
Hounterfeit: A Virtual Self-Defending Infrastructure with Transparent Relocation to
Honeypots

Mihai-Alexandru Bogatu Adrian-Răzvan Deaconescu Cătălin-Adrian Leordeanu
Department of Computer Science

POLITEHNICA Bucures, ti
Bucures, ti, Romania

e-mail: mihai.bogatu@stud.acs.upb.ro {razvan.deaconescu|catalin.leordeanu}@upb.ro

Abstract—Advanced Persistent Threats (APTs) pose the most
sophisticated cyber-attacks, some of which reside in the internal
networks over an extended period of time. Intrusion Detection
and Prevention Systems (IDS / IPS) strive to keep up with the
newest attacks; however, they are often updated only after a
0-day causes impact to businesses. As APTs continue to evolve,
we propose Hounterfeit - a self-defending infrastructure that
deceives attackers into revealing their payloads on production-
looking Honeypot systems. The architecture makes use of Software-
Defined Networking (SDNs) alongside process migration through
Checkpoint/Restore In Userspace (CRIU) to achieve a transparent
relocation to a honeypot environment, with low network overhead,
while also maintaining scalability. Once common attack indicators
are detected, the malicious actor is transferred transparently
alongside its application and network session, to a replica of the
server that masquerades sensitive data. The infrastructure can
be used as a base to deceive attackers to expose attack methods
tailored for the real live systems.

Keywords-SDN; CRIU; IPS; Honeypots.

I. INTRODUCTION

The attacker-defender ecosystem in cybersecurity is con-
stantly evolving, attackers finding new ways to break into
systems while defenders having to keep up with them. While
traditionally most exploits were centered around a single
application or service, nowadays defenders have to take
into consideration complex interactions, such as supply-chain
attacks. Immediately blocking attackers in a deep packet
inspection scenario once malicious activity is detected limits the
amount of damage done to the systems. However, it also reveals
to the attackers possible security filters inside the systems. A
proactive approach to model threats is deployment of honeypot
systems. Arguably implementing honeypots helps defenders
reveal attackers’ payloads and methodologies, however such
systems are usually implemented at companies offering services
or products in cybersecurity. The honeypot systems deployed
may not have any technology present on a specific’s company
system that needs protection. Revealing payloads to other types
of applications would have less value for said organizations.
Finding a way to capture malicious payloads in an environment
resembling the real production system, this paper proposes an
infrastructure that creates honeypots from the base production
applications, which with the attackers establish communication,
while preserving other system data confidentiality, integrity
and availability.

Hounterfeit implements a Software-Defined Networking
(SDN) infrastructure that scans packets for malicious activity.

Once attacks are detected, the traffic between the hosting server
and the malicious user is dropped, a process with already
established network connection with the attacker is cloned
and transferred between the host and the Honeypot while the
virtual firewall connection is redirected to the new system. This
method achieves transparent Transmission Control Protocol
(TCP) redirection but also preserves any in-process state that the
attacker made until that point. This solution preserves sufficient
environment such that attacks can continue on a Honeypot
system, prolonged interaction with such system allowing for
better analysis of the threat.

In this paper, we make the following contributions:

• we propose the Hounterfeit self-defending infrastructure;
• we implement a replicable build for testing process relocation

in honeypot scenarios;
• we evaluate the impact of the infrastructure by measuring

the process migration time via a secure communication.

The rest of the paper is structured as follows: Section II
presents the bases of an infrastructure capable of preventing
attacks and learning from them; Section III mentions state-
of-the-art research related to Hounterfeit’s design; Section IV
details the logical design and proposed technologies to integrate
with Hounterfeit; Section V notes the testing procedure and
resulting metrics; Section VI provides takeaways for the
experiment while proposing extended usage in closed-loop
scenario, while also listing some limitations of the approach;
and Section VII summarizes the article and the possible
directions for Hounterfeit’s extended development.

II. BACKGROUND

One of the major adversary to the security of information
technology systems are Advanced Persistent Threats (APTs).
An APT is usually composed of a group of individuals who
posses both financial and technological resources, with deep
understanding of security systems. Major motives for APTs
are financial and/or political, any may be sponsored for cyber-
attacks. The term persistent, comes from the fact that APTs
will, most of the times, break into the systems stealthily, move
through the infrastructure and may reside inside organization’s
systems for a prolonged period of time. Initial foothold in
the infrastructure may be gained through the use of 0-days,
vulnerabilities that have not yet been disclosed publicly. Due
to the complexity of such attacks, and the potential impact

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

https://orcid.org/0009-0006-0246-7802
https://orcid.org/0000-0001-8287-1712
https://orcid.org/0000-0003-3007-7853

of a breach, it is imperative to understand the tactics of such
threats, preferably without the risk of any major damage.

