
Reliability and Message Security for Distributed Web Service Handlers

Beytullah Yildiz
Department of Computer Engineering

TOBB Economics and Technology University
Ankara, Turkey

E-mail: byildiz@etu.edu.tr

Abstract—Web Service handlers are supportive functionalities
and capabilities to the service endpoint such as security,
reliability and logging. In the common usage, they perform
their executions in a single memory space with the service
endpoint. However, by a suitable structure, they can be
distributed to increase availability, scalability and
performance. On the other hand, the distribution necessitates
additional mechanisms to provide essential service quality. In
this paper, reliability and message security for the distributed
Web Service handler will be investigated. The benchmark
results are provided to illustrate that the utilized reliability and
security mechanisms of the messaging for the handler
distribution are reasonable. With the fair cost, Web Service
handlers are reliably and securely distributed.

Keywords-Web Service; distributed computing; replication;
reliability; security

I. INTRODUCTION

Web Service is a technology providing seamless and
loosely coupled interactions, which help to build platform
independent distributed systems. Web Service is considered
to be an ideal technology to provide new IT architectures. It
is claimed that the age of proprietary information systems
has come to an end and the age of shared services is already
on its way [1]. In this new era, companies obtain or
outsource their IT capabilities in order to reduce the cost,
deploy solutions faster, and create new opportunities.

Software standards and communication protocols
providing the common languages are at the foundation of
Web Service. Information is easily exchanged between
different applications via these standards and protocols. In
short, Web Service provides opportunities so that diverse
and distributed applications can communicate with each
other in a standard way.

Web Service integrates an endpoint and handlers in a
common framework. It employs supportive functionalities
and capabilities, called as Web Service handlers, to provide
a full-fledged service. These capabilities might be related to
security, reliability, orchestration, logging as well as any
necessary capabilities for a distributed system. A Web
Service may employ several handlers in a single interaction.
In other words, a chain of handlers can contribute to a
service execution. With these additive functionalities, Web
Services aim to offer better environment. On the other hand,
overloading a service with required supportive

functionalities, inevitable for many cases, may cause
degradation in the service quality. A service endpoint with
many handlers may suffocate in a single memory space.
Hence, it is wise to use additional computing power. This
brings the idea of distribution. There are different
reasonable approaches for the Web Service handlers for the
distribution. Some suggest that they can be distributed as
services; others create a specific distributed environment for
them. By creating a specific environment, a distributed
handler operating system provides a better environment,
especially, when the concern is performance. However, the
distribution requires additional mechanisms to provide the
suitable environment.

Security and reliability are among the most important
criteria that need to be considered when a distributed system
is being evaluated. This paper investigates reliability and
message security for the distributed Web Service handlers
and their effect over the system performance. The rest of
this paper is organized as follows. Section II provides
information about the related works of reliability and
security. Distributed Web Service handler execution is
briefly explained in Section III. Section IV investigates
reliability. Section V gives details about the message
security. Finally, the paper will be concluded in Section VI.

II. RELATED WORKS

Reliability and security are very important for the
distributed applications. Many researches on security and
reliability have been conducted for the distributed
applications in [2] [3] [4] [5].

For Web Services, several standards are provided for the
security and reliability purpose: WS-Security [6], WS-
ReliableMessaging [7]. WS-Security addresses security by
leveraging existing standards and provides a framework to
imbue these mechanisms into a SOAP message. This
happens in a transport-neutral fashion. WS-Security defines
a SOAP header element to carry security related data. This
header element contains the information defined by XML
signature that conveys how the message was signed, the key
that was used, and the resulting signature value. Likewise,
the encryption information can be inserted to the SOAP
header. In short, WS-Security presents an end-to-end
solution for Web Service security by keeping all security
information in the related SOAP header element.

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

The WS-ReliableMessaging specification offers an
outline to ensure reliable message delivery between the
sender and receiver. The specification provides an
acknowledgement based scheme to guarantee that data are
transferred between the communicating entities. Although it
is for the point-to-point communication, the specification
also supports service composition and transactional
interaction.

