
Coordination based Distributed Authorization for Business Processes in Service 
Oriented Architectures  

Sarath Indrakanti  Vijay Varadharajan 
Information and Networked Systems Security Research 
Dept. of Computing, Macquarie University, Australia 

{sindraka, vijay}@ics.mq.edu.au 
 
 

Abstract — Design and management of authorization 
services in service oriented architectures poses several 
challenges. In this paper, we propose authorization 
architecture for business process layer in service 
oriented architecture. We describe the components and 
functionalities of the architecture such as authorization 
policy evaluators, certificate and credential authorities 
and dynamic attribute services and discuss the security 
management of these functions at specification time and 
at run time. Then the paper describes authorization 
evaluation algorithms and discusses the design choices 
for evaluation models. Finally, the paper describes the 
benefits of the proposed architecture, which has been 
implemented. 
 
Keywords- Authorization, Business Processes, Service Oriented 
Architectures 

I.  INTRODUCTION  

Broadly speaking, the Service Oriented Architecture 
(SOA) comprises web services and business workflows built 
using web services. These workflows are called business 
processes [1]. Figure 1 shows the positioning of the 
authorization service components within the various layers 
of the SOA. Authorization services for the web services layer 
have special design requirements because web services 
present a complex layered system. For instance, a service 
could be a front-end to an enterprise system where the 
enterprise system accesses information stored in databases 
and files. Web services may be used by enterprises to expose 
the functionality of legacy applications to users in a 
heterogeneous environment. Alternatively, new business 
applications could be written to leverage benefits offered by 
web services. This means that authorization architecture for 
web services must support multiple models of access control. 
This enables legacy applications to use the access control 
models they have already been using as well as new web 
services applications to use new models of access control. 

Currently, there exist a range of authorization models for 
stand-alone systems and traditional distributed systems. 
There also exist a few authorization schemes that are 
designed either for the web services layer [2,3] or the 
business process layer [4, 5] of the SOA. There is no unified 
model currently available that provides a comprehensive 
authorization framework for both web services and business 

processes comprising the SOA.  After carrying out a 
thorough survey and analysis of the existing authorization 
models built for stand-alone systems and traditional 
distributed systems as well as for various layers of the SOA, 
we have formulated the design requirements for 
authorization services required for web service and business 
process layers.  These are described in Section II. 

Fig. 1:  Layers in the SOA 

Taking into account these design principles, we have 
proposed a unified authorization framework for the SOA. 
The authorization framework comprises two separate 
authorization architectures (indicated by the light-grey 
coloured boxes in Figure 1 that extend the security layers of 
web services and business processes. Extensions to the web 
services description and messaging layers are also proposed 
to support the unified authorization framework for the SOA 
(indicated by the dark-grey coloured boxes in Figure 1). This 
work builds on the work on the authorization architecture for 
web services, referred to as the Web Services Authorization 
Architecture (WSAA) [6]. In this paper, our focus is on the 
business process layer authorization architecture, which is 
referred to as the Business Process Authorization 
Architecture (BPAA). The BPAA builds on top of the 
WSAA and forms part of the overall authorization 
framework for Service Oriented Architectures. BPAA is the 
focus of this paper.  

Authorization architecture for the business process layer 
of the SOA must provide orchestration services to coordinate 
the authorization decisions from individual partner’s 
authorization policy evaluators. Each partner must be 

Confidentiality, Integrity 
and Authentication 

Confidentiality, Integrity 
and Authentic 

Authorization 

Web Services 
Messaging Layer 

SOAP                       
(require header extensions) 

WSDL                       
(require schema extensions) 

Authorization 

BPEL4WS Coordination Transaction 

Web Services 
Description Layer 

Web Services 
Discovery Layer 

Web Services 
Technology 

Web Services 
Security Layer 

Business Process 
Layer 

Business Process 
Security Layer 

UDDI 

188

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



allowed to control its own authorization policies and also not 
require disclosing them to the entire workflow or to the 
workflow engine. Even in cases where the binding to actual 
end-points of partner services happens dynamically at 
runtime, the authorization architecture must be able to 
orchestrate the partners’ authorization policy evaluators and 
arrive at an authorization decision. 