To add resilience to any system, isolating components at risk
is essential. An isolated environment is often called a sandbox.
From a host’s perspective there are 3 common isolation
methods that provide resilience without the need of application
modification: emulation, virtual machines and containers.
Emulation refers to an architecture in which the hardware is
modeled through software. While emulation provides most
control, it is usually not implemented in publicly-facing
production environments due to high resource consumption.
Virtual Machines (VMs) abstract some of the hardware and
allow multiple Operating Systems (OS) to run at the same
time while restricting some operations that are managed by a
Virtual Machine Manager (VMM) and which require hypervisor
privileges. VMs are typically used in production environments
as they share the same hardware, with some restrictions,
providing fast access while isolating the systems. Containers are
implemented on top of an OS, leveraging security features in
the Operating System to achieve isolation such as namespaces,
control groups, capabilities, etc. Traditionally, containers share
the same kernel, which provides a faster access to resources
than VMs but reduced isolation. The mentioned methods for
resilience remain secure as long as the implementation is correct
and isolation is not broken, which otherwise may result in a
sandbox escape.

An infrastructure that is able to defend itself against attacks
is designed to autonomously detect, prevent and respond
to cybersecurity threats. It is commonly implemented with
network and/or host Intrusion Prevention Systems (IPS), which
may contain Deep Packet Inspection (DPI) capabilities. The
detection at network level can be implemented via plaintext
filters such as tokens or regular expressions, behavior analy-
sis or machine learning. The rules are usually constructed
based on real attacks, if a major incident happened and
network/application logs are recoverable or after a security
advisory is released, which is prone to delays in analysis,
publication and finally rule implementation. Protection against
0-days is limited to the degree of similarity with previous
known attacks, such as having common attack kill chain
patterns or payloads.

A. Honeypot Systems

A proactive approach to learn new attack techniques and
payloads is to set up a dedicated system constructed specifically
to be exploited, to collect as much information as possible,
known as honeypots for individual hosts/services or honeynets
for multiple inter-connected hosts. Figure 1 presents a minimal
example of a self-defending architecture that contains au-
tonomous honeypot systems. All traffic towards the servers will
be inspected through an IPS. If malicious activity is detected,
the traffic is dropped and the attacker may be blacklisted. In
other deployments that a regular user will not otherwise find
by legitimate actions, the honeypots are unprotected and left
as a distraction and possibly for payload capture. Sometimes,
honeypots are deployed behind a firewall, and the scope of

Figure 1. Self-defending infrastructure with honeypots.

deployment is attacker identification for blacklisting, requiring
some sort of IDS. Exploitation of the honeypot systems is
intended and some virtually created vulnerabilities may be
introduced to provoke malicious actors engagement.

Honeypot systems can be classified by the interaction level
they provide. Low-Interaction Honeypots (LIH) implement a
minimal system. They are the safest to deploy and maintain,
however they are not very realistic, as an advanced attacker
can make the difference between a real system and a Low-
Interaction Honeypot. They are a mechanism to capture
malicious entities such as malware or other automated scanning
and exploitation tools rather than manual attacks. Usually, Low-
Interaction Honeypots do not have the sense of maintaining ses-
sions and persistent actions such as uploading files, modifying
a database value or keeping an internal application state. High-
interaction Honeypots (HIH) give the most realistic sandboxing
environment. They allow cybersecurity experts to monitor and
trace complex attacks and develop new defense mechanisms
by observing the behavior of malicious entities or actors. The
drawback is that the system might contain vulnerabilities that
could be exploited and then leveraged further to attack the
internal systems by pivoting on the compromised server. As
such, a high-interaction Honeypot must be properly isolated
from the rest of the network and the abstracted from physical
machine it is deployed on, by using sandboxing techniques.
Another approach to create honeypot systems is to migrate
attacked services into an isolated segment and observe attack
interactions. While this poses a high risk as real systems are
under exposure, carefully selecting which part of the system
will be migrated can mitigate potential sensitive information
leaks and allow a high-interaction honeypot system with a high
fidelity to the production environment.