III. DISTRIBUTION

Web Service handlers are executable in the distributed
environment to meet necessary requirements and to provide
enough computing power for Web Services. Distribution
improves scalability, availability and performance of the
overall system. On the other hand, it brings challenges. A
manager for the distributed Web Service handlers must be
employed to organize the execution which contains an
orchestration mechanism, explained in [8]. The manager
also requires a decent execution engine to meet the
performance requirements. The details of the manager are
provided in [9]. The distribution overhead must be
acceptable, which is investigated in [10].

Figure 1. Executing the messages in the distributed Web Service
handlers.

The execution of the messages is shown in the Figure 1.
Messages, stored in a processing queue, are executed
concurrently. Manager ensures that each message is
executed without being interrupted by the remaining
messages in the queue. Every message execution contains
stages, which host the distributed handlers.

A message in the processing queue is instantly sent to all
handlers of a stage. The handlers in a stage are executed in a
parallel manner. The manager waits the completion of the
handler executions before starting the delivery of the
message to the next stage. This procedure continues until all
stages of a message are completed. In this process, since
handlers are deployed to the remote machines, the security
and reliability of the messaging become important. The
reliability of a handler itself is also essential for the
successful execution.

IV. RELIABILITY

Software reliability is described as the probability that the
software functions without failures under given conditions
during a specified period of time [11]. Reliability is also
measured in terms of percentage of failure circumstances in
a given number of attempts to compensate for variations in
usage over time [12]. For Web Services, although reliability
is viewed by some researchers as a non-functional
characteristic [13], Zhang and Zhang describes one of the
more comprehensive definitions of Web Services reliability,
which is defined as a combination of correctness, fault
tolerance, availability, performance, and interoperability,
where both functional and non-functional components are
considered [14].

In this paper, the reliability will be investigated in two
sections: the reliability originating from the handler
replication and the reliability coming from the utilization of
a reliable messaging system.

A. Replicating handlers

Replication is critical to reliability, mobility, availability,
and performance of a computing system. We benefit from
the replication in our daily life too. Even our body benefits
from the replications; we have two legs, hands, eyes and
ears. We keep a spare tire in our car to replace a flat one in
an emergency. The important files are backed up to reduce
the probability of lost. Software systems also utilize the
same strategy by replicating the data and the computing
nodes.

There are basically three replications: data, process and
message. These concepts are extensively explored in [15].
Data replication is the most heavily investigated one.
However, the other replications are also very important in
the distributed systems, especially for Service Oriented
Architecture.

The process replication is particularly main interest in
this paper because the intention is to investigate the
replication of the handlers. There exist two main approaches
in this area. The first one is modular redundancy [16]. The

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

second approach is called primary/standby [17]. Modular
redundancy has the replicated components that perform the
same functionalities. All the replicas are active. On the other
hand, primary/standby approach utilizes a primary replica to
perform the execution. The remaining replicas wait in their
standby state. They become active when the primary replica
fails.

The processes can be classified in two categories; no
consistency and consistency. The fist category is the
simplest one; the processes are stateless. They do not keep
any information for the processed data. Therefore, the
consistency is not an issue between the processes.
Replicated instances can be allowed running concurrently.
On the other hand, replicas may enter in an inconsistent
state if the process is not atomic and statefull. Inconsistency
have been extensively investigated in [18].

Replication is a very important capability where a
handler is inadequate. Sometimes, a handler may not be
sufficient to answer the incoming requests. The tasks may
line up so that the overall performance degrades. This is
similar to a shopping center where the customers are waiting
in the line to be served. The solution is to add one more
person to serve when it is necessary. Similarly, adding a
handler to help the execution contributes the overall
performance.

In addition to the performance, a replica can be leveraged
for fault tolerance. It is possible that a handler crashes. The
replication contributes to the continuity of the execution and
improves availability and reliability of the service. Without
using handler replication in the case of an error, the whole
computation cannot continue. The computation becomes
more resilient with the handler replication. The execution
continues while at least one replica of every handler has not
failed.

