
Analysis and Verification of Web Services Resource Framework (WSRF)
Specifications Using Timed Automata

Jośe A. Mateo, Valent́ın Valero, Enrique Martı́nez and Gregorio D́ıaz
Department of Computer Science
University of Castilla-La Mancha

Albacete, Spain
{jmateo, gregorio, valentin, emartinez}@dsi.uclm.es

Abstract—Throughout the history of computing, engineers
have used various formal methods to improve the quality of
software and hardware. The next natural step is trying to
exploit their advantages in the so-called new era of computing:
Cloud Computing. In this paper, we present a first approxima-
tion about how to simulate and check the behaviour of these
systems using timed automata through the model checking tool
UPPAAL. We use Web Services Resource Framework (WSRF)
as a standard intended to the modelling of distributed resources
using Web services, and we apply formal techniques to WSRF
specifications in order to analyse and verify these specifications.

Keywords-Web Services Resource Framework (WSRF);
model checking; timed automata.

I. I NTRODUCTION

The architecture that represents Web services has been
widely accepted as a means of structuring the interactions
between services in a distributed system. Nowadays, devel-
opers require more standardization to facilitate additional
interoperability between these services. In January of 2004,
several members of the organizationGlobus Allianceand
the multinational companyIBM, with the help of experts
from companies such asHP, SAP, Akamai, etc., defined the
basic architecture and the initial specification documentsof
a new standard for that purpose [6]. Web services Resource
Framework (WSRF) has been inspired by the work previ-
ously done byGlobal Grid Forum’s Open Grid Services
Infrastructure (OGSI) Working Group[12]. Although a Web
service definition does not consider the notion of state,
interfaces frequently provide the user with the ability to
access and manipulate states, i.e., data values that persist
across, and evolve as a result of Web service interactions.
However, the notion of stateful resources defined by the
Web service implementation is not explicit in the interface
definition. The messages that the services send and receive
imply (or encourage programmers to infer) the existence
of an associated stateful resource type. It is then desirable
to define Web service conventions to enable the discovery
of, introspection on, and interaction with stateful resources
in standard and interoperable ways [4]. These observations
motivated the WSRF approach to model Web services re-

source states. A WS-Resource is defined as the composition
of a Web service and a stateful resource. WSRF allows WS-
Resources to be declared, created, accessed, monitored for
change, and destroyed via conventional mechanisms. WSRF
consists of a set of five technical specifications that define the
normative description of the WS-Resource approach in terms
of specific message exchanges and related XML definitions.

In this paper, we propose the use of formal techniques
and, more specifically, timed automata as a way to analyse
and verify WSRF specifications. Thus, formal methods are
used to write specifications that show the behaviour of the
systems in a formal manner, and serve as the basis for system
analysis to search for inconsistencies or errors in an early
state of the development process, that is, before implemen-
tation. Furthermore, within formal methods environment,
we use model checking techniques. Model checking [3]
is an automatic technique for verifying finite-state reactive
systems. In this approach, the specifications are expressed
in a propositional temporal logic, and the reactive system
is modelled as a state-transition graph (automaton). An
efficient search procedure is used to determine automatically
if the specifications are satisfied by the automaton. Model
checking has a number of advantages over verification
techniques based on automated theorem proving. The most
important is that the procedure is highly automatic so it
makes the testing phase faster. Typically, the user provides a
high level representation of the model and the specification
to be checked. The model checker will either terminate
with the true answer, indicating that the model satisfies the
specification, or giving a counterexample that shows why
the formula is not satisfied.

As far as we know the literature in this field, no one has
modelled the communication model in WSRF. Nevertheless,
there are some works that use WSRF in a practical way.
In [10], the authors presented a meta-model of a medical
system for deriving clinical trial information management
systems for collaborative cancer research across multiple
institutions. With this meta-model, they extract the corre-
sponding semantics in the Z formal specification language
and the WSRF implementation in the real environment Can-
cerGrid. The main difference with our work is the different

222

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 1. Examples of UPPAAL timed automata.

formalism they use to capture the behaviour of the system
and no verification is done in this paper. Other related work
is [7] where Gudelj et al. suggest a similar problem to ours.
In this approach, they use a Petri net formalism to model
the actions to be performed by the actors in this scenario,
adding AI techniques (genetic algorithms) as another form
of modelling. Indeed, they only show the possible proto-
type, not making verification. We can mention other related
works: [11] and [8]. In [11], WSRF is used to solve the
integration problem of various heterogeneous systems in a
health information system grid model. In [8], the design and
implementation of a Grid-based architecture for scientific
workflow is presented. This architecture allows the dynamic
discovery of existing Web services in combination to ad-hoc
developed ones.