B. Reactive Migration Process

While having ready decoy machines to deceive attacks away
from the real systems can be helpful, wanting to capture
payloads directed to the real systems without revealing current
defense mechanisms can pose some challenges. An approach
inspired by current desktop / mobile antivirus software is to run
suspicious client code in a sandbox environment, quarantine
the app if malicious activity is detected and send a sample

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

to dedicated environments for further analysis, as it can
be re-run. For server-based applications, stopping an attack
early will reveal little information about threats that could
be used defensively. An approach is to redirect the traffic
dynamically to honeypot systems. One problem that might
arise is redirection fingerprinting. For attackers to be migrated
transparently, network stack protocols must be corrected
appropriately, such as in the case of TCP communication,
sequence and acknowledgement numbers must synchronized
with the new honeypot communication.

While a transparent redirection solves the problem of traffic
fingerprinting, which otherwise may stop some automated
attacks early, in the case of manual attacks or attacks that
make use of application-level sessions, there still is the problem
of app fingerprinting. By having the same application in an
isolated environment, specifically deployed without sensitive
production data, or otherwise specifically crafted decoy data,
can solve the fingerprinting problem and will be more likely
to capture payloads crafted for the production. To preserve
application-level sessions, a solution that can be applied without
modifying the application is based on a live migration of
the process the attacker was communicating with in the
production environment to the isolated honeypot environment.
This migration must be a reaction to attack indices such as
fuzzing detection, mass vulnerability scans or known payloads
detection. This reactive migration process must be accompanied
by a network redirection as well. Such migration can be aided
by utilizing a programmable network, as in the case of Software
Defined Networks.

Migrating systems or system components is a relevant topic
for infrastructures that implement Quality of Service (QoS).
While used to ensure high availability, live migration methods
can be used in cybersecurity systems as well, as detailed in the
next section. VM live migration is often achieved via taking a
snapshot of the machine and resuming it on a new physical
system. A faster method of VM migration is detailed in the next
section. On the other hand, pausing and resuming a container,
such as in the case of Docker, could be done via freezer
cgroup [1], or via checkpoint restore with Checkpoint/Restore
In Userspace (CRIU) [2]. Furthermore, CRIU could be used
standalone to checkpoint processes, or process trees alongside
relevant information such as established TCP communication
or other system handles.

III. RELATED WORK

While a lot of research focuses on redirecting attackers
from low-interaction level honeypots to high-interaction level
honeypots based on the persistence of the attacks [3]–[7],
some research focuses on redirecting attackers from the real
production systems to honeypots [8][9]. Furthermore, some
research focus is put on the transparent migration process as
well, by utilizing Software Defined Networks infrastructure.
While some research proposes constructing new TCP handles
by simulating network traffic and recalculating synchronization
numbers at the switch level [5] or at the controller level [6],

other approaches [8] propose a mix of SDN and operating sys-
tem functions alongside auxiliary proxy systems to reconstruct
TCP sessions.

INTERCEPT+ [10] created a reactive VM deployment using
QEMU in kernel-based virtualization. To migrate attackers,
the infrastructure makes a full clone of the Virtual Machine
(VM) hosting the production environment, while handling
the traffic redirection with an SDN approach. To achieve
better performance, the authors used Copy-on-Write (CoW)
mechanisms for the deployment of the Honeypot system. The
article suggests to use a separate database for the Honeypot, to
avoid data leaks. Since the systems are perfect copies, at the
moment of deployment, the TCP connection states are preserved
between the Honeypot and the initial VM, thus achieving true
transparent redirection, after the network traffic is routed to the
honeypot port. While the VM approach handles the environment
isolation issue, by making complete clones of the environment
may inevitably leak production data present in the cloned VM.
An improvement to the security of the infrastructure, which may
limit the information disclosed, would be to use a small VM
images and dissect the work between them. In this situation,
if an attack is detected, a minimal portion of the infrastructure
should be cloned. This approach can make use of micro-VMs
approaches such as Unikraft [11].

