ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

SIGMA: Strengthening IDS with GAN and Metaheuristics Attacks

Simon Msika, Alejandro Quintero, Foutse Khomh
Polytechnique Montreal
Montreal, Canada
email: simon.msika@polymtl.ca, alejandro.quintero@polymtl.ca, foutse.khomh@polymtl.ca

Abstract—An Intrusion Detection System (IDS) is a key
cybersecurity tool for network administrators as it identifies
malicious traffic and cyberattacks. With the recent successes
of machine learning techniques like deep learning, more and
more IDS are now using machine learning algorithms to detect
attacks faster. However, these systems lack robustness when
facing previously unseen types of attacks. This work explores the
possibility of leveraging generative adversarial models to improve
the robustness of machine learning based IDS. More specifically,
we generate adversarial examples, iteratively, and uses it to
retrain a machine learning-based IDS, until a convergence of the
detection rate. A round of improvement consists of a generative
phase, in which we use GANs and metaheuristics to generate
instances; an evaluation phase in which we calculate the detection
rate of those newly generated attacks; and a training phase, in
which we train the IDS with those attacks. We have evaluated the
SIGMA method for four standard machine learning classification
algorithms acting as IDS, with a combination of GAN and
a hybrid local-search and genetic algorithm, to generate new
datasets of attacks. Our results show that SIGMA can suc-
cessfully generate adversarial attacks against different machine
learning based IDS. Also, using SIGMA, we can improve the
performance of an IDS to up to 100% after as little as two
rounds of improvement.

Keywords - Cybersecurity; IDS; Deep Learning; Machine Learn-
ing; GAN; Metaheuristics.

I. INTRODUCTION

In the last few years, the emergence of the Internet of
Things (IoT) has led to new cybersecurity challenges. As
connected objects now interact with the real world, privacy
and security threats mitigation increasingly become a major
issue [1]. With these new entities come the need to protect
them from cyberattacks and similar intrusions. For instance,
in 2016, the Mirai botnet [4] infected more than 600,000
Internet of Things devices from which were conducted massive
Distributed Denial of Service (DDOS) attacks against several
network companies all over the world.

Intrusion Detection Systems (IDS) are an essential tool for
IoT system administrators: detecting a cyberattack is the first
step to guarantee the privacy and security of users. But IoT
also means a huge increase of internet traffic to analyze,
and therefore the need to develop efficient, fast and robust
algorithms to detect cyberattacks in this sensitive environment.
Recently, machine learning models have shown astonishing
performances in retrieving patterns from large volumes of data,
in a very short amount of time. This success lead to their
wide adoption in IDS [5]. However, as recent works on adver-
sarial models have shown [2], machine learning algorithms,
in particular deep learning tend to be fragile to adversarial
examples. Using Generative Adversarial Networks (GAN) [2]

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

an attacker can generate adversarial requests (i.e., attacks)
that share the characteristics of requests that are considered
to be genuine by the IDS. Although these GANs represent
formidable weapons for attackers, as they can deceive most
IDS into classifying attacks as benign traffic, they also provide
an opportunity to preemptively strengthen intrusion detection
systems against new attacks. By exposing an IDS to generated
attacks as a preventive measure, we can prepare for new
malicious behaviors.

In this paper, we propose a method to strengthen IDS
against generated adversarial attacks, called SIGMA, which
stands for Strengthening IDS with GAN and Metaheuristics
Attacks. The method consists in the iterative generation of
attack datasets using adversarial learning and metaheuristics
algorithms. The generated datasets are then used to retrain
IDSs, i.e., teaching them to cope with patterns of attacks
similar to those contained in our generated datasets. We repeat
the retraining process until the detection rate of the IDS on
generated attacks converges, meaning the detection rate is not
improving anymore. We stop the algorithm after 3 runs without
a detection rate improvement.

We evaluated SIGMA on IDSs based on four different
classification algorithms: Neural Network, Random Forest,
Support Vector Machine, and Naive Bayes Classifier. Each
IDS was composed of two parts: a discriminator, trained to
detect generated attacks, and an attack-classifier trained on
the original dataset, to classify benign traffic and attacks. We
trained a GAN and ran a local-search and genetic algorithm
hybrid [21] to generate attacks against our IDSs. We compare
the results of our model trained with both GAN and meta-
heuristics generated instances, with a model trained only with
GAN generated instances over time and another model trained
only with metaheuristics generated instances.