One of the main contributions of this paper is to define a
primer version of the necessary elements to model and check
Web services with stateful resources. The corresponding
translation into timed automata will then be defined. In some
previous works, such as [2] and [5], the verification of Web
services compositions by means of timed automata has been
considered, but without stateful resources. The other main
contribution is to develop a scheduling meta-model with one
part of the WSRF´s specifications (WS-Notification and WS-
ResourceProperties) improving this work with a verification
phase, using the UPPAAL model checker.

The rest of the paper is structured as follows: Section II
contains the needed background of our approach, that is, the
UPPAAL tool, and the WSRF specification. In Section III
we specify the elements we need to model and check Web
services with stateful resources, and the translation of these
elements into timed automata. A case study is included to
show how the approach works. Section IV shows how the
verification process is carried out over the case study. Finally,
Section V contains the conclusions and future work.

II. BACKGROUND

A. UPPAAL

UPPAAL [9] is a tool box for modelling, simulation,
validation and verification of real-time systems, based
on constraint-solving and on-the-fly techniques, developed
jointly by the Uppsala University and the Aalborg Univer-
sity. It is appropriate for systems that can be modelled as a
collection of non-deterministic processes with finite control
structures and real-valued clocks, communicating through
channels and (or) shared variables. Thus, a UPPAAL system
consists of a set of concurrent processes, each of which being
modelled by a timed automaton. This automaton consists
of a set of nodes and a set of transitions. To define the
behaviour of the system it is possible to define “invariants”,
“guards” and “synchronizations” in the automata:

• The “synchronization” between processes is done
through “channels”. One of the processes, which is
called the initiator of the synchronization, will invoke
the channel with the symbol “!”, while the other process
will invoke the channel with the symbol “?”.

• A “guard” is a trigger condition of a transition. It
expresses a condition over clocks and integer variables,
which must be satisfied when the transition is taken.

• An “invariant” is a condition of progression associated
with a node. It indicates the time that the automaton
can remain in that node.

Figure 1 depicts some examples of timed automata rep-
resentations in UPPAAL. On the left-hand side we can see
how the states (nodes) of the automata are represented and
the transitions between these states. On the centre we can see
how two automata representing two different Web services
(WS1 and WS2) can be synchronized by means of a channel.
Finally, on the right-hand side we can see how invariants,
guards and assignments are represented in the automata.

B. Web Services Resource Framework (WSRF)

WSRF [1] is a specification developed by OASIS (Or-
ganization for the Advancement of Structured Information

223

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 2. WSRF technical specification.

Standards) and some of the most pioneering computer
companies, whose purpose is to define a generic framework
for modelling Web services with stateful resources, as well
as the relationships between these services in a Grid/Cloud
environment. This approach consists of a set of specifications
that define a representation of WS-Resource in the terms
that specify the messages exchanged and the related XML
documents. These specifications allow the programmer to
declare and implement the association between a service
and one or more resources. It also includes mechanisms to
describe the means to check the status of a resource and
the service description, which together form the definition
of a WS-Resource. Furthermore, they define the necessary
steps to make the state of a Web service accessible through
its interface (described in WSDL) and related mechanisms
to addressing and grouping defined elements in the WS-
Resource. WSRF is useful to declare, create, access, mon-
itoring and destroying WS-Resources through conventional
mechanisms. These conventional mechanisms are described
as follows (Figure 2 summarizes some of them):

• WS-ResourceLifetime: The lifetime of a WS-Resource
is defined as the period between its instantiation and
destruction. The mission of this specification is to
standardize the process of destroying a resource and
identify mechanisms to monitor this lifetime, but this
specification does not define how to create the WS-
Resource. It includes two ways to destroy a resource:
immediately through an explicit message or timed
destruction.

• WS-ResourceProperties: WSRF uses a precise specifi-
cation to define the properties of the WS-Resources.
This definition will consist of the definition of the
interface in WSDL and an XML document (Resource
Properties Document) that specifies the properties of
the associated resource, for example, the disk size,
processor capacity, etc. If the user wants to access,

modify or update this document it is necessary to use
a series of messages defined by the specification.