Sandnet [9] uses live-cloning of containers to achieve a
confined network segment used as a Honeynet, by mirroring
parts of the production segment. The paper defined the Quality
of Deception (QoD) as a metric to express the similarities
between the environments. The infrastructure will clone suffi-
cient containers to give the attackers an attractive bait while
limiting the fingerprinting between the real and honeypot
infrastructure by using a mathematical formula to express
QoD. This approach is most likely to keep attackers hooked to
the sandbox infrastructure, defenders gaining an advantage on
information about vulnerable assets. The infrastructure relies
on the use of microservices for optimal defense functioning.
The infrastructure is capable of transferring attackers with a
from 0.5s to a maximum of 3s overhead per microservice. The
infrastructure tested the speed of process migration with CRIU
vs docker checkpoint for process tree cloning. The results show
that CRIU had a faster migration.

WARP [12] is an acronym used for a self-defending
Kubernetes architecture. While it did not aim to facilitate
a honeypot systems, it is an interesting case of asset protection.
The infrastructure would migrate attackers before they can
perform a malicious action on other assets. It maintained a
lower false-positive detection rate by continuously predicting
the attack model and next steps. WARP utilizes ML models on
the security logs with associated MITRE ATT&CK tags, by
predicting the probability of the next attacker action. WARP
compared 2 migration delays: a) Docker-based migration by
moving the pod after it is closed and b) CRIU based inside
the pod at run SDN IPS with Process Migration to Honeypots
time. The results show that live CRIU-based migration is
faster, showing migration delays of 0.4s to 3.1s. While CRIU
is identified to be faster than a container pause and resume,

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

similar to [9], it comes at the cost of privileges. To migrate one
or more processes rather than full containers special capabilities
must be added for the containers, which may allow persistent
attackers to escape the isolation.

Mfhoney [7] is an infrastructure centered around honeypots.
The infrastructure uses CRIU to switch between low- and high-
interaction honeypots by profiling them and having a ready-
deployment template that would be changed for the specific
attacker. By changing the network state of a CRIU image dump,
mfhoney could migrate attackers between processes that reside
inside a single machine. This allows changing the fidelity level
of the honeypots based on the interaction level of the attackers.
It achieves that by monitoring in-system interactions such as
syscalls, to schedule a live-migration to a higher interaction
level honeypot. Having pre-built image dumps, the authors
observed delays of interactions with the applications after a
process restoration with TCP-handshake rewrite around 210ms
for Hypertext Transfer Protocol (HTTP) services and 100ms
for HTTPS services. The honeypot process switching via CRIU
is done on a single local machine.

While Hounterfeit is similar to [9][10][12], instead of migrat-
ing live containers, the infrastructure selects the exact processes
attackers communicate with. Furthermore, similar to [10], the
infrastructure benefits of higher virtualization isolation for the
cloning of processes between VMs, while furthermore allowing
migrations multiple times by using a process monitoring tool
to extract unused migrated processes. With its internal design,
Hounterfeit also benefits from scalability, allowing multiple
attackers to be redirected to the same environment or multiple
environments while preserving application states.

IV. IMPLEMENTATION

The infrastructure is broken down into components that could
be virtualized independently. Figure 2 shows the minimum
required components. While having the honeypot migration
system at all times is ideal to capture and deceive attacks, the
infrastructure design is to be used on production environments
rather than research laboratories. A Migrator service is de-
coupled from the network control to prioritize infrastructure
uptime over security research. In the case of malfunctioning
or overloading, the infrastructure should fallback into a simple
IPS mode, blocking communication with identified attackers.
Software-defined network paradigm of planes is used to
separate the infrastructure. The data plane is used for normal
network traffic while the control plane for network control.
In this situation, a Migrator service is placed on the same
plane as the SDN Controller. The Migrator’s job is to trigger
CRIU dump and restore commands and facilitate secure transfer
of process dumps. A connection between the Migrator and
the SDN Controller is required for work synchronization and
process identification.

The server and honeypot contain the same build template,
including Media Access Control (MAC) address and Internet
Protocol (IP) address allocation, while being differentiable by
the SDN switch port they are virtually connected to. They
contain a predefined number of services already deployed,

Figure 2. Minimal Hounterfeit infrastructure.

split into multiple processes for work balance. The work
allocation and client connectivity is handled by the operating
system. The honeypot requires a clean-up service to remove
processes, that have been migrated into the system, which
no longer contain active connections. In this situation, the
operating system handles load balancing, as such once a session
terminates or expires and its underling process is killed, an
attacker can still make a new connection with the pool of pre-
spawned processes inside the honeypot system. This approach
will prevent resource exhaustion, while allowing transparent
communication migration.