 
Fig. 2:  Travel Agent Service Example 

 
Consider for instance the Travel Agent Service shown in 

Figure 2, where each of the partner services may potentially 
use their own access control (AC) mechanisms. The partner 
airline (for example, United Airlines) may not wish to 
disclose its policies to the travel agent. Similarly, other 
partners also may not wish to disclose their policies to be 
combined by the travel agent in order to authorize the client. 
In the course of the workflow, the client needs to get 
authorized seamlessly to partner services. 

The paper is organized as follows. In Section II, we 
consider the requirements for authorization framework for 
Service Oriented Architectures. Section III describes the 
proposed business process authorization architecture. Finally 
Section IV concludes.   

II. AUTHORIZATION DESIGN REQUIREMENTS FOR SOA 

In the next two sub-sections, we outline the principles 
involved in the design of authorization framework for web 
services and business processes layers of the SOA. 

A. Authorization Principles for Web Services Layer  
(i) Support for multiple access control models — 
Authorization service must be able to support a range of 
access control models. This is necessary because it is not 
realistic to expect every web service-based application to use 
the same access control model. In fact, where web services 

are used to expose the functionality of legacy enterprise 
applications, it is likely that organizations will prefer to use 
their currently existing access control models and 
mechanisms that they have been using, before exposing the 
legacy applications as web services. Therefore, authorization 
architecture must be flexible enough to support multiple 
access control models including the traditional Discretionary 
Access Control (DAC), Mandatory Access Control (MAC), 
Role Based Access Control (RBAC) and the 
Capability/Certificate-based Access Control models [7, 8]. 
(ii) Authorization Policies — Languages have long been 
recognized in computing as the ideal vehicles for dealing 
with the expression and the structuring of complex and 
dynamic relationships. Over the recent years, a language-
based approach to specifying access control policies has 
(rightly) gained prominence; this is helpful for not only 
supporting a range of access control policies but also in 
separating the policy representation from policy 
enforcement. Hence an important design principle is to 
enable the support for a range of policy languages for 
specifying authorization policies. The policy language(s) 
used may support fine-grained and/or coarse grained 
authorization policies depending on the organization’s 
requirements.  
 (iii) Authorization Credentials -- It is necessary to define 
what access-control related credentials are required and how 
to collect them. Some access control mechanisms may pull 
the credentials from the respective authorities and send them 
to the responsible authorization components. For example, in 
the semantic approach [9], the AC Proxy component collects 
the relevant privilege (attribute) certificates (for the client) 
from the PMI Client component which in turn requests the 
appropriate PMI Node for the privilege certificates for the 
client. Other access control mechanisms may expect the 
client to collect the credentials from the respective 
authorities and push them to the responsible authorization 
components. For example, [2] proposes a model in which a 
client itself collects the required authorization credentials 
from the relevant authorities and sends the set of credentials 
collected before invoking a web service. Hence, we 
recommend an authorization architecture designed for web 
services to be able to support both the push and pull models 
of collecting credentials. 

(iv) Decentralized and Distributed Architecture — Given 
the distributed decentralized nature of the web, it is 
reasonable to demand that an authorization architecture 
designed for web services should embrace the same 
decentralized nature. As an example, an organization may 
typically have a hierarchical internal structure. The 
decentralized approach allows us to specify authorization 
policies for web services on an organizational unit level for 
different components in the web service hierarchy. A 
distributed architecture provides many advantages such as 
fault tolerance and better scalability, and can outweighs its 
disadvantages such as more complexity and communication 
overhead.  

Policies                   
AC Mechanism 1 

Client 

Car 
Rental 

Airline Hotel 

Insurance Credit 
Check 

Travel 
Agent 

Policies                   
AC Mechanism 2 

Policies                   
AC Mechanism 3 

Policies                   
AC Mechanism 4 

Policies                   
AC Mechanism 5 

Policies 
-Own AC Mechanism 

-Policies Combined Here? 

189

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



The WSAA architecture described in [6] has taken these 
principles into account in its design and management.  