For N handlers with the replication factor of R, the
execution can be successful for R-1 failures per handler.
The maximum allowable number of error is:

��� − 1

�

���

																																												(1)
where N is the number of handlers, �� is the replication

number of ith handler. The system cannot continue its
execution even in a single handler fault where∀� ∈ �:	�� =

1.

Figure 2. Replicated handler execution; only one of the handlers can be

executed.

In the distributed Web Service handler execution
environment, a variation of primary/standby approach is
utilized. The replicas are prioritized. The handler having
highest priority is assigned to execute a message. The other
replicas wait until their priorities become highest. The
system is able to change the priority during the execution.
When a fault occurs, the handler priority is minimized. The
replicas are never allowed to be executed concurrently
unless they are the instance of the stateless handlers. Even
though they are allowed to run in parallel manner, they
cannot join the processing of the same message. The
messages have to be different so that the parallel execution
does not cause inconsistency.

When only one of the several replicated handlers is
executed, shown in Figure 2, the following formula works
for the reliability:

��� = ���	��

�

���

																																									(2)
where ��� is the reliability of the replicated handlers'

execution, �� is the execution probability of the handler i
and ∑ �� = 1�

���
The reliability of parallel handlers with AND junction

and the reliability of serial handlers can be formulated as:

�� = ��� 																																														(3)
�

���

where ��is the reliability of the handlers’ execution and
��	is the reliability of the handler i.

By using Formulas 2 and 3, the reliability of handlers'
execution in Figure 3 can be formulated as:

�� = ���

���

∗ � ������	

����

	∗ ��																	(4)

�� = ���

�

���

∗ � ��� 	���

����

																									(5)

where �� is the reliability of handlers’ execution. �� is

the ith replica and ��� = 1 for only one replicated handler,
which is executed, and the value is 0 for the remainders.

Figure 3. A sample configuration for the handlers' excution

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

B. Reliable messaging

The distributed handler mechanism benefits from two
different sources for the reliability of the message delivery:
a messaging broker, and its own mechanism.

The messaging system, NaradaBrokering, provides a
message level reliability. It also offers supportive
functionalities for the messaging and grants very reasonable
performance [19]. The messages can be queued up to
several thousands and are gradually delivered to their
destinations to provide a flow control for the messaging.
Additionally, it has Reliable Delivery Service (RDS)
component that delivers payload even if a node fails [20].

RDS stores all the published events that match up with
any one of its managed templates, which contain the set of
headers and content descriptors. This archival operation is
the initiator for any error correction, which is caused by the
events being lost in transit to their targeted destinations and
also by the entities recovering either from disconnect or a
failure. For every managed template, RDS also maintains a
list of entities for which it facilitates reliable delivery. RDS
may also manage information regarding access controls,
authorizations and credentials of the entities that generate or
consume events, which are targeted to this managed
template.

When an entity is ready to start publishing events on a
given template, it issues a discovery request to find out the
availability of RDS that provides archival environment for
the generated template events. The publisher will not
circulate template events until such time that it receives a
confirmation that RDS is available.

The publisher ensures that the events are stored by RDS
for every template event that it produces. After successful
delivery of the event to RDS, it is archived and a message is
sent to the publisher to verify that the message is received
by RDS successfully. Otherwise, a message of failure with
the related event id is sent back to the publisher. After
having the verification, the suitable matching engine is
utilized to compute the destinations associated with the
template event.

A subscriber registers with RDS. A sequence number
linked with the archival of this interaction is recorded. The
number can be also described as epoch, which signifies the
point from which the registered entity is authorized to
receive events conforming to the template. Once a template
event has been archived, RDS issues a notification. The
notifications allow a subscribing entity to keep track of the
template events while facilitating error detection and
correction. Upon receipt of the notification, the subscribing
entity confirms the reception of the corresponding template
event.

When an entity reconnects to the broker network after
failures, the entity retrieves the template events that were
issued and those that were in transit before the entity
leaving. After the receipt of the recovery request, RDS scans
the dissemination table starting at the sync related with the
entity and then generates an acknowledgment-response

invoice event outlining the archival sequences, which the
entity did not previously receive. Accordingly, the missing
events are provided to the receiver.

