
Hybrid Recommendation of Composition Knowledge for
End User Development of Mashups

Carsten Radeck, Alexander Lorz, Gregor Blichmann, Klaus Meißner
Technische Universität Dresden, Germany

{Carsten.Radeck,Alexander.Lorz,Gregor.Blichmann,Klaus.Meissner}@tu-dresden.de

Abstract—Due to the increasing number of available web
APIs and services, mashups have become a prominent ap-
proach for building situational web applications. Still, current
mashup tooling is not suitable for end users lacking detailed
understanding of technical terms or development knowledge.
A promising approach to ease mashup development is end user
guidance utilizing recommendations on composition knowledge
gained from experienced, similar users and semantic compo-
nent annotations. In this paper, we present a novel hybrid
recommendation approach suggesting suitable advice for the
application development and adaptation to the end user. Com-
position knowledge in terms of common composition patterns
is applied. Pattern instances are generalized by determining
semantic exchangeablity of components to allow for context-
sensitive recommendations. In addition, they are automatically
integrated with the running application.

Keywords-Mashup; End User Development; Hybrid Recom-
mendation; Runtime Composition.

I. INTRODUCTION

While the amount of available application programming
interfaces (APIs) and third party resources in the Web
is steadily increasing, the emerging mashup paradigm en-
ables loosely coupled application components to be reused
in several scenarios by simply combining them. Besides
conventional mashup tools focussing on aggregation and
processing of data from heterogeneous sources, there are
proposals for the universal composition of mashups such
as [1]. It includes the uniform composition and integration
of distributed web resources. The latter are encapsulated
in uniformly described components spanning all application
layers including the user interface.

End User Development (EUD) aims at supporting the
construction of individual applications addressing situational
user needs. To this end, mashups are in principle a promising
approach due to the reuse of building blocks and lower
development efforts. We address domain experts, not ne-
cessarily with programming or technical knowledge, as end
users. For those, early mashup platforms, e. g., Yahoo! Pipes,
are unsuitable since they usually require an understanding
of underlying technologies or programming skills. Further-
more, given the increasing amount of web resources and
services, finding the right components or compositions is
a challenging task, especially if there are only technical
interface descriptions like WSDL. To overcome this and to

foster EUD, recommendations for meaningful composition
steps are of increasing importance [2], and gain momentum
in the mashups domain as well. Our approach of universal
composition by the given target group of end users at the
application’s runtime leads to several challenges:

C1 Besides the classic cold start problem, taking context-
sensitivity and QoS into account is a main challenge in
the domain of web services [3]. Given universal com-
position, this is of particular importance since we apply
binding and instantiation of components in the runtime
environment and support different target platforms.
Compositions should also be restorable on different
platforms later on. In such a setting, the components’
suitability to the current context, especially device and
software capabilities, has to be guaranteed.

C2 Since mashups claim to fulfil long-tail user needs, not
only the “most popular” components and composition
steps should be considered.

C3 The reason for and origin of recommendations should
be presented to the end user [4]. Additionally, we argue
that recommending functionality based on composition
knowledge should be applied to hide technical details.

C4 The ad-hoc reconfiguration of the mashup at runtime
necessitates the actual integration of recommended
composition parts and should be highly automated. In
addition, interface heterogeneity of semantically com-
patible components should be resolved automatically.

We propose a novel hybrid recommendation approach
presenting suitable advice for composition steps to the end
user. Therefore, we leverage composition knowledge in
terms of patterns, either mined statically from existing ap-
plications or dynamically based on the lightweight semantic
component annotations. By reasoning on composition pat-
terns’ functionality, determining semantic exchangeablity of
components and integrating patterns in running applications,
we aim to overcome the limitations of prevalent solutions.

The remaining paper is structured as follows. Related
approaches for recommending components or composition
knowledge and the conceptual foundation of our work are
briefly discussed in Section II. Next, our hybrid recom-
mendation approach is presented in Section III. Section IV,
finally, summarizes the vision and outlines work in progress.

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

II. RELATED WORK AND FOUNDATION

In the following, we discuss related approaches and define
our conceptual basis in more detail.

A. Related Work

In general, recommender systems can be classified as
collaborative filtering, content-based, and hybrid [5]. While
collaborative filtering approaches utilize preferences of users
similar to the active user, content-based ones recommend
items similar to the active user’s preferences.

There are a number of approaches using semantic sim-
ilarity of component interfaces, e. g., [6]. Such matching
approaches work well for the determination of alternative
and possible follow-up components including their coupling.
Additionally, rather “uncommon” solutions are recommend-
able and cold start can be avoided. On the other hand, se-
mantic component descriptors are required, which have to be
sufficiently expressive and, thus, complex to calculate whole
compositions. However, the proposals mentioned above do
not consider context information, collective knowledge, and
the integration of recommendations.