• WS-ServiceGroup: This specification allows the cre-
ation of groups that share a common set of properties,
i.e., it is a mechanism for grouping together different
Web services with similar behaviour.

• WS-Basefaults: The developer typically uses a Web
service interface defined by others, so a method to
standardize the format for reporting error messages
facilitates the work. This is the main goal of WS-
BaseFaults.

• WS-Notification: This specification allows aNotifica-
tionProducerto send a notification message to aNoti-
ficationConsumerin two ways:

1) The NotificationProducer sends a notification
message to theNotificationConsumerwithout fol-
lowing any formalism.

2) The NotificationProduceruses a specific formal-
ism to send notifications.

The option selected is sent by the subscriber in the
subscription message. Thus, the second option allows
the user to receive a wide range of notification mes-
sages, but the user can receive many topics in which
they are not interested because the information sent in
these messages is obtained from a topics tree stored in
the Web service.

• WS-BrokeredNotification: A NotificationBroker is an
intermediary, who, among other things, allows interac-
tions between one or morePublishersand one or more
NotificationConsumers. The mission of thePublisheris
to observe situations and create notification messages to
report these situations, while the broker is responsible
for forwarding these messages.

III. SERVICE + RESOURCEMODELLING

In this section, we show the necessary elements to model
and check Web services with stateful resources and the cor-
responding translation into timed automata for verification.

Concerning the broker Web service, we need four chan-
nels to model the actions that this service can support:
Notification (to send notifications to the others services),
QueryChannel(to receive information),ResponseChannel
(to send information),PublishChannel(to publish the in-
formation about the topics) and, finally,SubscribeChannel
(to receive requests of subscription to one or more topics).
In addition, we have three variables:v that represents the
value of the data received or sent,op is the operation
to perform andid is the identifier of the variable. These
channels and variables have the same meaning in the Web
service automaton. Figure 3 depicts the automaton for broker
Web service.

Figure 4 depicts the automaton that models the Web ser-
vice behaviour. The main difference between this automaton
and the previous one is the task assigned to the channels

224

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

(receive or send data depending on the direction of the
communication).

v:=V
Publish or Subscribe:=OP
id:=ID

PublishChannel? || SubscribeChannel?

V:=v
OP:=Query or Insert or Update
Id:=idResponseChannel!

Notification!

v:=V
Query or Insert or Update:=OP
id:=IDQueryChannel?

Figure 3. Broker service automaton.

V:=v
OP:=Query or Insert or Update
ID:=id

ResponseChannel?

v:=V
Publish or Subscribe:=OP
id:=ID

PublishChannel! || SubscribeChannel!

Notification?

v:=V
op:=OP
id:=ID

QueryChannel!

Figure 4. Web service automaton.

A. Case Study: CONTAINER TERMINAL PLANNING

Our modelling problem is a resource allocation for a series
of particular tasks. In the case of WSRF, these tasks can
be Web services and the resources would be the associated
stateful resources. The description of the particular problem
is the following: Given a number of trucks (tasks) with
designated unloading window (in our case, the time between
the WS-Resource creation and its timed destruction), assign
the cranes (resources) to them, supposing that our system
controls each one of the cranes at the port. When the trucks
are near the port (10 Km.), they must report to the crane
control tower (the broker role in WSRF) that they want
to subscribe to the topicCraneFreeso they can receive
a notification of when they can unload their load. The
broker assigns the cranes based on time windows, so it

always chooses the truck with the smaller time window
to ensure the system correct behaviour. Once the truck has
finished its work, it must send a notification to the broker
(CraneFree). For simplicity, we will call Crane the cranes
control tower automaton andTruck the truck automaton.
Figures 5 and 6 depict the cranes control tower and truck
automata respectively.

V1:=InitialTime
V2:=TerminationTime
OP:=Query or Insert or Update
ID:=id

ResponseChannel?

InitialTime:=V1
TerminationTime:V2
Publish or Subscribe:=OP
id:=ID

PublishChannel! || SubscribeChannel!

Emergency:=OP
id:=ID

EmergencyChannel!

Notification?

InitialTime:=V1
TerminationTime:=V2
op:=OP
id:=ID

QueryChannel!

Figure 5. Control tower automaton.