 

B. Authorization Principles for Business Process Layer  
(i) Decentralized Policy Administration — Each partner 
involved in a business process workflow should be allowed 
to control its set of authorization policies autonomously 
whether the partners are from within one organization or 
from multiple organizations. The authorization architecture 
must not place a constraint on coordinating the policies 
across different domains involved in the virtual enterprise [4] 
formed by a business process workflow.  
(ii) Dynamic Discovery of Business Process Partners’ 
Authorization Evaluation Components — Every web service 
must let its potential clients be aware of the access control 
mechanism it uses and where, if necessary, to get the 
credentials from and where to send them for making the 
authorization decision. This could be achieved in the form of 
the assertions in the WS-AuthorizationPolicy (defined in 
[6]), similar to the WS-SecurityPolicy specification) 
statements. In the case of a dynamic business process, where 
the binding to actual implementations of partner web 
services is made at runtime using some pre-established 
criteria, the authorization architecture must make the client 
aware of each of the partners’ authorization mechanisms and 
components involved. A coordination component may be 
used to send such information to clients. When the flow 
reaches a stage where some credentials are required by the 
access control system of the partner involved, the 
coordination component can make the client aware of what 
authorization credentials to send to the partner’s component 
for the authorization evaluation to be made.  
(iii) Orchestration of Partners’ Authorization Evaluation 
Components and Combination of Individual Decisions — 
Authorization architecture must use some form of 
coordination mechanism to orchestrate the partners’ 
authorization evaluation components and the client involved 
in a workflow. In the case of dynamic1 business processes, a 
coordinator, for instance, should maintain session state 
information so that all or some partners know the 
authorization given to a client. As in any complex 
transactions handling mechanism, there must be a 
mechanism in place to either commit or rollback an 
authorization decision based on the authorization decisions 
from partners’ policy evaluators. A business process may be 
performed only when all the partners’ authorization 
components involved give out a positive authorization. 
Decision-combination algorithms such as those defined in 
the RAD architecture [10] should be defined by the partner 
controlling the workflow to combine and give out a final 
authorization decision. 

                                                           
1 In a dynamic business process, only the partner interfaces are defined at 
the design time, but not the actual bindings to real instances of partner 
services. 
 

(iv) Non-disclosure of Policies — A partner or a set of 
partners involved in a business process may not wish to 
disclose their policies to the partner that is controlling the 
business process. It is an important requirement that the 
authorization architecture should not need all the partners to 
disclose their policies to other partners involved in the 
workflow. For example, if a Travel Agent Service (TAS) 
creates a business process that binds and interacts with 
United Airlines, Hertz car rental and Hilton Hotel at design 
or runtime, the TAS should not require the different partners 
involved to disclose their policies to manage the 
authorization decisions involved. Large organizations would 
want to set and enforce their policies themselves or by 
outsourcing to a trusted partner (who runs their authorization 
service). However, they would want to do business by 
binding to portal travel agents using a secure SOA. 

III. BUSINESS PROCESS AUTHORIZATION ARCHITECTURE 

Before we delve into the design of the architecture, we 
clearly distinguish between static and dynamic business 
processes. A static business process is a pre-composed 
business process, where all the partner service interfaces and 
their binding information are known at design time itself. A 
dynamic business process is more complex, where only the 
partner interfaces are defined at design time, but not the 
actual bindings to real instances of partner services (web 
services and/or business processes). The binding is made at 
runtime to real instances of services by letting the client 
interact with the business process. For instance, a travel 
agent may statically bind at design time to always book (i) 
flight tickets with United Airlines, (ii) cars with Hertz car 
rental and (iii) hotel rooms at the Hilton. But in real-world 
situations, customers want more flexibility; and therefore, 
travel agents may opt to expose their services as dynamic 
business processes, where the customer at runtime chooses 
an appropriate partner service (such as airline, car rental 
agency, or hotel) depending on their own requirements. We 
make an important assumption in this paper. A dynamic 
business process may not only invoke partner web services 
but also partner services that are themselves business 
processes.  