In addition to this, a reliable mechanism for Web Service
handler execution environment is built on the top of the
reliable messaging that NaradaBrokering provides. The
distributed Web Service handler mechanism is able to repeat
the execution of a specific handler in the situation of a
failure. The decision of a failure is made when the response
is not received from a distributed handler. There can be
several reasons behind being unsuccessful to get a response.
The communication link may be broken as well as the
handler may not successfully process the message because
of either an error or crash. The distributed Web Service
handler mechanism checks the possibilities by sending the
message several times to its destination. In each attempt, it
waits for a specific amount of time. This duration is either
assigned or calculated by the system. After having several
unsuccessful attempts, the message processing may switch
to a replica if it exists. As it is discussed previously,
handlers can populate their replicas to improve availability
and reliability.

For the reliable messaging benchmark, two HP DL 380
G7, 2 x Xeon Six Core, 2.93 GHz, and 48 GB memory
physical machines are utilized. The machines are virtualized
to create four 4-core and 16 GB memory machines and one
8-core 32 GB memory machine. These machines are
connected to each other via LAN and share a common
storage system. Virtual machines use Windows Server 2008
R2 64-bit operating systems. The cost of reliable mechanism
of the messaging for the distributed handlers is shown in
Figure 4. The cost contains the time of reliability procedures
to send the tasks to the distributed Web Service handlers or
receive the responses back. The time for the handlers’
executions and the time for the messaging are excluded to
illustrate only the reliability cost for varying message sizes.
The figure shows that the message size does not affect the
cost of the reliability of the messaging very much. The cost
is very reasonable when the reliability is a necessity for the
distribution.

Figure 4. The cost of reliability mechanism of the messaging for the

distributed handlers

5

10

15

20

25

30

100 200 300 400 500E
xe

ut
io

n
tim

e
in

 m
ill

is
ec

on
ds

Message size in KB

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

V. MESSAGE SECURITY

Security is one of the important issues for the computing
systems. The very critical data can be seen or altered by an
unauthorized person. This is increasingly important if the
data is transferred through the network, which is more
vulnerable environment.

The local computing is not exposing its data to the
outside world very much. In contrast, this is not the case for
the distributed computing. The computation is shared
between the nodes which may physically disperse in the
distributed environment. The transmission of the data
among the nodes may expose the critical information to the
dangerous vulnerabilities. Hence, the transportation
channels must be secured in addition to the security of the
computing entities.

NaradaBrokering, which is utilized for messaging, has a
security framework that is able to support secure
interactions between the distributed handlers [21]. The
security infrastructure consists of Key Management Center
(KMC), which provides a host of functions specific to the
management of keys in the system. At the same time, KMC
incorporates with an authorization module to manage the
usage of the messaging. KMC also stores the entities public
keys.

NaradaBrokering has an authentication mechanism for
the publishers and subscribers, which are the computing
nodes for the distributed handler execution. For the
authentication, publisher or subscriber sends its signed
request by using private key. Every topic has access control
list which authorizes the subscriber. Similarly, an access
control list exists for the publishers. After verification of
signature, entity is permitted to be accessed by the publisher
or subscriber according to the relevant access control lists.

The message traveling between the computing nodes is
described in Figure 5. It contains a unique id, properties and
a payload. Unique message id is a distinctive name for a
message. The handler execution mechanism may host many
messages being executed in a moment. Hence, an identifier
is a necessity to achieve the correct executions; a
Universally Unique Identifier (UUID) generated id is
assigned to every message. The generator assures that there
won’t be the same id in the system. Thus, the design gives
enough guarantees that the message executions are not
blended.
<context>
 <id>4099d6dc-0b0e-4aaa-95ff-2e758722a959</id>
 <properties>
 <encKey>abcdef</encKey >
 ….
 </properties>
 <payload>
 ….
 </payload>
</context>

Figure 5. The message format for distributed Web Service handlers

The second important part of the message format is the
properties section. This part conveys the required additional
information for the computing nodes. The information can
be specific to a handler as well as generic for all handlers.
There is a property that contains a key for the encryption. It
is a session key which is created for a single message.
However, the session key can be utilized to send a group of
messages to a distributed handler for a period of time. The
payload containing the original message is encrypted by this
key before sending to its destination to keep the message
integrity intact.

