
Using CBR Method for Multi-Agent Selection of Multiple and Dynamic Composite
Web Service

Fatma Siala
University of Tunis

SOIE - ISG
Tunis, Tunisia

fatma.siala@gnet.tn

Khaled Ghedira
University of Tunis

SOIE - ISG
Tunis, Tunisia

khaled.ghedira@isg.rnu.tn

Abstract—It is well-known that Web service technologies
provide an easy way to integrate the applications within and
across organizational boundaries. Web services are usually
overlapping in functionality and how to make a choice based
on non-functional factors becomes a problem that needs to
be solved. This paper, argues that the selection of component
services should be considered in a global manner based on
the Web services availability and the users QoS preferences.
Indeed, QoS becomes one of the most important factors for
Web service selection. However, for a composition, we can
have different combinations and execution paths. Particularly,
a composite service can generate different schemes that give
various QoS scores. This paper presents a framework which
deals with the selection of composite Web services on the base
of Multi-Agents negotiation and CBR (Case Based Reasoning)
method. The objective of the agents is to find out the best
Composite QoS (CQoS) based on Web services availability and
elementary Web services QoS. By using CBR method, agents
can memorize QoS scores. This framework supports different
combinations and execution paths. The proposed Multi-Agents
framework is compared to an existing approach in terms
of execution time. Experiments have demonstrated that our
framework provides reliable results in comparison with the
existing one.

Keywords-Web service; QoS; Multi-Agent System; Contract-
Net Protocol; execution paths; availability; CBR technique.

I. INTRODUCTION

Economical context impacts companies and their Informa-
tion Systems (IS). Companies acquire other competitors or
develop new business skills, delocalize whole or part of their
organization. Their IS are faced to these complex evolutions
and have to overcome these changes. In this context, Service
Oriented Architecture (SOA) offers a great flexibility to
IS. Applications are seen as black boxes independently
connected to an application as Enterprise Application In-
tegration bus (EAI) with its connectors. However, this in-
tegration solution does not allow connecting heterogeneous
applications or infrastructures. Web services (WS) are based
on standards and they are the cheaper and simplest solution
to resolve this problem.

Service-Oriented Architecture (SOA) consists of a set
of design principles which enable defining and composing

interoperable services in a loosely coupled way. The value of
SOA lies in assuring that such compositions are easily and
rapidly possible with low costs. Thus, service composition
is a key to SOA [22].

Yet, with the explosion of Web services available through
out the Internet, it’s not easy for the end users to composite
the Web services manually to meet their specific preferences.

Quality of Web Service (QoS) has become a central
criterion for differentiating competing service providers con-
sidering the increasing number of services with similar
functionalities. The current service optimization paradigm
assumes that precise QoS values are available for selecting
the competing service providers [6], [22].

Moreover, a composite service can be represented by a
statechart which has multiple execution paths when contain-
ing conditional branchings. Each execution path represents a
sequence of tasks to complete a composite service execution.
Furthermore, for a composite Web service, we notice that we
can have different possible combinations.

Our work aims at advancing the current state of art in
technologies for Web service composition by first, taking
into account the user’s preferences, second, by using agents
to negotiate the execution path and combination offering the
best QoS value, finally, by adding to agents the capability to
memorize the QoS and the availability of each Web service.

By negotiating only with available Web services providers
fulfilling the QoS user requirements, we obtain a better
Central Processing Unit (CPU) time. The information about
the QoS is memorized in a cases base. This framework
improves the existing approaches [17] [16] in terms of
CPU time when the agents can memorize the Web service
availability and QoS.

Our contributions are revealed when negotiating only with
available Web services providers and fulfilling the QoS
requirements. We are able to memorize the QoS information
by using CBR (Case Based Reasoning) method. This con-
tribution gives a better Central Processing Unit (CPU) time
and also supports different execution paths and combinations
for a composition. The combination concept has never been
addressed by any approach.

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

The structure of this paper is as follows: The coming
section presents the major related works in the area of
Web service composition based on QoS. Section 3 proposes
the framework prototype based on Multi-Agent System and
using CBR technique. Section 4 explains the implementation
of this framework using a case study. Accordingly, Section 5
presents the experimentation results. After that, the approach
is discussed in Section 6 by presenting existing approach
limitations and detailing our contributions. Finally, we con-
clude the whole paper.