Results show that for IDS consisting of a Neural Network
or a Random Forest algorithm, the SIGMA method allowed
for a detection rate of 100% of generated attacks two to
three times faster than the model strengthened only with the
GAN generated attacks. However, models trained only with
the instances created using metaheuristics search were almost
completely unable to detect GAN generated attacks, suggest-
ing that metaheuristics alone are not sufficient to increase the
robustness of the studied IDS.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the technologies used in
our model. We discuss the related literature in Section III.
Section IV presents our strengthening method to increase
the robustness of IDS against generated adversarial attacks
(i.e., SIGMA). Section V describes the approach followed to

10

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

evaluate SIGMA, while Section V-E discusses the obtained
results. Section VI discusses threats to the validity of our
study and Section VII presents some implications of our work.
Finally, Section VIII concludes the paper, summarising our
findings along with some recommendations for future work.

II. BACKGROUND

This section provides background information about Gen-
erative Adversarial Networks and metaheuristics used in this

paper.

A. Generative Adversarial Networks

Generative Adversarial Networks are a class of unsuper-
vised machine learning algorithm. They are composed of two
neural networks: a generator G and a discriminator D.

Considering a dataset, the generator generates new data
instances similar to the ones in the dataset. The discriminator,
on the other hand, evaluates the data authenticity, i.e., whether
or not the data it reviewed belongs to the actual dataset. The
goal of the generator is to generate data labeled as genuine
by the discriminator. The generator takes random numbers
as input (referred to as random noise), and returns a data
instance. With x as input of the discriminator D, we represent
the probability that = is an attack generated by G as D(x).
Therefore, D(x) is equal to zero when x is considered as an
authentic data from the dataset, and equal to one when x is
labeled as generated data, or fake. With 2z as random noise, we
represent the instance generated by the generator network G
as G(z). The generator G is trained to maximize the function
1 - D(G(z)).

As shown on Figure 1, the Generator and the Discriminator
are trained simultaneously, therefore being on a constant battle
throughout the training process.

Real
samples

Fw_

Discriminator

Authentic ---
Generated - |

A

Generator

E £y
H Fine tune training

Generated
instances

Random noise
(2)

Figure 1. Diagram of a Generative Adversarial Network (GAN).

This algorithm has rapidly grown in popularity thanks to its
performance in image generation [15]. It can generate realistic
examples, and has a better performance than Deep Belief
Networks or Boltzmann Machines [2].

GAN are also notably used to disrupt trained classifiers [9]:
slight controlled modifications to the original input leads to
misclassification. This has been extensively applied to images
classification, due to its impressive results in this field: for
instance, small visible changes made to “Stop” traffic signs

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

tricked autonomous cars into misclassifying them into speed
limit signs [27].

In this paper, we will use this ability of GANs to disrupt
trained classifier by training them to generate attacks able to
bypass the detection algorithm, i.e., attacks classified as benign
traffic by our IDS. Adding subtle modifications to the features
of existing attacks could in fact lead to misclassification.

B. Metaheuristics

A metaheuristic is an algorithm used to find, generate, or
select a heuristic (i.e., a partial search algorithm) that can
provide a sufficiently good solution to an optimization problem
with incomplete information. This type of algorithm is usually
employed to solve computationally hard problems for which
regular optimization would be too costly. Even if they do
not guarantee finding the optimal solution for the problem,
they usually provide good results, often close to the optimal
solution [14]. A metaheuristic approach could be either single-
solution based or population based.

A single-solution based approach could be local opti-
mization: we randomly initialize a solution and explore the
netghbourhood of the solution by applying local changes
to the current solution. The search continues until a solution
meeting the initial stopping criteria is found or a time bound
is elapsed. Local optimization could be very effective in case
the criterion to maximize only has a single optimum. In other
cases, the local search algorithm can converge to a local
optimum, therefore not giving the best possible solution.

The hill climbing algorithm is an example of local optimiza-
tion algorithm. This algorithm is an iterative algorithm that
tries to improve a solution by making an incremental change
to it. If the change produced a better solution, then it becomes
the new solution, and another incremental change is made to
this new solution. This algorithm runs until there is no further
improvement possible.

Genetic algorithm [24] is an example of a population
based metaheuristic. It is inspired by the process of natural
selection. It starts with a population of solutions, where each
solution is randomly generated. The population then evolves
until the stopping criteria is met or until a certain number
of generations is reached. From this pool of solutions, we
select the best solutions (selection) and recombine them into
a new population of solutions (crossover). We then apply
random mutations to this population, in order to have a diverse
population of solutions and possibly exploring other parts of
the solution space that were not explored yet. As a global
search algorithm, the genetic algorithm metaheuristic is more
likely to find global optima for multimodal functions but it is
slower at converging [19].

Since the genetic algorithm is rather slow to converge, it is
possible to combine those two approaches (local optimization
and a population based solution) to have a faster convergence.
We then refer to this method as an hybrid algorithm [21]. It
consists of a slight modification of the genetic algorithm to
incorporate a local optimization element: after the selection
process, we optimize each solution of the population with
the local search algorithm. This leads to overall better results,

11

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

since the local search can only improve a solution, and could
mean a faster convergence [14].

