against the performance
of common Web Service calls, we implemented the test
scenario also the other way around: we implemented a
common Web Service (running on a common server) and
called this Web Service from a mobile device. Here, the
basic idea was to use the same hard- and software-
environment with minimal changes and also to maintain the
same network environments in all of the tests.

In addition, we were interested in the communication
performance in different network settings. Therefore, we
performed the same tests in four different network settings.
For each of the tests the (mobile) Web Service and its
consumer where running:

 … in the same (WiFi) network,

 … different networks, and the mobile device

was connected via WiFi,

 … different networks, and the mobile device

was connected via UMTS

 … different networks, and the mobile device

was connected via GPRS
 We conducted eight different test cases: four for the

different network constellations with a mobile Web Service
running on a mobile device and a Web Service client running
on a common PC, and four test cases where the Web Service
was running on a common Server and the client was running
on a mobile device.

In the test cases where the (mobile) Web Service
provider and the client were not connected to the same
network, the central components have been deployed to a
server running via Amazon Web Services (AWS), as a Cloud
Computing provider.

B. Test results

Within each of these eight test cases, one hundred service
calls were performed and the duration of each call was
measured.

The results for the mobile Web Service in the different
network scenarios are shown in Fig. 6.

As expected, the performance for the mobile Web
Service calls was pretty good and pretty constant in the case
the mobile device was connected with a WiFi network. If
both the mobile Web Service provider and the client were
connected to the same WiFi network, the average duration
was M = 147.69ms (SD = 76.00ms). Having the mobile Web
Service provider connected to a different WiFi network, the
average duration for one service call was M = 339.04ms (SD
= 61.71ms).

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Figure 5: Results for the mobile Web Service in the different network

constellations

As expected the performance for the mobile Web Service

calls are pretty good and pretty constant if the mobile device
is connected with a WiFi network. The average time if both
the mobile Web Service provider and the client are
connected to the same WiFi network was M = 147.69ms (SD
= 76.00ms). Having the mobile Web Service provider
connected to a different, still WiFi, network the average time
for one service call calculates to M = 339.04ms (SD =
61.71ms).

Of course, we measured less performance of the service
calls when the mobile Web Service provider was connected
to a mobile network, the performance of the service calls was
lower. The results for the UMTS based network connection
of the mobile Web Service show an average of M =
827.55ms (SD = 250.35ms) for each service call, while the
results for the GPRS based network are even worse. Here,
the average for a single service call is M = 1355.96ms (SD =
986.38ms). As can be seen from the values for the standard
deviation, the performance of single service calls differs
dramatically as well, e.g., the minimum duration measured
within the UMTS scenario was MIN = 283ms and the
maximum was MAX = 2169ms. The results for the GPRS
based scenario are even worse, with a MIN = 142ms and
MAX = 5123ms.

The task of the second step of the test was to compare the
performance results with the performance of a common Web
Service call. For that purpose we conducted the same test,
but this time the Web Service was not running on a mobile
device but on a common server, while the Web Service client
was running on a mobile device - again in the four different
network settings. The results of these tests are shown in Fig.
7.

As demonstrated, the results are better from both
perspectives - the overall performance and the standard
deviation in the different network settings. A common Web
Service call, if the Web Service provider and the mobile
Web Service consumer are connected to the same WiFi
network, has an average round-trip duration of M = 61.16ms
(SD = 301.36ms). When the Web Service client was
connected to a different (still WiFi) network the average
performance was M = 156.71ms (SD = 15.24ms).

Figure 6: Results for the usual Web Service calls in the different network

constellations

Here, again, the values for the Web Service client

connected to a mobile network are somewhat lower. In the
case of the UMTS network, the average service call showed
a performance of M = 528.55ms (SD = 273.34ms), and the
results for the GPRS based network even worse with an
average for each of the service calls of M = 1299.10ms (SD
= 658.75ms).

The next step was to compare the different results. The
major goal of this comparison was to get an idea of how
good the performance of the presented approach for mobile
Web Service calls is, in comparison to common Web Service
calls. Therefore, we calculated the difference in the average
performance of a single Web Service call in the different
scenarios first, and as a second step calculated the percentage
of the performance difference in the different scenarios. The
results are shown in Table 1.