II. RELATED WORKS

Query optimization, taking into account QoS requirements,
on Web services have received considerable attention in the
service computing community [3] [14] [11]. In this section,
we review selected works based on their relevance for our
approach.

Zeng et al. [23] have presented a solution for the compo-
sition problem by analyzing multiple execution paths of a
composite service which are specified using UML (Unified
Modeling Language) statecharts. They have modeled the
composition problem using different approaches, including
a local optimization approach and global planning approach
using linear programming.

Guan et al. [7] are the first who propose a framework
for QoS-guided service compositions which uses constraint
hierarchies as a formalism for specifying QoS. They use
a branch and bound algorithm that is only capable of
solving sequential compositions. The authors do not present
any empirical evaluation to demonstrate the optimization
performance of their approach.

Rosenberg et al. [15] have used constraint programming
and integer programming approach for optimizing QoS by
leveraging constraints hierarchies as a formalism to rep-
resent user constraints (specified with a Domain-Specific
Language) of different importances.

Canfora et al. [4] have proposed an approach based on
genetic algorithms. To determine the optimal set of con-
cretizations, the approach needs to estimate the composite
service QoS. This is done using some aggregation formulas.

Hong and Hu [8] have used an ordinary utility function
as a numerical scale of ordering local services and a multi-
dimension QoS based local service selection model is pro-
posed to provide important grounds to choose a superior
service and shift an inferior one. Secondly, subjective weight
mode, objective weight mode, and subject-objective weight
mode are constructed to determine the weight coefficient of
each QoS criterion, and to show the users’ partiality and the
service quality’s objectivity.

Alrifai and Risse [1] have employed Mixed Integer Pro-
gramming (MIP) to find the optimal decomposition of global
QoS constraints into local constraints. They have used
distributed local selection to find the best Web services that
satisfy these local constraints.

Yan et al. [20] have presented a framework in which
the service consumer is represented by a set of agents
who negotiate QoS constraints specified using SLA (Service
Level Agreement), with the service providers for various
services in the composition applying the Contract-Net pro-
tocol. Their idea of using Multi-Agents System and the
Contract-Net protocol is in line with the work presented in
this paper. However, the authors do not deal with the the
Web dynamism (the availability concept) so their approach
takes a large CPU time. Moreover, their framework does not
support the different execution paths and combinations.

Most of these approaches does not take into account that
for a composite service we can have an execution plan that
generates different execution paths. These approaches deal
only with the optimization problem itself (finding the best
CQoS) without giving prominence for this aspect. Some
approaches deal with this aspect but repeating each time the
generation of all the elementary Web services. Moreover, all
these approaches do not take into consideration that for a
composite Web service we can have different combinations.
This concept has never been addressed by any approach. By
using Multi-Agents System, we generate all the execution
paths and combinations in parallel and select the best
execution path or combination, so we gain in terms of CPU
time.

We also take into consideration the importance of the
Web services’ availability since the Web is a dynamic
environment. By considering only available Web services we
also improve the CPU time. This CPU time improvement is
also due to using CBR method. In fact, agents memorize
QoS scores for further user.

Our approach allows to find the CQoS that fulfill the user
requirements by considering different execution paths and
combinations and by also taking into account the dynamical
aspect of the Web (the Web service availability and QoS
scores changes). Our framework takes a largely better CPU
time than the existing approaches.

III. THE PROPOSED FRAMEWORK

The first step toward autonomously establishing QoS
value for a service composition is to have a supporting
framework. This framework should be able to address the
special requirements for establishing QoS value for a ser-
vice composition. For the composition process, we use the
technique described in [12] based on CBR method.

Our goal is to propose an approach to the Web services
composition that guarantees non functional properties (QoS).
This approach must also support different execution paths
and combinations. Our framework allows to select the best
elementary Web services in terms of QoS using CBR method
and based on Web services availability and supports different
execution paths and combinations.

Several motivations lead to use Multi-Agent Systems
(MAS) [2]. In fact, a Web service suffers from 3 main

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

deficiencies : it acknowledges only itself, passive until it is
invoked, has only a knowledge of itself and neither adaptable
nor able to benefit of new capabilities of the environment
[5]. We propose to represent each service by an agent. In
the MAS field, negotiation is a fundamental aspect of agents
interactions. Indeed, since agents are autonomous, there is no
imposed solution in advance, but agents must reach solutions
dynamically while solving problems. The basic assumption
of this approach is that each elementary Web service has
an agent responsible to it. The objective of these agents
is to find out the best CQoS. They recognize the available
providers which are also represented with agents and the
QoS associated to each of them using CBR technique.