A. BPAA Architecture Design 
The proposed architecture is shown in Figure 3. The 

BPAA comprises an administrative domain and a runtime 
domain. We manage business processes in the administration 
domain. Authorization related components such as 
authorization policy evaluators, certificate and credential 
authorities and dynamic attribute services can be managed in 
the administration domain. Also security administrators can 
assign a set of authorization policy evaluators to authorize 
requests to business processes. We have a runtime domain 
where the authorization related information such as what 
credentials are required to invoke a particular business 
process and how to collect those credentials is compiled and 
stored. This makes the authorization process efficient. This 
information is automatically compiled from time to time 
when necessary by using the information from the 

190

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



administration domain and it can be readily used by 
components in the runtime domain. A client makes use of a 
registry server such as a UDDI directory to find business 
process definitions (WS-BPEL statements).  

Let us now consider the various system components 
involved in the BPAA. The components Authorization 
Policy Evaluators, Certificate and Credential Authorities, 
Dynamic Attribute Services, and Authorization Decision 
Composers are system objects in our architecture. The 
Authorization Manager (AZM) for an organization is 
responsible for managing these components. The 
Authorization Administration API is used to manage these 
components and the related data is stored in the 
Authorization Administration Database (AAD).  

The Certificate and Credential Authority (CCA) is 
responsible for providing authentication certificates and/or 
authorization credentials required to authenticate and/or 
authorize a client. For example, a CCA may provide 
authentication certificates such as X.509 or authorization 
credentials such as a Role Membership Certificate (RMC) or 
a Privilege Attribute Certificate (PAC). We define Certificate 
and Credential Authority as a tuple, cca = [i, l, CR, pa, 
ra(pa)], where i is a URN, l is a string over an alphabet �* 
representing a network location such as a URL, CR is the set 
of authentication certificates and/or authorization credentials 
cca provides, pa is an input parameter representing a subject, 
ra uses pa and gives out an output (result) that is the set of 
certificates/credentials for the subject.  

The Dynamic Attribute Service (DAS) provides system 
and/or network attributes such as bandwidth usage and time 
of the day. A dynamic attribute may also express properties 
of a subject that are not administered by security 
administrators. For example, nurses may only access a 
patient’s record if they are located within the hospital’s 
boundary. A DAS may provide the nurse’s ‘location status’ 
attribute at the time of access control. Dynamic attributes’ 
values change more frequently than traditional static 
authorization credentials (also called privilege attributes). 
Unlike authorization credentials, dynamic attributes must be 
obtained at the time an access decision is required and their 
values may change within a session. 

We define Dynamic Attribute Service as a tuple, das = [i, 
l, AT, pd, rd(pd)], where i is a URN, l is a string over an 
alphabet � * representing a network location such as a URL, 
AT is the set of attributes that das provides, pd is input 
parameter(s) representing attribute(s) name(s), rd uses pd 
and gives out an output (result) that is the value of the 
attribute(s). 

The Authorization Policy Evaluator (APE) is responsible 
for making authorization decision on one or more abstract 
system operations. An APE may use a type of access control 
mechanism and an authorization policy language that may be 
unique to it. However, we define a standard interface for the 
set of input parameters an APE expects (such as subject 
identification, object information and the authorization 
credentials) and the output authorization result it provides. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         

 

Fig. 3: BPAA Overview Diagram 

We define Authorization Policy Evaluator as a tuple, ape 
= [i, l, pe, re(pe), OP, DAS, CCA], where i is a URN, l is a 
string over an alphabet � * representing a network location 
such as a URL, pe is the set of input parameters such as 
subject and object details, re is a function that uses pe and 
gives out an output (result) of authorization decision. OP is 
the set of abstract system operations for which ape is 
responsible. The DAS is the set of dynamic attribute services 
responsible for providing dynamic runtime attributes to the 
ape. The ape uses these attributes to make authorization 
decisions. The CCA is the set of certificate and credential 
authorities that provide the credentials required by the ape. 