To allow extension of the infrastructure, the SDN switch
and SDN controller are set to apply reverse Network Address
Translation (NAT) for the honeypot/server. The SDN switch
configuration is set to send all packets that do not match
internal OpenFlow table rules to the controller. The controller
will take the role as an Intrusion Prevention System, and also
will take the responsibility to migrate the traffic to a honeypot.
To take the load off the controller, once an attacker is detected
and transparently redirected, further communication will be
handled directly by the OpenFlow switch. Further analysis
of payloads after the initial detection should be done by an
auxiliary system, that could be set to monitor the traffic. The
switch will have two roles: to forward packets for analysis
in the communication line of the server-client; and to apply
OpenFlow rules for detected malicious actors. The table rules
for an identified attacker will contain: a rule to drop packets
from the server destined to the attacker; and 2 rules to apply
reverse NAT between the attacker and the honeypot, for each
direction.

A. Detection Procedure

The infrastructure is meant to redirect attacks to honeypot
systems. Taking this into consideration, it should aim to provide
almost the same security level as a system that would only
block attacks rather than migrate them to an isolated system.

The detection procedure will be broken down into two
separated cases: ingress traffic and egress traffic. Figure 3
shows the communication flow when traffic is received and a
response is sent from the servers.

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

Figure 3. Normal communication flow.

• Ingress traffic is scanned against common payloads and attack
techniques. Such payloads can include application specific
or network specific malicious requests, as an example for
web applications: Cross Site-Scripting (XSS) attacks, Server
Side Request Forgery (SSRF), Command Injection, etc.

• Egress traffic is scanned against information disclosure. Some
common sensitive information it can scan for is password
hashes (provided the format used in database/applications is
known), specific parts of system files (ex: /etc/hosts, private
keys, /etc/shadow), Application Programming Interface (API)
keys, etc.
To detect if a host is compromised and it is used for attackers

to move laterally, some ingress detection rules for payloads
could be scanned for egress traffic as well.

Detecting an attacker on the egress case though, instead of
migrating the attacker alongside the process itself, the egress
traffic is dropped. In this situation, if migration was done
successfully, the attacker would still divulge information from
the production environment.

After the detection procedure, a mutex is acquired and
further traffic before the full migration will be ignored for
the identified attacker. Typically in a normal scenario packets
will be retransmitted by applications or the operating system
when a connection is non-responsive, especially in the case
of reliable TCP connections. After the migration is done and
rules are installed in the OpenFlow switch, further packets will
be directly handled in the data plane by the switch and will not
reach the SDN controller and will not need further management.
Figure 4 shows the process flow in three timelines: T1: normal
traffic (such as TCP handshakes); T2: initial payload where the
transparent migration process takes place; T3: further traffic
after initial payload. Unlike a deployed honeypot visible to
the internet, Hounterfeit hides the honeypot before the SDN
Switch. It will route traffic to the honeypot system only if
attacks are detected towards the production environment. By
not completely dropping the traffic, unlike standalone IPS,
Hounterfeit will redirect the entire communication to the
sandbox environment.

B. Tools and Technologies

Checkpoint/Restore in Userspace (CRIU) is used for process
migration in the current scenario. The tool supports recon-

struction of live TCP connections, however requiring higher
privileges and capabilities for this operation. While exposing
additional capabilities in a VM will not break virtualization,
container-based approaches use capabilities for environment
isolation, making it unsuitable for a secure deployment, as the
additional capabilities may allow container escape attacks.

Selected technologies for scenario simulation are HTTP
servers composed of Nginx, Nodejs and Flask. While migration
is not a problem in a new environment without conflicting
processes, in this scenario the same process may be cloned
multiple times. Furthermore, the honeypot itself must contain
some pre-spawned processes to provide multiple simultaneous
connections similar to a production environment. Taking
the constraints into consideration, Linux systems offer a
socket feature supported by Nginx as well, which makes
the infrastructure reusable: SO_REUSEPORT. The flag on a
listening socket allows other processes spawned by the same
user to listen to the same port, provided they have the flag
set as well. The load balancing in this situation is handled
directly by the operating system. While not apparent, this has
great implications in the simplicity of the infrastructure. If
without that flag, a master process is used to load-balance
communication for a multi-processing host, in the case of
migrating the attacker communication and session to an other
server, the worker process must be migrated, but the master
process will have listening port conflict with an existing one on
the target migration system. Even if migrating only the worker
process, a new connection between the worker and new master
must be established, which may require software modifications.
By using software that naively supports SO_REUSEPORT, the
problem of master synchronization can be avoided, as the
services can work standalone. While Flaks and Nodejs do offer
direct support to the flag, the call to the socket function was
intercepted with LD_PRELOAD mechanism and the mentioned
socket option was added. In a migration, only the socket must
be reconstructed, and with it, the communication with the
initial attacker will be re-established. At the moment of writing,
CRIU technology uses TCP_REPAIR to migrate active TCP
connections, by restoring them.