We proposed in [17] a first framework, named Multi-
Agent Availability (MAA), which optimizes the QoS cri-
teria for a composite service provision and improves an
existing approach [20] in terms of CPU time based on
Web service availability. We have also proposed in [16]
a second framework , named Multi-Agent Availability by
exploring multiple execution Paths (MAAP) which improves
the first one by considering different execution paths and
combinations for a given statechart.

We compare our proposed frameworks with Yan et al.’s
one [20]. To the best of our knowledge, their work is the sole
which uses agent technology. Maamar et al. [13] have used
MASs for Web service composition but they don’t consider
the QoS.

The MAA framework improves the work of [20] in terms
of CPU time. In fact, we decrease the number of negotiations
(we alleviate the network) by using a variant of the Contract-
Net protocol, called the directed award and sending the CFP
only to the available Web Service Agents. This contribution
gains on CPU time.

On the other hand, the MAAP framework improves the
work of [20] and the MAA framework in terms of QoS
by supporting multiple execution paths and combinations
for a composition. The MAAP framework takes more CPU
time but we demonstrated that the difference of CPU time is
negligible compared to the improvement of QoS. Supporting
different combinations for a composition is a novel idea
introduced by our work.

The MAA framework optimizes the QoS at the local level
and verifies after that if it ensures the QoS at the global
level (CQoS). On the other side, the MAAP framework, by
considering different execution paths and combinations, has
more chances to ensure the QoS at the global level.

In this context, we propose a new framework named
Multi-Agent Availability by exploring multiple execution
Paths based on QoS (MAAPQ). Experiments are conducted
to prove the effectiveness of our approach when the agents
well also known the QoS (using CBR method) of each Web
service with their availability.

A. MAAPQ : An agent based Framework
To better explain our approach, we present in Fig 1

the framework (MAAPQ). This framework consists of an
Interface Agent (IA), a Combination Coordinator Agent
(CCA) and a set of Negotiator Agents (NAs) that negotiate
with a set of Web Service Agents (WSAs).

Figure 1. MAAPQ’s Framework.

In the MAAP the negotiation process is as follows: First,
the user specifies the desired composite Web service and
the associated requirements. Then, The IA charges each
CCA for an execution path or combination of the statechart.
The CCA associates an NA for each elementary service
in the composition. These NAs negotiate via the Contract-
Net (CNET) protocol with WSAs (the providers) to find
the best elementary Web service and send the response
to the IA which evaluates the results and either confirms
the acceptance or repeat the negotiation. Second, the IA
negotiates via the CNET protocol for the best execution
path. Finally, the IA returns to the user the best Web service
composition.

We propose MAAPQ as an improvement of this framework
when each NA posteriori knowns the WSA’s QoS. So,
we gain in terms of CPU time since the NA will not
negotiate via the Contract-Net (CNET) protocol with WSAs
(the providers) to find the best elementary Web service but
prepare this information by a negotiation that takes place
before this process. The NAs will only verify if this WSA
fulfill the same QoS and respecting the user requirements
and send the response to the IA which evaluates the results
and either confirms the acceptance or repeat the negotiation.

We explain in the following the role of each agent.
1) The Interface Agent: The Interface Agent (IA) rep-

resents the interface that allows the user to access the
framework for specify the desired service and QoS criteria.
In fact, the user can specify each criterion with a weight
since different users may have different requirements and
preferences regarding QoS. For example, a user may require
to minimize the execution time, while another user may give
more importance to the price than to the execution time.

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

The selection process is based on the weight assigned by
the user to each criterion. The IA computes the CQoS score
using a formula proposed by [23]. The IA will then, provide
the expected service with the required QoS criteria.

2) The Combination Coordinator Agent: The Combina-
tion Coordinator Agent (CCA) interacts with the IA to
receive an execution path or combination of the statechart
for the service composition and the user requirements. Each
CCA is responsible for an execution path or combination of
a composition. This agent attributes a NA for each Web
services and computes the CQoS score using a formula
proposed by [23] when it receives their responses. Finally,
the CCA negotiates with the IA using the CNET protocol
to provide its proposal.