The Authorization Decision Composer (ADC) combines 
the authorization decisions from various authorization policy 
evaluators involved by using an algorithm that resolves the 
authorization decision conflicts and combines them into a 
final decision. We define Authorization Decision Composer 
as a tuple, adc = [i, l, a, pc, rc(pc)], where i is a URN, l is a 
string over an alphabet � * representing a network location 
such as a URL, a is the name of a pre-defined algorithm adc 

AS RS ACO 

Authorization Coordination Layer 

 

Administration Domain Runtime Domain 

SM 

 

A
Z

 

AZS 

APE2 APEN 

ADC 

Authorization API 

Registry 
Server 

CCA1..N 

Business 
Processes 

Business Process Security Layer 

 Administration API 

ARD 

AZM 

Authorization  
Admin API 

BPM 

CRM 
DAS1..N 

Client 
Side 

Client 

Client 
Proxy 

BPSM ANS 

BPA 
APE, CCA 
DAS, ADC, 

ACO 

PCC 
PATD 

Business 
Process  

APE1 

AAD 

BPAD 

Partner 
Services 

191

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



uses to combine the decisions from the individual 
authorization policy evaluators. The pc is an input parameter 
representing the decisions from individual authorization 
policy evaluators, rc uses pc and the authorization decision 
composer algorithm a to combine the decisions and gives out 
an output (result) that is the value of the final authorization 
decision. 

The runtime domain consists of the Client Proxy, the 
Business Process Security Manager, the Authentication 
Server, the Authorization Server, and the Authorization 
Coordinator components. 

The Client Proxy (CP) collects the required 
authentication certificates and/or the authorization 
credentials from the respective authorities on behalf of the 
client before sending a request to a business process and 
handles the session on behalf of the client with a Business 
Process Security Manager. 

The Business Process Security Manager (BPSM) is 
responsible for both the authentication and the authorization 
of the client to a business process. A client’s Client Proxy 
sends the necessary authentication certificates and 
authorization credentials to the BPSM. It is responsible for 
managing all the interactions with a client’s Client Proxy. 

The Authentication Server (ANS) receives the 
authentication certificates from the BPSM and uses a 
mechanism to authenticate the client. We treat the ANS as a 
black box in our architecture as our focus in this paper is on 
the authorization of the client. We included this component 
in the business process security layer for completeness. 

The Authorization Server (AZS) decouples the 
authorization logic from the application logic. It is 
responsible for locating the business process’ Authorization 
Policy Evaluators, sending the credentials to them and 
receiving the authorization decisions. Once all the decisions 
come back, it uses the business process’ Authorization 
Decision Composer to combine the authorization decisions. 
If required, the AZS also collects the required authorization 
credentials on behalf of clients from the respective 
Certificate and Credential Authorities. 

The Authorization Coordinator (ACO) is used to 
coordinate the authorization between a client (by involving 
the Client Proxy) and the dynamic business processes and 
their partner services (web services and/or business 
processes). It is composed of an Activation Service (AS) and 
a Registration Service (RS) that expose standard interfaces to 
the participants (Client Proxy and Business Process Security 
Manager) in the authorization coordination protocol.  

The Business Process Managers (BPMs) manage a set of 
business processes for which they are responsible in an 
organization. They use the Administration API shown in 
Figure 3 to manage the business processes. The business 
process definitions are stored in the Business Process 
Administration Database (BPAD), see Figure 3.  

We define a Business Process as a tuple, bp = [i, l, �, WS, 
BP, B, pa, MD, bpm, bpsm, aco], where i is a non-empty 
string over an alphabet �* representing a globally unique 
identifier such as a URN, l is a string over an alphabet �* 

representing a network location such as a URL, � is a finite 
set of states representing the internal state of the business 

process at a given time, WS is the set of URNs of partner 
web services or activities that comprise the business process, 
BP is the set of URNs of partner business processes or 
activities that comprise the business process, B is the 
network protocol binding such as SOAP over HTTP for the 
business process, pa represents the business process flow 
algorithm represented in a WS-BPEL statement, MD is the 
metadata providing additional description for bp, the bpm is 
the identity (ID) of the Business Process Manager (BPM) 
responsible for managing bp. The bpsm is the location of the 
Business Process Security Manager component responsible 
for the authentication and authorization of the clients to the 
business process. The aco is the location of the Authorization 
Coordinator responsible for coordinating the authorization of 
a client to the bp’s partner services. The aco is defined only 
for dynamic business processes and is null for static business 
processes.  