Another issue that may arise in a migration scenario is
Process Identifier (PID) reuse. The production environment
may contain multiple worker processes and usually are long-

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

Figure 4. Attack flow on Hounterfeit.

lived. If a process is migrated to a system that already has an
other process with the same PID as the migrated process, the
CRIU migration will halt. Modification of the image dump
can be made to assign a random unused PID at migration.
However, to ensure that the honeypot system is not overloaded,
a process must collect unused workers.

For process transfer, Secure Copy Protocol (SCP) 3-way
communication was used. For minimum overhead, all Secure
Shell (SSH) communication is multiplexed with a control file.
This way for any command (CRIU dump, SCP transfer, etc.)
the communication will be reused, not requiring a full TCP
and Transport Layer Security (TLS) handshake each time.
The initial handshake is established before any attack. This
approach improved the migration time considerably, as the
SSH handshake would sometimes take over 500ms.

V. ATTACK SCENARIO

A simple HTTP server was chosen for a simulation of
the infrastructure. For real production environments, multiple
backends and databases might be in use. To protect data, which
processes are migrated should be carefully chosen, to avoid
migrating sensitive information that might be cached in memory.
For the scenario, an attacker would send legitimate traffic,
which will reach the server and eventually will send a payload
which will trigger the migration process. During this time all
his communication is paused, the controller installs flows in the
switch to drop server to attacker communication, sends source
IP and port to the Migrator service. The Migrator service then
identifies the process the attacker was communicating with,
makes a CRIU dump of the process, transfers it over a 3-way
SCP to the honeypot, then restores the process. Afterwards
the Migrator notifies the SDN controller that the action is
completed. The SDN controller installs new flows in the switch
to NAT the traffic between the attacker and the honeypot.

The infrastructure was tested over 100 times per technology
in the following scenario: controller is reset and OpenFlow
switch tables are emptied, and 2 HTTP server processes are
initiated both on the server and on the honeypot for each
technology. An attacker sens a malicious payload as the first
HTTP request.

A garbage collector was implemented to remove migrated
processes from the Honeypot after they would terminate all
TCP connections. The hardware used for testing consists of
an Intel Core i5-4590 @ 4x 3.7GHz with 16 GB RAM. The
base operating system runs on x86_64 Linux 6.8.0-47-generic
with Ubuntu 22.04 jammy while the VMs run on the latest
Ubuntu image at that time from Vagrant repository of x86_64
Linux 5.4.0-193-generic on Ubuntu 20.04.6 LTS. The following
resources were allocated for the actors: 0.5 CPU cores with 1
GB RAM for each of server/honeypot/attacker and 2 CPU cores
with 1 GB RAM for the controller hosting a Open vSwitch
(OVS) as well. The Migrator service ran directly on the host
machine. HTTP server packages verions contain nginx/1.18.0
(Ubuntu), Flask/3.0.3 (Python/3.8.10) and node/10.19.0, while
CRIU v3.18 was compiled on both the server and the honeypot.
Both the server and the honeypot were built separately.

Table I results show the mean time and standard deviation
(σ) for the migration tests. Aligned with other research
works that use CRIU technology [7][9][12], the infrastructure
contains similar benchmark results on process migration time
(considering the process transfer time as well for some of the
papers).

A further approach to compress the Nginx process dump
before being sent over SCP, taking into consideration the com-
pression/decompression overhead, did not show improvements
for the transfer time in the current lab scenario. However, the
network links in the lab scenario are virtualized, with the default

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

TABLE I. MEAN AND STANDARD DEVIATION OF STEP PER TECHNOLOGY, MEASURED IN MS.