Other approaches build up on previously defined composi-
tions of other similar users. [7] utilizes collective knowledge
by reuse of mashlets and glue patterns to suggest missing
components and connections. [8] extends this approach by
ranking compositions with regard to multiple QoS and con-
text criteria. Based on semantic component descriptors, se-
mantic matching and AI planning, MashupAdvisor calculates
compositions probably fitting user goals (desired outputs of
the mashup) [9]. Thereby, the statistical (co-)occurrence of
input and output concepts are derived from existing com-
positions. In wisdom-aware computing [10], composition
knowledge is provided as advices associated with patterns
comprising the actual knowledge; triggers state the condition
under which the advices are offered. The proposal relies on
implicit semantics gathered by different mining techniques
and statistical data analysis on existing compositions. This
work covers the integration of recommendations in mashups.
These approaches suffer from cold start, prefer popular
solutions, and lack awareness of device or user context.

Other work focusses on the derivation of composition
recommendations, which can, for instance, be achieved by
mining frequent web service sequences [11] or matching the
composition context (a composition fragment of connected
services around a certain service) [12]. However, they suffer
from cold start and context-aware substitution of services or
their integration with the mashup are not addressed.

Hybrid recommender systems for web services are pro-
posed in [13] and [3]. Although they overcome cold starts,
both recommend single web services only and dynamic
service integration is not considered.

In summary, none of the solutions fulfils the requirements
identified in Section I. The next sections present the prere-
quisites and the overall concepts of our envisioned approach.

B. Universal Composition in CRUISe

Universal composition is in our case provided by CRUISe,
which allows for platform and technology independent
composition of arbitrary web resources and services [1].
Components encapsulating these resources are uniformly de-
scribed using the Semantic Mashup Component Description
Language (SMCDL) [14]. SMCDL covers non-functional
properties and the public component interface including
functional and data semantics of operations, events, and
properties by means of ontology concepts. A declarative
composition model describes the mashup application includ-
ing the components, their state, event-based communication,
and layout [1]. Templates as part of composition models
allow for the context-aware selection of semantically com-
patible components suitable for the target runtime environ-
ment and user preferences. To this end, templates are equally
characterized by a component interface, but additionally
include non-functional requirements for ranking candidates.

III. RECOMMENDATION APPROACH

In this section, we outline our novel concept for an
EUD mashup platform utilizing hybrid recommendation. We
extend the basic concepts of related proposals in several
directions due to the challenges (C1–C4) sketched above.

The overall approach is shown in Figure 1 and has
similarities to an adaptation loop, which, separated from the
application, includes continuous monitoring of the context
and the application, analyzing (i. e., evaluation of trigger
conditions and calculating recommendations in terms of
patterns), planing (i. e., deriving an action specification),
and adapting the application by executing the plan (i. e.,
realization of the action specification). Details on the main
steps and concepts are provided next.

ASHUP PPLICATION

DAPTATION UBSYSTEM

UNTIME NVIRONMENT

Composition
Models

Context Monitor

ATTERN
NSTANCES

Action
Specification

Adaptation Action

rigger

rigger

rigger

ILTER
ATCH

ENERALIZE
ANK
ATTERNS

User Feedback

SER ELECTION

RECOMMENDATION
MANAGER

Figure 1. Overview of the recommendation approach

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

A. Triggering the Recommendation Process

We propose a unified trigger concept to cover the whole
composition process starting from an empty application
canvas to the interactive development at runtime. As an
extension of [10], we distinguish explicit and implicit trig-
gers. The former, colored blue in Figure 1, require the user’s
intention to ask for recommendations. The latter can be dis-
tinguished in reactive (colored green) and proactive (colored
orange) and are generated by the platform based on context
information. Reactive triggers respond to context changes,
while proactive ones require the platform to continuously
request and analyze additional information that might lead
to recommendations. The following list provides examples:

• The user enters a brief description of his / her current
task to be solved in a text field (explicit).

• Compared to compositions of similar users, a certain
component is not part of the mashup (proactive).

• An event fired by a map component is not yet connected
to any component (reactive).

• Entering a meeting room, a new service offered by a
digital whiteboard becomes available (reactive).

• The underlying web service of a component has been
unavailable for several requests (reactive).

Triggers model conditions setting them off, e. g., a user
action and an affected component in case of an explicit
trigger. Further, triggers are associated with a defined set
of pattern classes, which are outlined in the next section.