The �, B, or the MD can be the empty set Ø. If B is an 
empty set, Ø, then the business process defined is either an 
abstract business process or a dynamic business process. An 
abstract business process is not executable and only defines 
the standard interfaces between a business process and its 
partner services and the messages passed between them. If it 
is a dynamic business process, the individual bindings to 
partners are made at runtime using the client’s preferences. If 
B is not an empty set at business process design time, then it 
is a static (pre-composed) business process. 

B. BPAA Authorization Policy Evaluation  
The Business Process Managers (BPMs) are also 

responsible for managing the authorization-related 
information for the business processes for which they are 
responsible. This information is stored in the Business 
Process Authorization tuple,   bpa = [i, bp, APEbp, adcbp], 
where i is a URN, bp is the business process to which bpa is 
defined. The APEbp is the URNs of the set of Authorization 
Policy Evaluators responsible for authorizing the requests 
from a client to the bp. The adcbp is the URN of an 
Authorization Decision Composer. It is responsible to 
combine at runtime, the authorization decisions given out by 
the set of APEs in the APEbp.  

At the time of evaluation in runtime domain, Credential 
Manager (CRM) component in the BPAA is responsible for 
compiling and storing the authorization information required 
by the components. This runtime authorization information 
is stored in the Authorization Runtime Database (ARD) (Fig. 
3). The runtime authorization information consists of two 
tuples namely, BusinessProcess-Credential-CCA tuple (PCC 
tuple) and BusinessProcess-Attribute-DAS tuple (PATD 
tuple).The CRM is invoked from time to time, when a 
business process object is created or modified in the BPAD. 

The BusinessProcess-Credential-CCA tuple is defined as  
pcc = [i, bp, CR, cca, ape], where i is a URN, bp is the 

URN of the business process, CR is the set of authorization 
credentials to be obtained from the Certificate and Credential 
Authority, cca to get authorized to invoke bp. The ape is the 
URN of the Authorization Policy Evaluator that requires 
these credentials. This means each bp can have one or more 
of these (tuple) entries in the ARD.  

192

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



The BusinessProcess-Attribute-DAS tuple (PATD tuple) 
is defined as  patd = [i, bp, AT, das, ape], where i is a URN, 
bp is the URN of the business process, AT is the set of 
attributes to be obtained from a Dynamic Attribute Service, 
das to make an authorization decision. The ape is the URN 
of the Authorization Policy Evaluator that requires these 
attributes. This means each bp can have one or more of these 
(tuple) entries in the ARD.  

C. BPAA Authorization Algorithms 
The BPAA supports three authorization algorithms. The 

first, the push-model algorithm, supports the authorizations 
where a client’s Client Proxy (CP), using the information in 
the BP-AuthorizationPolicy, collects and sends the required 
credentials (from the CCAs) and attributes (from the DASs) 
to a Business Process Security Manager (BPSM). The 
second, the pull-model algorithm, supports the authorizations 
where the Authorization Server (AZS) itself collects the 
required credentials from the CCAs, and the APEs collect 
the required attributes from the DASs. The AZS in this case 
uses the runtime objects information from the Authorization 
Runtime Database to be able to do so. The third, the 
combination-model supports both the push and pull models 
for collecting the required credentials and attributes. An 
organization must deploy one of these algorithms depending 
on the access control mechanisms used by the business 
process. 

When the combination-model algorithm is deployed by 
an organization, the organization’s Authorization Manager 
(AZM) may arbitrarily decide whether the credentials 
required from a CCA and dynamic attributes required from a 
DAS for each of the business process’ APEs are fetched by a 
Client Proxy (push-model) or by the authorization 
components themselves (pull-model). The AZM may decide 
to give the entire responsibility of fetching the required 
credentials and attributes to the client proxy or to 
authorization components or share responsibility of fetching 
credentials and attributes amongst the client proxy and the 
authorization components. This information is reflected in a 
business process’ BP-AuthorizationPolicy.  