The overall processing of the hybrid algorithm is exposed
in algorithm 1.

Algorithm 1: Pseudocode of the hybrid algorithm

Input: Instance (I), size of population (), selection rate(f3),
mutation rate (m), number of iteration (nb_it), Local
search algorithm (local_search)

QOutput: Population of solutions to I

/* Initialization */

/* Generate a random solutions to I */

1 solutions = generate_random(av);
2 for i = 1 to nb_it do

/+ Local Search */
3 solutions = local_search(solutions);
/* Selection %/
4 n=axf;
5 pop = select_best(n, solutions) ;
/+ Crossover x/
¢ | p=(a—n)
7 for j = 1 to p do
8 randomly select Sol4 and Solp from solutions;
9 generate X 4p by mixing Sola and Solp;
10 save X ap to offsprings;
11 end
/* Mutation */
12 for child in offsprings do
13 | mutate child with probability m;
14 end
15 solutions = pop + offsprings
16 end

17 return solutions

This hybrid method has often been used to solve complex
problems with good results [14].

In the intrusion detection domain, algorithms can be used to
generate attacks that the intrusion detection system is unable to
detect. In this case, a solution would be an actual attack, and all
operations (cross-over, mutation, etc.) would be modifications
of the attacks features.

III. RELATED WORK

Over the last two decades, researchers have built several
intrusion detection datasets by extracting different network
features from real networks during cyberattacks. [11] [22]
Different machine learning algorithms have been explored to
build IDS: from a simple feed-forward neural network, to
Extreme Machine Learning [12], to complex Recurrent Neural
Networks [23]. Studies show that even simple algorithms, such
as a Support Vector Machine or J48 decision trees, could
lead to good detection results, with 95% accuracy for the
SVM and more than 97% accuracy for the decision tree [13].
Those algorithms could be used in practice by smart objects
as intrusion detection systems. In fact, they don’t require
as much energy as complex Deep Learning models, which
is an important factor to consider with resource-constrained
environment [23].

Nonetheless, these machine learning methods suffer from
a severe flaw as an IDS: they are totally vulnerable to new
types of attacks. Successful attacks can lead to terrible con-
sequences: economic loss, important privacy issues for smart

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

objects users, etc. Moreover, it is now possible to automatically
build new attacks against which those systems will be utterly
useless, thanks to metaheuristics and Generative Networks, for
example.

The use of metaheuristics for attack generation has been
explored by Jan et al. [3]. In this work, Hill Climbing and
Genetic algorithms are used to generate malicious XML injec-
tions. These generated attacks were used for testing purposes
but demonstrated the possibility to automatically create attacks
using metaheuristics techniques; in particular, the genetic
algorithm managed to create a wide variety of attacks evading
the web application sanity check more than 95% of the time.

Hu et al. [8] leveraged generative adversarial networks for
malware detection, by considering the detection algorithm as a
black-box (as would an attacker). The attacker does not know
the internal structure of the detection model, but only knows
the detection result of the detection model under attack. Even
without having any information on the detection system, this
approach led to very impressive results; GANs deceiving the
malware detection algorithm almost every time.

Furthermore, recent work has shown that it is possible
to generate adversarial examples with intrusion detection
datasets. In particular, Lin et al. [7] used a Wasserstein
GAN [25] to generate adversarial attacks against different
classifiers considered as black-box algorithms by the attacker,
trained with the NSL-KDD [13] dataset. The GAN was able
to mislead several classification algorithms into classifying
generated attacks as benign traffic. Nonetheless, the NSL-
KDD dataset is now 10 years old and its relevance is then
questionable. Moreover, researchers have pointed out several
problems with NSL-KDD [16], e.g., the lack of Remote to
Local and User to Root attacks, as well as the lack of more
recent type of attacks [18].

These last few years, some progress has been made on
protecting Intrusion Detection Systems against generated ad-
versarial attacks. Generative models are a double-edged sword,
as they can be preemptively used to train the detection model
as well.

Cordy et al. [10] created increasingly resilient defense
strategies to detect training attacks against a clustering-based
IDS. The IDS was improved by simultaneously searching for
attacks against the IDS and constantly improving the defense
strategy: two genetic algorithms (one for creating attacks, the
other to elaborate defense strategies) were used. Their result-
ing system detected 98% of the generated attacks, whereas
the attack generation process systematically found a way to
deceive the IDS without defense strategy. This promising
result suggests that metaheuristics can be successfully used
to preemptively strengthen an IDS against generated attacks.
Nonetheless, this work does not provide any insight regarding
the vulnerability of this strategy to other types of generated
attacks (GAN generated instances for example).