3) The Negotiator Agent: A Negotiator Agent (NA) is
responsible of a Web services set offering the same function-
ality. The NA uses CBR to have information about WSAs
that check user’s preferences.

If there is no case in the CBR that fulfill the user’s require-
ments, the NA is in charge of negotiating with providers for
a service from the composition in order to optimize the QoS.
We use a variant of the CNET protocol, the directed award
where the critical information which must be aware by the
NA is the availability. So, the NA’s acquaintances are the
available Web service providers. For a negotiation, the NA
must consult its list containing available Web services. This
negotiation takes place before beginning the negotiation with
the user. Each NA has its cases base for fulfillment with the
QoS value associated with each QoS criterion.

4) The Web Service Agent: A Service Level Agreement
(SLA) defines the terms and conditions of service quality
that a Web service delivers to service requesters. The major
constituent of an SLA is the QoS information. There are a
number of criteria (e.g., execution time, availability) that
contribute to a QoS in an SLA. Web service providers
publish QoS information in SLAs.

Each Web Service Agent (WSA) represents a Web service.
This Web service belongs to a Web services class where an
NA is responsible. For example, a travel service provider
may specify that it supports the Trip-planning service and
belongs to the service class FlightTicketBooking. Service
class describes the capabilities of Web services and how to
access them.

The NA has a list that he consult whenever he begins a
negotiation. In this list there is the available WSAs. By this
method, we also take into account the failure cases. We note
that in Fig 1, there are unavailable Web services represented
by agents that will not negotiate with the NA.

B. How to apply CBR in MAAPQ ?

Using CBR by the NA consists of three steps the case
representation, the case research and the case update.

1) Case representation: In case-based reasoning, an ex-
isting solution should have some similarity with the problem

that is being solved in order to be reused. The MAAPQ
considers properties associated to the available WSAs when
matching it with existing instances of plans. These properties
are the QoS’ scores associated to each criterion of QoS
(table I). Hence, to match with a Web service that fulfill
a user requirements, an existing WSA must have the same
or better value. Thus, checking that two WSAs are the same
is to check whether they have the same QoS’ scores. To
make the matching of the WSAs efficient, a function defined
in [21] is used to generate the digest of the BPEL file
describing the workflow of a composite service. Thus, by
comparing the digests of scores of two Web services, we can
decide whether the Web service fulfill the user requirements.
The NA will computes the QoS score based on the value
associated to each criterion and the user preferences.

The instances of QoS scores stored in the CBR repository
comply with Kolodner’s work [10]. Each instance consists
of three elements:

• Problem: A Web service;
• Solution: A selected WSA;
• Evaluation: the QoS score.

Table I
CASE REPRESENTATION.

QoS1 QoS2 ... QoSn
WSAi value1 value2 ... valuen

2) Case research: When a NA wants to select a WSA, it
first checks the CBR repository to find out the WSAs that
fulfill the user’s requirements. The NA searches the request
in the table I). If there are matching WSAs the NA computes
its associated QoS fulfilling he user’s preferences. The NA
chooses the best provider (that fulfill the QoS requirements)
and verifies its availability and if it fulfills the same values of
QoS. In this case, The NA returns the result to the CCA. The
NA considers 10 percent of the cases. Otherwise, if there are
no cases that satisfy the user’s request in the CBR, the NA
negotiates with the WSAs via the contract-Net protocol.

3) Case update: After each negotiation between the NA
and the WSAs, the NA updates the CBR with the new case
for possible future use.

C. The Negotiation

1) Negotiation Protocol: The negotiation protocol is the
way and manner the negotiating parties interact and ex-
change information. It includes the way in which the offers
and messages are sent to opponents. There are various
negotiation protocols available in the research community. In
this paper, we propose to use the CNET Protocol, designed
by [19], and especially a variant named directed award where
the manager must have a table of acquaintances that contains
knowledge about other agents (eg, skills, knowledge, value
judgments about these agents). In this protocol, one agent
(the initiator) takes the role of manager which wishes to have
a task performed by the other agents (the participants) and

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

further wishes to optimize a function that characterizes this
task. We use the function proposed by [23]. For a given task,
any number of participants may respond with a proposal,
the rest (agents that cannot respect QOS requirements) must
refuse.