The BP-AuthorizationPolicy includes assertions that 
specify what credentials (and from which CCA) and 
attributes (and from which DAS) a client’s Client Proxy has 
to collect before invoking a business process. These 
assertions also include the credentials and attributes required 
to invoke a static business process’ partner Web services as 
well as its partner business processes. We extend the WS-
BPEL statement schema to include the BP-
AuthorizationPolicy. Note that the partner Web services and 
business processes-related authorization information is not 
included in the BP-AuthorizationPolicy of a dynamic 
business process. Such information is only necessary for a 
static business process. Finally, the authorization 
coordination information is also included in the BP-
AuthorizationPolicy. This information is necessary only for 
the dynamic business processes.  We have designed and 
implemented the authorization evaluation schemes for both 
static and dynamic business processes in push, pull and 
combined model scenarios. Due to lack of space in this 

paper, we refer the reader to [11] where they are described in 
full.    

D. Dynamic Business Process Authorization  
We leverage the WS-Coordination framework [12] to 

coordinate authorization of a client to a dynamic business 
process and its partner services. When a client invokes a 
dynamic business process, the Client Proxy component is 
responsible for the activation of a new instance of an 
Authorization Coordinator. It is aware that authorization 
coordination is required to get the client authorized to a 
dynamic business process, because the BP-
AuthorizationPolicy has the information about the 
authorization coordinator, the coordination protocol used and 
its type (authorization coordination type), and finally its 
location. The Business Process Security Manager is another 
participant in the coordination protocol. During the course of 
execution of a dynamic business process, if the WS-BPEL 
Engine needs to invoke a partner service, it sends a message 
about the same, to the business process’ BPSM. BPSM then 
informs the Authorization Coordinator that a partner service 
has been invoked and it needs authorization credentials from 
the client (Client Proxy). The Authorization Coordinator also 
informs the Client Proxy about the same. The Client Proxy 
fetches the required credentials and gets back to the 
Authorization Coordinator. The Authorization Coordinator 
then sends a message with the received credentials to the 
Business Process Security Manager. BPSM sends these 
credentials to the BPEL Engine. The BPEL engine uses these 
credentials and then continues execution of the partner 
service.  

The Client Proxy interacts with the BPSM sending and 
receiving messages as normal, with the exception that it 
embeds the authorization coordination context (which carries 
the authorization information) in a SOAP header block in its 
messages to provide authorization credentials for those 
partner services (web services and/or business processes) 
that are invoked. Also the Client Proxy itself registers as a 
participant with the authorization coordinator. The BPSM 
understands the protocol messages associated with our 
authorization service. If it has not registered a participant 
previously, it does so once it receives a SOAP message from 
the Client Proxy containing an authorization context header 
using the details provided in the context (via the WS-
Coordination registration service URI). This register 
operation occurs every time that the BPSM receives a 
particular context for the first time. 

When the Client Proxy receives the final response from 
the BPSM after the execution of the business process, it 
sends a Completion Message to the Authorization 
Coordinator. The Authorization Coordinator then sends the 
Completion Message to the BPSM registered as a participant 
to the Authorization Coordinator. Any subsequent calls by 
the Client Proxy (on behalf of the client) to that business 
process with the same context will result in the service being 
unable to register a participant since the context details will 
no longer resolve to a live coordinator with which to register 
This is shown in Figure 4. 

193

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3



 
         Figure 4: Authorization Coordination Framework 

 
We have developed an implementation of this 

architecture using Microsoft BizTalk Server to create sample 
business processes in the BPEL4WS and demonstrated the 
features of the BPAA using those business processes. The 
architecture was used to demonstrate a healthcare application 
scenario using .NET framework. Performance evaluation 
showed that the BPAA architecture introduced an average 
performance delay of some 200ms when invoked with 
different processes.  