InitialTime:=V1
TerminationTime:=V2
Publish or Subscribe:=OP
id:=ID

PublishChannel? || SubscribeChannel?

InitialTime:=V1
TerminationTime:=V2
Migrate:=OP
id:=ID

MigrationChannel?

Emergency:=OP
id:=ID

EmergencyChannel?

V1:=InitialTime
V2:=TerminationTime
OP:=Query or Insert or Update
Id:=id

ResponseChannel!

[op==Delete]
Notification!

InitialTime:=V1
TerminationTime:=V2
Query or Insert or Update:=OP
id:=ID

QueryChannel?

Figure 6. Truck automaton.

Next, we start by explaining the operation of the system in
normal conditions and, after that, describing the exceptional
behaviour. When a truck approaches to the port, it uses the
SubscribeChannelto report its arrival time (InitialTime), its
completion time (TerminationTime) and its identifier (id).
The tower receives the information by itsSubscribeChannel
(so, we use?) and immediately activates theQueryChannel
to introduce this information in the database (op == Insert).
The crane control tower responds with the information sent
to it to find inconsistencies in the stored data. The trucks can
query (op == query) and update (op == update) this data at
any time by following the same steps.

225

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

In the event of receiving an emergency message, the
system will insert the truck data at the top of the database
(first position to unload) . Then, it sends a notification to
the trucks which are approaching to the cranes for checking
whether it is possible or not to unload later.

If it is a migration from one crane to another, the con-
trol tower will receive requests throughMigrationChannel,
proceeding as in the first case.

Finally, when a truck ends up its work, it notifies this sit-
uation to the tower by usingPublishChanneland it proceeds
to remove its information of the database (op==delete). Next,
the control tower uses the channelNotification to give work
permission to another truck.

IV. V ERIFICATION

In the previous section, we have shown the translation
between the communication model of the container terminal
in WSRF and the corresponding timed automata. However,
this work would be incomplete without a first approximation
of how to model the task scheduling (trucks) in the terminal.

In this section, we present a simple model that represents
the system in a general way and after that, we find very
important to provide some formulas to check the correctness
of the model. In this sense, as noted in the introduction,
we use the UPPAAL model checker to ensure deadlock-
freeness and search for possible errors to improve our system
design. We model the internal behaviour of Web services,
i.e., the necessary actions performed by the actors in this
scenario to succeed in managing the scarce resources. Note
that the figures of this section show a simplified model
to ease understandability. The truck timed automaton has
been modified to take into account two possible situations:
OnTime or Delayed. Thus, if the unloading of goods is
within the time window, the truck is considered on time,
while on the other case, it is delayed. On the left-hand
side of Figure 7 we show the representation of theCrane
automaton. This timed automaton uses two channels: request
and notification. The first one is used to accept service
requests by trucks while the other channel is used to accept
the notifications when the trucks end up their work. On the
right-hand side, theTruck automaton is used to model the
different states of the truck.

The next example will help the reader clarify the meaning
of transitions and states. Assuming a certain time of arrival
ti, mintearly defining the early time in which the truck can
arrive to the port andmaxtlate representing the latter time
in which the truck can leave the port, we need to define
two possible situations:OnTime or Delayed. The first one
is when the truck can arrive to the port between the interval
[mintearly, ti] and the other one is when the truck arrives to
the port in[ti + 1,maxtlate]. The meaning of the channels
is analogous to theCrane automaton. In Table I we show
the trucks arrival timetable to the port.

TRUCKS Mintearly Maxtearly Mintlate Maxtlate

truck1 153 159 160 559

truck2 100 125 126 347

truck3 91 136 137 512

truck4 50 100 101 250

truck5 175 235 236 350

truck6 210 299 300 600

Table I
TRUCKS ARRIVAL TIMETABLE .

Figure 7. Crane-Truck automata.