2) Negotiation Coordination: The IA coordinates multi-
ple negotiations for various services in the composition. The
purpose of the coordination is to ensure that the results of
these multiple negotiation can collectively fulfill the end-to-
end QoS. The first task that the IA performs is to attribute
a combination or an execution path of a composite Web
service with its QoS weights to the CCAs. The second task
that the IA performs is to confirm negotiation results. As the
extended negotiation protocol suggests, when various CCAs
get the best deals, they consult the IA for confirmation. The
IA evaluates the results and either confirms the acceptance
or amends the reserve values to continue the negotiation.
The QoS aggregation refers to the QoS model proposed in
[23]. Each CCA charges the NAs to find the best elementary
Web services.

If the NAa does not find in the cases base WSAs that
fulfill the user requirements, it sends a CFP message only to
the available Web Service Agents. When The proposals and
counter proposals are then communicated iteratively between
the NAs and the service providers (WSAs), following the
standard FIPA protocol, until the best deal is reached (i.e.
the proposals offered by one or more providers can satisfy
the negotiation objectives) or the timeout occurs. The NA
blocks the selected WSA. At this time, the best deal is sent
to the IA. If the overall QoS requirements are satisfied, the
IA confirms to each CCA that the current deal is acceptable.
Subsequently, the CCA acknowledges the acceptance of the
proposal to the NAs that must inform the selected providers
(WSAs). When the user finishes using Web services, the IA
informs the NA to unlock the selected WSA.

In case the overall QoS requirements are not satisfied
based on the current best deals, the user should modify
the requirements and the IA amends the reserve values for
the CCA to re-start negotiation. Each corresponding NA
then sends the modified CFP to WSAs and begins a new
negotiation process

This research refers to the QoS model presented in [23]
which proposes a formula to compute the overall QoS score
for each Web service.

For a given task, the NA will choose the Web service
which satisfies all the user preferences for that task and
which has the maximal score. If there are several services
with maximal score, one of them is selected randomly. If
no service satisfies the user preferences for a given task, an
execution exception will be raised and the IA will propose
the user to change his preferences.

IV. IMPLEMENTATION AND CASE STUDY

To show the key ideas presented in this paper, a prototype
has been implemented for the proof-of-concept purpose
using the FIPA compliant JADE (Java Agent Development
Framework) [9] which is a middleware that implements
an agent platform and a development framework. This
framework supports CBR and agents’ negotiations through
an Agent Communication Language (ACL).

During the negotiation, the IA, the CCAs, the NAs and
the WSAs exchange a number of messages.

We explain our approach through a case study. A simpli-
fied statechart specifying a scenario in the tourism industry
composite Web service is depicted in Fig 2.

Figure 2. Example of a statechart.

In this scenario, a tourist who holds a mobile device can
request the full description of the route information from
his/her current position to a selected attraction. We have
height different services, that will be invoked. A Phone
Location Service (SPL), a Route Calculation Service (SRL),
a Route Description Service (SRD), a Traffic Service (ST),
a Car Service (SC), a Bus Service (SB), a Metro Service
(SM) and a Metro Service (SP). The tourist can also specify
some QoS requirements when making his/her request. For
example, the tourist can request that the score of CQoS is
delivered with a value above 70. Obviously, the tourist can
also require the QoS score for the elementary Web services
such SV , SB, SM , etc.

The tourist should also indicate the weight associated
to each QoS attribute. These weights will be used for the
computation of the QoS score of each elementary Web
services using a formula proposed in [23]. If the user does
not specify weights, the system will consider a weight value
= 0.25 for each criterion.

For a user’s request, each IA sends at the same time a
CFP to the CCAs for an execution path or combination in
the statechart of the composition. In our case, we have three
execution paths. Each NA (height NAs) associated to an
elementary Web service checks the QoS’ user requirements
with the WSAs existing in its cases base. For example, if
the user specifies the following weights values : price=0.15,
duration=0.35, success rate=0.40 and reputation=0.10. The
NA will apply the formula proposed by [23] to choose the
best WSA. This formula is based on the QoS scores and
their associated weights. Table II represents an example of
different values offered by various WSAs associated to SPL.

After that, each NA verifies if these providers are again
available and fulfill the user requirements in term of QoS.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

If this verification is true, the NA returns the result to the
CCA. The NA considers 10 percent of the cases. Else, (if
there is no cases that satisfy the user’s request in the CBR
or the WSAs are not available), the NA negotiates with the
WSA via the Contract Net protocol. In this case we use the
MAAP process [16].