In many distributed design, secure data transmission is
not discussed, the models rely on the existing security
technology such as Secure Socket Layer (SSL). Kemathy at
al. investigates component base solution for XML
messaging [22]. Ammari at al. provides architecture
securing XML messages by encrypting flagged XML parts
each with different type of encryption depending on data
sensitivity and importance level defined [23], Figure 6
demonstrates the secure messaging for the distributed
handlers. The XML based message of the distributed
handlers is partially encrypted, only the payload. Since
encryption via asymmetric key performance is worse than
the symmetric key encryption [24], Advanced Encryption
Standard (AES) symmetric key encryption algorithm is used
to encrypt the payload. A 256 bit session key is created for
each message and passed within the message to the other
computing node for decryption. The sender encrypts the
session key with the 2048-bit public key of the receiver to
present the confidentiality. The related public key is
provided by the KMC. RSA algorithm is used for the key
encryption. Hence the only node, which has the correct
private key, can decrypt the session key to get the payload.

When the subscriber receives the message, first of all, it
decrypts the session key carried within “encKey” tag with
its private key. Then, the session key is used to decrypt the
payload to get the original message.

Figure 6. Security mechanism for a distributed handler

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

Figure 7. The cost of the security mechanism of the messaging for the

distributed handlers

The benchmark showing the cost of the aforementioned
security mechanism for the messaging is performed in the
same environment with the reliability benchmark, discussed
Section IV.B. Figure 7 shows the cost for varying payload
sizes. The usage of the symmetric key encryption provides
reasonable execution time. Even though the reliability offers
better results, the cost of security does not grow
exponentially for the increasing message size.

VI. CONCLUSION

While the distribution of Web Service handlers provides
many advantages in terms of scalability, availability and
performance, the environment necessitates reliability and
secure messaging. The instruments, explained in this paper,
for the secure and reliable handler distribution and the
support tools of the utilized messaging broker grant the
necessary reliability and messaging security for this
environment. The benchmark results show that the costs
originating from the utilized instruments are acceptable. The
replication of the handlers contributes the execution during
failures. In short, the design of the distributed execution
with the security and reliability offers a satisfactory
environment for Web Service handlers.

REFERENCES
[1] J. Hagel and J.S. Brown, “Your next IT strategy,” Harvard Business

Review, 79 (10), pp. 105-113, 2001.

[2] P. Bzoch and J. Safarik, "Security and reliability of distributed file
systems," in IEEE 6th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems (IDAACS 2011).
vol.2, pp.764-769, Sept. 2011, doi: 10.1109/IDAACS.2011.6072873

[3] M. Lei, S. V. Vrbsky, and Z. Qi, “Online grid replication optimizers
to improve system reliability,” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2007), pp.1-8, March
2007.

[4] K. Birman, R van Renesse, and W Vogels, "Spinglass: secure and
scalable communications tools for mission-critical Computing," in
International Survivability Conference and Exposition (DARPA
DISCEX-2001), CA, June 2001.

[5] C. M. Jayalath and R. U. Fernando. “A modular architecture for
secure and reliable distributed communication,” in Proceedings of the
Second International Conference on Availability, Reliability and
Security (ARES07), pp. 621-628, 2007, Washington, DC.
DOI=10.1109/ARES.2007.7 http://dx.doi.org/10.1109/ARES.2007.7

[6] Web Service Security (WS-Security), http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss/, <retrieved: 03, 2012>.

[7] Web Service Reliable Messaging (WS-ReliableMessaging),
http://public.dhe.ibm.com/software/dw/specs/ws-rm/ws-
reliablemessaging200502.pdf, <retrieved: 03, 2012>.