Service Criu dump SCP transfer Criu Restore Total
Nginx 39.57 | 2.16(σ) 55.82 | 13.19(σ) 13.47 | 0.22(σ) 108.87 | 13.39(σ)
Node 52.40 | 13.62(σ) 263.72 | 20.92(σ) 13.63 | 0.93(σ) 329.76 | 23.01(σ)
Flask 66.70 | 27.53(σ) 442.40 | 32.78(σ) 14.40 | 3.31(σ) 523.50 | 38.65(σ)

VirtualBox/Open vSwitch bandwidth, which realistically may
be less performant if physical separation of the hosts is in
place, depending on the hardware in place.

VI. FURTHER DISCUSSION

While having an infrastructure capable of migrating attacks
to a system without sensitive information wastes attackers time,
making use of the information they provide such as network
and system traces for developing new threat prevention rules
is the desired outcome of Hounterfeit’s design. A fully self-
defending infrastructure will require inputting the extracted
information from the honeypot system back into the network
detection module and closing the loop, as shown in Figure 5.
Note that the IPS rules with the Detection Module can be
replaced by a machine learning algorithms, as having this loop
makes this natural for continuous learning. For this to work,
intelligent seasons must be implemented that would recognize
potential payloads from usual traffic. Furthermore, a CI/CD
system should check new rules extracted from an attack against
test-cases such that the normal functioning of the infrastructure
would not be affected. Additionally, each new rule will further
slow down the normal traffic, as the controller is designed in
IPS mode as a man-in-the-middle system. A way to compress
and optimize and integrate new rules should be implemented.
The optimization system should not make a new detection rule
easy to bypass.

Furthermore, the infrastructure can benefit from, and con-
tribute to Threat Intelligence Platforms (TIPs) by sending new
Tactics Techniques and Procedures (TTPs) attackers adopt,
since it has the capability to capture attacks and redirect them
to a system suitable for tracking and monitoring malicious
activity. Such systems also allow for tracking personalized
payloads while not affecting the sensitive data and services.

While the infrastructure works well for single timed attacks,
for multiple attackers the migration mutex may be visible, by
measuring the time between traffic. Furthermore, during the
CRIU the production system may be paused temporary. This
may be a big concern if attackers use multiple machines to
trigger migrations. However, such attacks will require a high
number of IPs. Redirecting an IP to the honeypot may also
cause problems for legitimate clients in the case of NAT-based
Internet Service Providers (ISP). The quantum of time an attack
is sent to the honeypot should be carefully chosen. The SDN
controller should also apply some packet application-layer
buffering for the detection rules to prevent attack evasion via
packet fragmentation.

On the other hand, in the case of false positive detection,
users will be redirected to the Honeypot, which may expose
them to an environment that attackers may operate on. While

Figure 5. Closed IPS loop.

this does not affect static interactions with the services, in case
of data insertions, modifications or deletions, the users will not
be able to replicate them in the real environment nor receive
updated entries from other entities, which can be considered
a Denial of Service (DoS) for the migrated legitimate users.
Sharing the environment with the attackers, may also leak
user information and activity. To combat such problems, the
detection system should be audited for potential false positive
detection rules.

Furthermore, since the infrastructure already supports process
dumping in the honeypot, periodic images of the process could
be taken alongside network traffic to better understand and
able to reproduce attacks. Certain triggers such as a reverse
TCP connection or specific system calls can trigger the logging
mechanism to permanently save the attack process and network
snapshot and for further analysis. This approach will provide a
better snapshot of attack interaction any may allow full replay
of the attack in some scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present Hounterfeit: based on network and
operating system function virtualization, it provides an insight
into a self-defending infrastructure that is able to migrate
live attacks from real production system into a honeypot
environment.

The scenarios measured results suggests that the migration
time of the process between separated virtual machines is
adequate, allowing redirection to the honeypot before standard
application sessions expire. For simple production technologies,
the infrastructure design may be used in real systems after
some adaptations.

Future work on Hounterfeit will focus on process depen-
dencies, adding a framework to support complex interactions
between the OS and other Interprocess Communication (IPC)
requirements. Furthermore, a framework will be proposed
for real time sensitive data detection and counterfeiting for
transferred processes that depend on in-memory or at-rest
generated data.

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

REFERENCES

[1] Docker, Docker pause command, Accessed: Mar. 04, 2025.
[Online]. Available: https:/ /docs.docker.com/reference/cli /
docker/container/pause/.

[2] CRIU, Checkpoint/restore in userspace, Accessed: Mar. 04,
2025. [Online]. Available: https://criu.org/.