TABLE 1: COMPARISON OF THE COMMON WEB SERVICE

CALLS AND THE MOBILE WEB SERVICE CALLS IN THE

DIFFERENT NETWORK SCENARIOS

The table shows that, in comparison to common Web

Service calls, the performance of the presented approach was
not too good when the mobile Web Service was connected to
a WiFi network. The results for the mobile Web Service
provider and the client connected to the same network
showed a performance overhead of 137.60 per cent, and
when the mobile Web Service was provided within a
different WiFi network the performance overhead was about
116.35 per cent. But, if the mobile Web Service was
connected to a mobile network, the performance overhead
was not that dramatic anymore. In the case of the UMTS
network the overhead was limited to 56.57 per cent, and for
the GPRS based network the overhead was even lower at
4.38 per cent. Therefore, on the basis of our test results, it
can be said that the performance of the presented approach
for mobile Web Services (in comparison to common Web
Services) seems to improve the lower the network bandwidth
is. This could best be seen by the results for the GPRS based
network, where the actual overhead in our test was below 5
per cent.

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

VI. CONCLUSIONS

As demonstrated in this paper, today’s modern and
powerful mobile devices can be used as Web Service
providers by using well-known and accepted standards and
protocols. The presented approach is capable of solving
some of the problems that usually occur while providing
Web Services on mobile devices, e.g., the problem of
constantly changing IP addresses. Furthermore, the overhead
that is inherent in the presented approach does not seem to be
a show stopper. As shown, the performance in commonly
available mobile networks, like UMTS or GPRS, is
comparable to common Web Service calls.

It can, therefore, be concluded that the presented
approach provides an interesting alternative to the common
Web Service provisioning by using mobile devices that act
as a server also from a technical point of view. It eliminates
certain problems that usually occur if mobile devices provide
Web Service provider infrastructures, and the resulting
drawbacks from the performance point of view are
acceptable.

Having in mind the power that the presented approach
would provide for new approaches and scenarios, it could be
asserted that bringing Web Services to mobile devices will
probably become more important in the future and that we
will most likely see an increasing number of applications
making use of that kind of technology.

ACKNOWLEDGMENT

This work was partly supported by an Amazon AWS
research grant.

REFERENCES

[1] IDC Worldwide Quarterly Mobile Phone Tracker, January 27,

2011.

[2] Tudor, B. and Pettey, C., 2010. Gartner Says Worldwide

Mobile Phone Sales Grew 35 Percent in Third Quarter 2010,

Smartphone Sales Increased 96 Percent, Gartner,

http://www.gartner.com/it/page.jsp?id=1466313, last visited

19.11.2011

[3] McFaddin, S., Narayanaswami, C., and Raghunath, M., 2003.

Web Services on Mobile Devices – Implementation and

Experience, In: Proceedings of the 5th IEEE Workshop on

Mobile Computing Systems & Applications (WMCSA’03), pp.

100-109, Monterey, CA

[4] Srirama, S., Jarke, M., and Prinz, W., 2006. Mobile Web

Service Provisioning, In: Proceedings of the Advanced

International Conference on Telecommunications and

International Conference on Internet and Web Applications

and Services (AICT/ICIW 2006), p. 120, Guadeloupe, French

Caribbean

[5] AlShahwan, F. and Moessner, K., 2010. Providing SOAP Web

Services and REST Web Services from Mobile Hosts, In: Fifth

International Conference on Internet and Web Applications

and Services (ICIW), pp. 174-179.

[6] Li, L. and Chou, W., 2011. COFOCUS – Compact and

Expanded Restful Services for Mobile Environments, In:

Proceedings of the 7th International Conference on Web

Information Systems and Technologies, pp. 51-60,

Noordwijkerhout, The Netherlands

[7] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995.

Design Pattern – Elements of Reusable Object-Oriented

Software, pp. 185-195, Addison-Wesley.

[8] Svensson, D., 2009. Assemblies of Pervasive Services. Dept. of

Computer Science, Institutional Repository – Lund University.

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