[8] B. Yildiz, G. Fox, and S. Pallickara, “An orchestration for distributed
Web wervice handlers,” in International Conference on Internet and
Web Applications and Services (ICIW08), pp. 638-643, June 2008,
Athens, Greece

[9] B. Yildiz, “Distributed handler architecture,” Ph.D. Dissertation.
Indiana University, Bloomington, IN, USA. Advisor: Geoffrey C.
Fox. 2007.

[10] B. Yildiz and G. Fox, "Measuring overhead for distributed Web
Service handler," in Proceedings of 3rd IEEE International
Conference on Computer Science and Information Technology
(ICCSIT 2010), pp. 566-570, July 2010.

[11] H. Zo, D. Nazareth, and H. Jain, "Measuring reliability of
applications composed of Web Services," in Proceedings of 40th
Annual Hawaii International Conference on System Sciences (HICSS
'07), pp. 278- 288, 2007.

[12] J. D. Musa, "Software reliability engineering," McGraw-Hill, New
York, NY, 1999.

[13] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr, “Web Services:
promises and compromises, ”ACM Queue, 1 (1), pp. 48-58, March
2003.

[14] J. Zhang and L.-J. Zhang, “Criteria analysis and validation of the
reliability of Web Services-oriented systems,” in Proceedings of the
IEEE International Conference on Web Services (ICWS'05), Orlando,
Florida, July 2005.

[15] A. Helal, A. Heddaya, and B.K. Bhargava, "Replication techniques in
distributed systems," Kluwer Academic Pub. 2002, Volume 4, pp. 61-
71, DOI: 10.1007/0-306-47796-3_3.

[16] P.A. Lee and T. Anderson, "Fault tolerance: principles and practice,"
Springer-Verlag New York, Inc. Secaucus, 1990.

[17] W. Zhao, P.M. Melliar-Smith, and L.E. Moser, "Fault tolerance
middleware for cloud computing," in IEEE 3rd International
Conference on Cloud Computing (CLOUD 10), pp. 67-74, July
2010.

[18] P.T.T. Huyen and K. Ochimizu, "Toward inconsistency awareness in
collaborative software development," in 18th Asia Pacific Software
Engineering Conference (APSEC), pp. 154-162, Dec. 2011.

[19] S. Pallickara and G. Fox, “NaradaBrokering: a distributed
middleware framework and architecture for enabling durable peer-to-
peer grids,” In Proceedings of the ACM/IFIP/USENIX International
Conference on Middleware (Middleware '03), pp. 41-61, 2003.

[20] S. Pallickara and G. Fox, "A scheme for reliable delivery of events in
distributed middleware systems," in Proceedings of the IEEE
International Conference on Autonomic Computing (ICAC'04), New
York, NY, pp. 328-329, May 2004.

[21] S. Pallickara, M. Pierce, G. Fox, Y. Yan, and Y, Huang, "A Security
framework for distributed brokering dystems", Available from
http://www.naradabrokering.org, <retrieved: 03, 2012>.

[22] K. Komathy, V. Ramachandran, and P. Vivekanandan, “Security for
XML messaging services: a component-based approach,” Journal of
Network and Computer Applications, Vol. 26, Iss. 2, pp. 197-211,
April 2003, DOI=10.1016/S1084-8045(03)00003-1
http://dx.doi.org/10.1016/S1084-8045(03)00003-1.

[23] F. T. Ammari and J. Lu, “Advanced XML security: framework for
building secure XML management system (SXMS),” In Proceedings
of the Seventh International Conference on Information Technology:
New Generations (ITNG '10), Washington, DC, pp. 120-125, 2010,
DOI=10.1109/ITNG.2010.124
http://dx.doi.org/10.1109/ITNG.2010.124.

[24] C. Narasimham and J. Pradhan,“Evaluation of performance
characteristics of cryptosystem using text files”, Journal of
Theoretical and Applied Information Technology,Vol. 4, Iss. 1, pp.
56-60, 2008.

40

60

80

100

120

100 200 300 400 500E
xe

cu
tio

n
tim

e
in

 m
ili

se
co

nd
s

Message size in KB

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-200-4

ICIW 2012 : The Seventh International Conference on Internet and Web Applications and Services