IV. CONCLUDING REMARKS  
In this paper, we have proposed and developed 

authorization architecture for business processes (BPAA) in 
SOA. Our authorization architecture is able to support both 
static and dynamic business processes. Also, a business 
process may have web services or even other business 
processes as partners. We took all such scenarios into 
consideration and have provided a comprehensive 
architecture for authorization for the business process layer 
of the SOA. Also we extended our authorization 
coordination framework to allow for both static and dynamic 
business processes to invoke partner services that are 
themselves dynamic business processes. The proposed 
BPAA supports multiple access control models including the 
MAC, DAC, and the RBAC models. Access control 
mechanisms can either use push or the pull model or even a 
combination of both, for collecting client credentials. Our 
architecture provides decentralized security administration. 
The partners involved in a business process workflow are 
allowed to autonomously control their authorization policies. 
The partners can be either from within an organization or 
from multiple organizations.  In the case of static business 

processes, the information about the authorization credentials 
required to invoke the partner services is exposed in WS-
BPEL using BP-AuthorizationPolicy at the design time 
itself.  In the case of dynamic business processes, dynamic 
discovery and orchestration of business process’ partners’ 
authorization evaluation components are achieved.  The 
BPAA coordinates the authorization where binding to real 
partner services happens at runtime depending on client 
requirements.  Furthermore, The BPAA does not require the 
partner services to disclose their policies to the partner that is 
controlling the business process. The authorization of the 
client happens at the same place, where the partners 
originally intended it to be. Hence organizations can now 
leverage the services offered by the BPAA and do business 
by binding to the portal agents even if they do not trust them 
to perform client authorization. The Business Process 
Security Manager can be placed in a firewall zone, which 
enhances the security of business processes placed behind an 
organization’s firewall. We have implemented the proposed 
architecture and its components using the .NET middleware 
platform and demonstrated its operation by developing a 
healthcare application scenario over this architecture.   

REFERENCES 
[1] T. Andrews et al., Business Process Execution Language  for Web 

Services,  http://www.ibm.com/developerworks/library/specification/ws-bpel/  
(accessed Jan 2011). 

[2] S. Agarwal, B. Sprick, and S. Wortmann, "Credential Based Access 
Control for Semantic Web Services," American Association for 
Artificial Intelligence,  pp.  110-120, 2004 

[3] R. Kraft, “Designing a Distributed Access Control Processor for 
Network Services on the Web”, Proc of the ACM Workshop on XML 
Security, USA, pp.  36-52, 2002. 

[4] H. Koshutanski and F. Massacci, "An Access Control System for 
Business Processes for Web Services," Informatica e 
Telecomunicazioni, University of Trento, Technical Report DIT-02-
102, 2002 

[5] M.C. Mont, A.Baldwin and J.Pato, “Secure Hardware-based 
Distributed Authorization underpinning a Web Service Framework”, 
HPLabs Technical Report HPL-2003-144, 2004. 

[6] S. Indrakanti, V.Varadharajan and R.Agarwal, “On the Design, 
Implementation and Application of an Authorization Architecture for 
Web Services”, International Journal for Information and 
Communication Security, Vol.1, No.1/2,  pp.  64-108, 2007. 

[7]  D.W. Chadwick and A.Otenko, “The PERMIS X.509 role based 
privilege management infrastructure”, Future Gener. Comput. Syst. 
19, pp.  277 - 289, 2003 

[8] V. Varadharajan, C.Crall and J.Pato, “Authorization in Enterprise 
wide Distributed Systems: Design and Application”, Proceedings of 
the 14th IEEE Computer Security Applications Conference,  pp. 178-
189, 1998. 

[9] M.I. Yague and J.M.Troya, “A Semantic Approach for Access 
Control in Web Services”. In Euroweb 2002 Conference. The Web 
and the GRID: from e-science to e-business, Oxford, UK, pp. 483-
494, 2002. 

[10] K. Beznosov et al., "A Resource Access Decision Service for ORBA-
Based Distributed Systems," in Proceedings of the 15th Annual 
omputer Security Applications Conference: IEEE,  pp.310-319, 1999. 

[11] S. Indrakanti, “Engineering Authorization Services for Service 
Oriented Architectures, PhD Thesis, Macquarie University, 2007. 

[12] L.F. Cabrera et al., “Web Services Coordination Framework”, 
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
tx/WS-Coordination.pdf (accessed Jan 2011). 

194

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-124-3