Table II
EXAMPLE OF CASE REPRESENTATION.

WSA, QoS price duration success reputation
SPL1 40 55 70 80
SPL2 60 65 69 73
SPL3 70 68 64 71

Negotiation is as follows: Each NA communicates with
providers simultaneously. The negotiation results for each
service are summarized in Table III. In all cases, after the
reception of offers from available WSAs, the height NAs
select the best offer, block the WSAs associated to the
selected Web services and return their best offers to the
CCAs. Each CCA (three CCAs) calculates its CQoS score.
Supposing that we have these results after the negotiation,
EP1= 65; EP2 = 84 and EP3=40. The IA will choose
the EP2 that has the best CQoS. The whole process is
comprehensively simulated using the prototype.
The following results are confirmed: SPL: 66, SRL : 98, SRD
: 80, ST : 79, SC:87, SB : 73, SM : 85 and SP : 92.

These results are associated to the best QoS of each
elementary Web service. Finally, the IA checks if the best
offers can jointly fulfill the user’s request (the desired value
of CQoS is 75) using a formula also proposed by [23].

When the tourist finishes using the Web service, the IA
informs the NA to unlock the selected (reserved) WSA.

Table III
QOS VALUES (NEGOTIATION RESULTS) FOR EACH WSA.

SPL SRL SRD ST SC SB SM SP
1 65 46 80 25 35 73 85 92
2 33 39 40 48 28 54 77 45
3 66 24 50 38 66 49 76 22
4 40 45 26 79 32 46 80 21
5 22 98 44 75 87 24 37 64

V. EXPERIMENTATION

The series of tests were conducted to compare the CPU time
of MAAPQ framework with MAA.

In the experimentation, we have calculated the CPU time
for each approach by varying the number of elementary
services in a composition from 5 to 50 with steps of 5
and varying the number of service providers from 10 to
50 with steps of 10. We have calculated the CPU time 10
times for each case and we have considered the average.
We present via a 3D chart in Figure 3 the results of these
experiments. The results of MAA are represented in blue
and the result of MAAPQ approach are represented in green.
These experiments show that the MAAPQ takes a far better

result than MAA. For example, if the number of Web services
providers is equal to 50 and the number of elementary
services in a composition is equal to 30, the MAAPQ takes
2300 ms but MAA takes 3035 ms. We gain in terms of CPU
time.

Figure 3. Comparison of CPU time.

We show through Figure 4 the gain percentage of the
MAAPQ compared to the MAAP framework (using formula
1).

Gain =
CPUtime(MAA)−CPUtime(MAAPQ)

CPUtime(MAA)
∗100 (1)

Figure 4. Gain Percentage.

VI. DISCUSSION

The MAA framework optimizes the QoS at the local level
and verify after that if it ensures the QoS at the global
level (CQoS). On the other side, the MAAP framework, by
considering different execution paths and combinations, has
more chances to ensure the QoS at the global level. By using
CBR method, agents memorize QoS scores for further user.
this technique allows us to gain in term of CPU time. It is
a method to limit the research space.

By using the CBR method, NAs have knowledge about the
WSAs. So, we gain the time of conversation. The MAAPQ
not only offers a QoS that fulfill the user requirements but
also takes a largely lower CPU time than these frameworks.

Note that our approach supports as more attributes of QoS
(price, duration, reputation, success rate, availability, etc.) as
we want.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

VII. CONCLUSION

This paper exploited the agent technology to select com-
posite Web service using CBR method. This technique
allows agents to memorize the QoS scores for further use.
The system reduces the amount of time spent on solving a
service composition problem by reusing previous selected
Web services. The experiment shows that, when there are
sufficient amount of Web services in the CBR repository, the
proposed system can outperform the existing approaches.

Our approach advances the current state of the art by
taking into account the Web services availability and sup-
porting different execution paths and combinations for a
composition. By using CBR method we gain in terms of
CPU time.

The greatest limitation of this framework is its lack of
scalability. Therefore, we present in [18] a new scalable
framework using Case Based Reasoning.

In the future work, we will propose a new approach which
improves again the execution time by discharging the NAs
of many tasks and by adding horizontal communications.