Implicit, reactive triggers continuously receive notification
of context changes. Those notifications are generated by
the runtime environment’s adaptation subsystem [15] that
monitors context, like the user’s position or device state. The
Recommendation Manager interprets trigger events to sug-
gest helpful composition fragments. As further data sources,
it has access to the current composition model, a repository
of composition models, and the user’s context model.

B. Modelling and Querying the Composition Knowledge

Composition knowledge is represented by patterns de-
scribing common composition fragments, e. g., components
and their connections. Pattern classes and pattern instances
can by distinguished. In addition to the pattern classes co-
occurence, coupling, configuration, and complex identified
by [10], we introduce occlusion, exchangeability, and layout.
While exchangeable components provide the same function-
ality, an occluding component offers additional functionality.
Layout represents a typical arrangement of components.

Besides a characteristic composition fragment described
by the composition model mentioned in Section II-B, each
pattern has a rating and an origin to create trust and enable
traceability. The origin describes whether the pattern was de-
tected by semantic reasoning or from collective knowledge.
A further attribute is the functionality, which can be derived
from the components’ semantic annotations. This allows

for a user-appropriate visualization of the recommendations
primarily showing what will happen and, secondarily, which
composition fragments will be involved.

Pattern instances are decoupled from their mode of detec-
tion. Annotation-based semantic reasoning on exchangeable
and connectible components takes place either statically or
upon request. This way, the cold start problem is avoided
and “niche requirements” can be met (C2). On the other
hand, statistical analysis and data mining of existing com-
positions, for example, as proposed by [13] and [3], allow for
utilization of (complex) collective composition knowledge.

Based on a trigger, a preselection of suitable patterns
utilizing the mapping from trigger to pattern classes is
conducted. Then, pattern instances are matched against the
current composition and the conditions modelled by a trig-
ger. To allow for context-sensitive recommendations (C1),
we abstract pattern instances using templates.

Example: A mashup contains the component “Calendar”,
which is, as identified from collective knowledge, frequently
connected with “Facebook Contacts” (coupling). The context
model states that the user has no Facebook account, but is
registered at Google+. A second component, “Google Con-
tactor”, is recognized as a semantic substitute for “Facebook
Contacts” in relation to the coupling with “Calendar”. There-
fore, the coupling with “Google Contactor” is recommended.

Those equivalence classes of exchangeable components
can be determined by semantic matching of component
interfaces [14]. This way, we are able to generalize pattern
instances by identifying the occurrence of abstract compo-
nent classes, represented by templates, instead of concrete
components. The selection of a concrete component for a
template utilizes context information and non-functional an-
notations. Thus, the suitability of components for satisfying
the user’s preferences and their compatibility with a certain
runtime platform and device are considered.

Collaborative filtering takes place to rank the patterns
with respect to their popularity, ratings and relevance for
the current user. Existing solutions can be leveraged for this
task, e. g., clustering of users as proposed by [3].

Finally, the declarative action specification is derived. It
represents the changes in the composition model and, thus,
states all necessary steps to integrate a particular pattern
instance with the current mashup.

C. Presenting and Integrating the Composition Knowledge

When visualizing suitable patterns for a trigger, the addi-
tional functionality provided to the user is emphasized (C3).

Example: The user requests the extension of the mashup
containing the “Calendar”. The functionality Invite persons
to your appointment is offered. After the user agrees, a se-
lection of appropriate pattern instances, containing amongst
others the coupling with “Google Contactor”, is shown.

One important requirement is the dynamic integration of
the recommended composition knowledge with the mashup

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

under development (C4). For this purpose, the defined action
specification for the pattern instance selected by the user is
the main input and interpreted by the runtime environment.
Again, we utilize and extend the adaptation subsystem of the
runtime environment since it provides the necessary means
to realize adaptations at the component and the composition
layer, cf. Figure 1. Amongst others, declarative adaptation
actions for adding, exchanging, and reconfiguring compo-
nents, adapting the layout, as well as creating communi-
cation channels, and registering publishers and subscribers
are supported. This allows for a seamless integration of
our concepts with the underlying infrastructure. The correct
order of adaptation actions and their transaction-oriented
execution are guaranteed by the adaptation subsystem.

Example: The action specification for the coupling pat-
tern from the previous example comprises adding “Google
Contactor”, creating a communication channel between
“Calendar” and “Google Contactor”, and registering the
components as publisher or subscriber with this channel.