To ensure the system correctness, we have formalized the
required queries to verify certain properties by using the
UPPAAL tool. The first property that we want to check is the
absence of deadlocks in the model (A[] not deadlock) and the
second is the existence of an execution trace that allows all
the truck automata to reach the statedone, that is, all trucks
accomplish their work (E<> Truck1.Done and Truck2.Done
and Truck3.Done and Truck4.Done and Truck5.Done and
Truck6.Done). In Figure 8, the model checker obtains that
the second formula issatisfied, so we ask UPPAAL to show
us the trace that satisfies the formula, obtaining the trace
depicted in Figure 9. Due to space limit, we only show the
important part of this trace where we can see the necessary
order of notifications to avoid the deadlocks in our model.
Based on this we can ensure that the control tower needs
to serve the trucks in this sequence: truck4, truck3, truck2,
truck1, truck5 and truck6. Besides, the first formula isnot
satisfied, so we can ensure that the model has deadlocks.
As we have found a design error in our model, we would
have to go back to the design phase, correct the problem
and repeat the process to check these properties again. The
solution of this error is very simple since we have not taken
into account the order of crane requests. The best way to
solve the problem is by adding an incoming buffer to store
the truck requests and sorting it according to the arrival time.

226

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 8. Screenshot of the UPPAAL verifier for Container terminal
planning.

Figure 9. Screenshot of the UPPAAL simulator for Container terminal
planning.

V. CONCLUSIONS ANDFUTURE WORKS

Using formal methods is always beneficial to model, check
and verify computer systems endowing these systems with
mathematical rigour, minimum error rate and conformance
with the specification. Moreover, adding stateful resources to
Web services allows these services to store information that
can be used in the future. This paper is a first approximation
to the formal verification of WSRF specifications. Thus, we
have shown how formal techniques, and in this specific case,
timed automata, can be used to model and verify the use of
resources in a Web services system. As future work, we are
considering the possibility of implementing this model in
Globus toolkit 4 by adding directly the queue system needed
to ensure deadlock-freeness. Furthermore, we are working
on a translation of WSRF into timed automata and Petri
nets.

VI. A CKNOWLEDGEMENT

Partially supported by the Spanish government (co fi-
nanced by FEDER founds) with the project TIN2009-14312-
C02-02 and the JCCLM regional project PEII09-0232-7745.

REFERENCES

[1] T. Banks.Web Services Resource Framework (WSRF) - Primer.
OASIS, 2006.

[2] M. E. Cambronero, G. D́ıaz, V. Valero, and E. Martı́nez.
Validation and verification of Web services choreographies
by using timed automata. Journal of Logic and Algebraic
Programming, vol. 80(1), pp. 25-49, 2011.

[3] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MITPress, Cambridge, 1999.

[4] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Gra-
ham, I. Sedukhin, D. Snelling, S. Tuecke, and W. Vam-
benepe.THE WS-RESOURCE FRAMEWORK VERSION 1.0.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf, 2004.

[5] G. Dı́az, J. J. Pardo, M. E. Cambronero, V. Valero, and F.
Cuartero.Verification of Web Services with Timed Automata.
Notes in Theoretical Computer Science, vol. 157(2), pp. 19-34,
2006.

[6] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.
Ferguson, F. Leymann, M. Nally, T. Storey, and S. Weer-
awaranna.Modeling Stateful Resources with Web Services.
Globus Alliance, 2004.

[7] A. Gudelj, M. Krcum, and Dragan Cisic.Container Terminal
Planning by Petri-net and Genetic Algorithms. Proceedings
of 10th International Conference on Traffic Science (ICTS),
Transportation and globalization, 2006.

[8] D. Laforenza, R. Lombardo, M. Scarpellini, M. Serrano, F.
Silvestri, and P. Faccioli.Biological Experiments on the Grid:
A Novel Workflow Management Platform. 20th IEEE Inter-
national Symposium on Computer-Based Medical Systems
(CBMS’07), pp. 489-494, 2007.

[9] K.G. Larsen, P. Pettersson, and W. Yi.UPPAAL in a Nutshell.
International Journal on Software Tools for Technology Trans-
fer (STTT), 1997.

[10] T. Zang, R. Calinescu, S. Harris, A. Tsui, M. Kwiatkowska,
J. Gibbons, J. Davies, P. Maccallum, and C. Caldas.WSRF-
Based Modeling of Clinical Trial Information for Collaborative
Cancer Research. IEEE International Symposium on Cluster
Computing and the Grid, vol. 0, pp. 73-81, 2008.

[11] H. Ping and W. Xin-Lei.Health Information System Grid
Based on WSRF. Second International Conference on Informa-
tion Technology and Computer Science, pp. 518-521, 2010.

[12] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, and P.
Vanderbilt.Open Grid Services Infrastructure (OGSI) Version
1.0, 2003.

227

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