REFERENCES

[1] Mohammad Alrifai and Thomas Risse. Combining global op-
timization with local selection for efficient qos-aware service
composition. In WWW, pages 881–890, 2009.

[2] Mihai Barbuceanu and Mark S. Fox. The design of a
coordination language for multi-agent systems. In ATAL,
pages 341–355, 1996.

[3] Ivona Brandic, Sabri Pllana, and Siegfried Benkner. Specifi-
cation, planning, and execution of qos-aware grid workflows
within the amadeus environment. Concurrency and Compu-
tation: Practice and Experience, 20(4):331–345, 2008.

[4] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito,
and Maria Luisa Villani. A framework for qos-aware binding
and re-binding of composite web services. Journal of Systems
and Software, 81(10):1754–1769, 2008.

[5] Yasmine Charif, Kostas Stathis, and Hafedh Mili. Towards
anticipatory service composition in ambient intelligence. In
NOTERE, pages 49–56, 2010.

[6] Francisco Curbera, Bernd J. Krämer, and Mike P. Papazoglou,
editors. Service Oriented Computing (SOC), 15.-18. Novem-
ber 2005, volume 05462 of Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[7] Ying Guan, Aditya K. Ghose, and Zheng Lu. Using constraint
hierarchies to support qos-guided service composition. In
ICWS, pages 743–752, 2006.

[8] Liurong Hong and Jianqiang Hu. A multi-dimension qos
based local service selection model for service composition.
JNW, 4(5):351–358, 2009.

[9] JADE. Telecom italia lab. In
http://sharon.cselt.it/projects/jade, 2011.

[10] J. L. Kolodner. Case-based reasoning. In Morgan Kaufman,
1993.

[11] Srividya Kona, Ajay Bansal, M. Brian Blake, Steffen Bleul,
and Thomas Weise. Wsc-2009: A quality of service-oriented
web services challenge. In CEC, pages 487–490, 2009.

[12] Soufiene Lajmi, Chirine Ghedira, Khaled Ghédira, and Dja-
mal Benslimane. Wescocbr: How to compose web services
via case based reasoning. In ICEBE, pages 618–622, 2006.

[13] Zakaria Maamar, Soraya Kouadri Mostéfaoui, and Hamdi
Yahyaoui. Toward an agent-based and context-oriented ap-
proach for web services composition - appendices. IEEE
Trans. Knowl. Data Eng., 17(5), 2005.

[14] Arun Mukhija, Andrew Dingwall-Smith, and David S. Rosen-
blum. Qos-aware service composition in dino. In ECOWS,
pages 3–12, 2007.

[15] Florian Rosenberg, Predrag Celikovic, Anton Michlmayr,
Philipp Leitner, and Schahram Dustdar. An end-to-end
approach for qos-aware service composition. In EDOC, pages
151–160, 2009.

[16] Fatma Siala and Khaled Ghédira. A multi-agent selection of
multiple composite web services driven by qos. In CLOSER,
pages 675–684, 2011.

[17] Fatma Siala and Khaled Ghédira. A multi-agent selection of
web service providers driven by composite qos. In ISCC,
pages 55–60, 2011.

[18] Fatma Siala, Soufiene Lajmi, and Khaled Ghédira. Multi-
agent selection of multiple composite web services based on
cbr method and driven by qos. In iiWAS, pages 90–97, 2011.

[19] Reid G. Smith. The contract net protocol: High-level com-
munication and control in a distributed problem solver. IEEE
Trans. Computers, 29(12):1104–1113, 1980.

[20] Jun Yan, Ryszard Kowalczyk, Jian Lin, Mohan Baruwal
Chhetri, SukKeong Goh, and Jian Ying Zhang. Autonomous
service level agreement negotiation for service composition
provision. Future Generation Comp. Syst., 23(6):748–759,
2007.

[21] Xinfeng Ye and Rami Mounla. A hybrid approach to qos-
aware service composition. In ICWS, pages 62–69, 2008.

[22] Tao Yu, Yue Zhang 0001, and Kwei-Jay Lin. Efficient
algorithms for web services selection with end-to-end qos
constraints. TWEB, 1(1), 2007.

[23] Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu,
Marlon Dumas, Jayant Kalagnanam, and Henry Chang. Qos-
aware middleware for web services composition. IEEE Trans.
Software Eng., 30(5):311–327, 2004.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