[3] H. Wang and B. Wu, “Sdn-based hybrid honeypot for attack
capture”, in 2019 IEEE 3rd Information Technology, Network-
ing, Electronic and Automation Control Conference (ITNEC),
2019, pp. 1602–1606. DOI: 10.1109/ITNEC.2019.8729425.

[4] S. Kyung et al., “Honeyproxy: Design and implementation of
next-generation honeynet via sdn”, in 2017 IEEE Conference on
Communications and Network Security (CNS), 2017, pp. 1–9.
DOI: 10.1109/CNS.2017.8228653.

[5] W. Fan and D. Fernandez, “A novel sdn based stealthy tcp
connection handover mechanism for hybrid honeypot systems”,
in 2017 IEEE Conference on Network Softwarization (NetSoft),
2017, pp. 1–9. DOI: 10.1109/NETSOFT.2017.8004194.

[6] W. Fan, Z. Du, M. Smith-Creasey, and D. Fernández, “Hon-
eydoc: An efficient honeypot architecture enabling all-round
design”, IEEE Journal on Selected Areas in Communications,
vol. 37, no. 3, pp. 683–697, 2019. DOI: 10.1109/JSAC.2019.
2894307.

[7] J. C. Acosta, “Locally-hosted fidelity-adaptive honeypots with
connection-preserving capabilities”, in MILCOM 2022 - 2022
IEEE Military Communications Conference (MILCOM), 2022,
pp. 154–159. DOI: 10.1109/MILCOM55135.2022.10017548.

[8] V. A. Cunha, D. Corujo, J. P. Barraca, and R. L. Aguiar,
“Using linux tcp connection repair for mid-session endpoint
handover: A security enhancement use-case”, in 2020 IEEE
Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2020, pp. 174–180. DOI: 10.
1109/NFV-SDN50289.2020.9289898.

[9] A. Osman et al., “Sandnet: Towards high quality of deception
in container-based microservice architectures”, in ICC 2019
- 2019 IEEE International Conference on Communications
(ICC), 2019, pp. 1–7. DOI: 10.1109/ICC.2019.8761171.

[10] A. Hirata, D. Miyamoto, M. Nakayama, and H. Esaki, “In-
tercept+: Sdn support for live migration-based honeypots”, in
2015 4th International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS),
2015, pp. 16–24. DOI: 10.1109/BADGERS.2015.013.

[11] S. Kuenzer et al., “Unikraft: Fast, specialized unikernels
the easy way”, in Proceedings of the Sixteenth European
Conference on Computer Systems, ser. EuroSys ’21, Online
Event, United Kingdom: Association for Computing Machinery,
2021, pp. 376–394, ISBN: 9781450383349. DOI: 10 . 1145 /
3447786.3456248. [Online]. Available: https://doi.org/10.1145/
3447786.3456248.

[12] S. Bagheri et al., “Warping the defence timeline: Non-disruptive
proactive attack mitigation for kubernetes clusters”, in ICC
2023 - IEEE International Conference on Communications,
2023, pp. 777–782. DOI: 10.1109/ICC45041.2023.10278632.

8Copyright (c) IARIA, 2025. ISBN: 978-1-68558-250-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ICIMP 2025 : The Twentieth International Conference on Internet Monitoring and Protection

https://docs.docker.com/reference/cli/docker/container/pause/
https://docs.docker.com/reference/cli/docker/container/pause/
https://criu.org/
https://doi.org/10.1109/ITNEC.2019.8729425
https://doi.org/10.1109/CNS.2017.8228653
https://doi.org/10.1109/NETSOFT.2017.8004194
https://doi.org/10.1109/JSAC.2019.2894307
https://doi.org/10.1109/JSAC.2019.2894307
https://doi.org/10.1109/MILCOM55135.2022.10017548
https://doi.org/10.1109/NFV-SDN50289.2020.9289898
https://doi.org/10.1109/NFV-SDN50289.2020.9289898
https://doi.org/10.1109/ICC.2019.8761171
https://doi.org/10.1109/BADGERS.2015.013
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1109/ICC45041.2023.10278632

	Introduction
	Background
	Honeypot Systems
	Reactive Migration Process

	Related Work
	Implementation
	Detection Procedure
	Tools and Technologies

	Attack Scenario
	Further Discussion
	Conclusion and Future Work