The user’s feedback on a pattern instance’s suitability is
collected, both explicitly by ratings and implicitly depending
on whether the pattern instance has been applied or not.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have given a brief overview of our ap-
proach to recommend composition knowledge. The latter is
derived from existing compositions of similar users (collab-
orative filtering) or from semantic component descriptions
(content-based) and weaved it into running mashups. Based
on a unified notion of recommendation triggers and com-
position patterns as well as an adaptation-enabled runtime,
we provide continuous development support for end users
during the usage of a mashup application. To allow for
context-sensitive recommendations, patterns are generalized
by semantically reasoned exchangeability of components.

The envisioned concepts are still early work in progress
requiring further elaboration, e. g., detection mechanisms for
implicit triggers as well as aggregation and processing of
trigger events. We continuously work on prototypes within
the CRUISe architecture to study practicability and feasibil-
ity in different application domains. One of the next steps
is to incorporate and extend means for mediation resulting
from our previous work [14]. Further, a user study is planned
to evaluate the recommendation approach.

V. ACKNOWLEDGMENTS

Funding for the EDYRA project is provided by the
Free State of Saxony and the European Union within the
European Social Funds program (ESF-080951805).

REFERENCES

[1] S. Pietschmann, V. Tietz, J. Reimann, C. Liebing, M. Pohle,
and K. Meißner, “A metamodel for context-aware component-
based mashup applications,” in 12th Intl. Conf. on Information
Integration and Web-based Applications & Services (iiWAS
2010). ACM, Nov. 2010, pp. 413–420.

[2] A. Namoun, T. Nestler, and A. De Angeli, “Service compo-
sition for non-programmers: Prospects, problems, and design
recommendations,” in 8th European Conference on Web Ser-
vices (ECOWS 2010). IEEE, Dec. 2010, pp. 123–130.

[3] L. Liu, F. Lecue, and N. Mehandjiev, “A hybrid approach to
recommending semantic software services,” in Intl. Conf. on
Web Services (ICWS 2011). IEEE, Jul. 2011, pp. 379–386.

[4] A. De Angeli, A. Battocchi, S. Roy Chowdhury, C. Ro-
driguez, F. Daniel, and F. Casati, “End-user requirements for
wisdom-aware eud,” in End-User Development, ser. LNCS.
Springer, 2011, pp. 245–250.

[5] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 6, pp. 734–749, 2005.

[6] D. Bianchini, V. De Antonellis, and M. Melchiori, “A recom-
mendation system for semantic mashup design,” in Workshop
on Database and Expert Systems Applications (DEXA), 2010,
pp. 159–163.

[7] O. Greenshpan, T. Milo, and N. Polyzotis, “Autocompletion
for mashups,” Proc. of the VLDB Endowment, vol. 2, no. 1,
pp. 538–549, Aug. 2009.

[8] M. Picozzi, M. Rodolfi, C. Cappiello, and M. Matera,
“Quality-based recommendations for mashup composition,”
in Current Trends in Web Engineering, ser. LNCS. Springer,
Jul. 2010, pp. 360–371.

[9] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin,
“Mashup advisor: A recommendation tool for mashup devel-
opment,” in International Conference on Web Services (ICWS
2008). IEEE, Sep. 2008, pp. 337–344.

[10] S. Roy Chowdhury, C. Rodrı́guez, F. Daniel, and F. Casati,
“Wisdom-aware computing: On the interactive recommenda-
tion of composition knowledge,” in Service-Oriented Com-
puting, ser. LNCS. Springer, Dec. 2010, pp. 144–155.

[11] A. Maaradji, H. Hacid, R. Skraba, and A. Vakali, “Social
web mashups full completion via frequent sequence mining,”
in World Congress on Services (SERVICES 2011). IEEE,
Jul. 2011, pp. 9–16.

[12] N. Chan, W. Gaaloul, and S. Tata, “Composition context
matching for web service recommendation,” in Intl. Conf. on
Services Computing (SCC 2011). IEEE, 2011, pp. 624–631.

[13] C. Zhao, C. Ma, J. Zhang, J. Zhang, L. Yi, and X. Mao,
“Hyperservice: Linking and exploring services on the web,”
in Intl. Conf. on Web Services (ICWS 2010). IEEE, Jul.
2010, pp. 17–24.

[14] S. Pietschmann, C. Radeck, and K. Meißner, “Semantics-
based discovery, selection and mediation for presentation-
oriented mashups,” in 5th Intl. Workshop on Web APIs and
Service Mashups (Mashups). ACM, Sep. 2011, pp. 1–8.

[15] S. Pietschmann, C. Radeck, and K. Meißner, “Facilitating
context-awareness in composite mashup applications,” in 3rd
Intl. Conf. on Adaptive and Self-Adaptive Systems and Appli-
cations (ADAPTIVE 2011). XPS, Sep. 2011, pp. 1–8.

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