The work of Ferdowsi and Saad [17] presents an approach
to deploy a distributed intrusion detection architecture capable
of detecting adversarial generated attacks. In this work, GANs
were trained to generate adversarial attacks, and were then
used to train a discriminator, which determined whether the
current internet traffic was benign or an attack. However, this

12

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

system might be susceptible to iterative generated attacks: once
the discriminator is trained, it may still be possible to find ways
to generate instances able to bypass the detection system. An
IDS resilient to generated iterative attacks has not yet been
explored in the intrusion detection domain.

IV. SIGMA: AN APPROACH TO IMPROVE THE
ROBUSTNESS OF IDSs

In order to increase the robustness of IDS, we propose the
following SIGMA method.

We take as input a Machine Learning based Intrusion
Detection System, and a dataset consisting of attacks and
benign traffic. We iteratively generate attacks with two
different methods to train the IDS.

Each training iteration is designated by its number. We note
Score; the detection rate of generated attacks by the IDS at
iteration number ¢, meaning:

number of detected generated attacks
total number of generated attacks

Score; =

We consider that the generated attacks detection rate of
our IDS has converged if: For ¢ > 0, there exist an iteration
number N, such that for all iterations 7 after N, we have:

|Score; — Score; 1] < €

The SIGMA method instructions are as follows:
While the generated attacks detection rate of our IDS has
not converged:

e Step 1: We train a GAN to generate adversarial attacks
against the IDS, considered as a black-box. The goal
for this algorithm is to generate attacks deceiving the
intrusion detection system. Considering the same notation
as in Section II.B, the function to maximize for the
generator is 1 — D(G(z)) where G(z) is the generated
attack, D(x) is the probability (computed by the IDS) that
x is an attack: the IDS plays the role of discriminator.
At each iteration, the generative algorithm generates new
attacks to fool the Intrusion Detection System.

o Step 2: We use the trained GAN to generate attacks
against the IDS. We evaluate the score of the detection
system for these generated attacks. If the score has not
improved for 3 consecutive rounds, we stop the algorithm.

o Step 3: We run a Search-based method in order to search

for other possible attacks deceiving the IDS that the GAN
might have missed.
The function to maximize for this generative algorithm
is: 1 — D(sol) where sol is the solution generated by
the Search-based algorithm, and D(x) is the probability
(computed by the IDS) that x is an attack.

o Step 4: We use the Search-based method to generate
attacks against the IDS. We then train the IDS with the
generated instances from both algorithms (i.e., GAN and
metaheuristics) and with data from the original dataset.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

Exposing its classifier to real data and generated attacks
prevents it from overfitting to generated instances and
losing accuracy on other type of traffic.

The overall proceedings is illustrated in the algorithm 2.

Algorithm 2: Pseudocode of the SIGMA process

Input: IDS to improve (IDS), training set (train_set),
Output: Improved IDS

1 converged = False;

2 counter = 0;

3 previous_score = 0;

4 while converged = False do
/% Step 1l: GAN training x/
5 generator = GAN.train(IDS, train_set));

/* Step 2: Attack generation and
evaluation */

6 GAN_attacks = generator(noise);

7 predict = IDS(GAN_attacks);

nb_attacks(predict) |

8 score = length(GAN_attacks)’
9 if score < previous_score then
10 | counter = counter + 1;
11 else
12 counter = 0;
13 previous_score = score;
14 end
/+ If the score has not improved after 3
rounds, we stop the algorithm */
15 if counter = 3 then
16 converged = True;
17 break;
18 end
/* Step 3: Search-based method */
19 search_based.run(IDS);
20 SB_attacks = search_based.generate();
/* Step 4: IDS Training x/

21 IDS.train(GAN_attacks);
22 IDS.train(SB_attacks);
23 IDS.train(train_set);

24 end

5 return /DS

(]

By combining attacks from both the Machine Learning
and the Metaheuristics methods, we expect to explore a
larger solution space since the two techniques are significantly
different; we expect the generated attacks to be widely distinct.
Being confronted with a large sample of diverse attacks, an
IDS is likely to gain in robustness.

V. EVALUATION OF SIGMA

In this section, we evaluate the effectiveness of SIGMA at
improving the effectiveness of an IDS. The quality focus is the
improvement of the attack detection rate, through iterative re-
inforcement using GANs and metaheuristics. The perspective
is that of researchers interested in developing efficient IDS,
and practitioners interested in improving the robustness of
their IDS. The context consists of the CICIDS2017 benchmark
dataset [22], containing 11 types of networks attacks, and four
machine learning-based IDS (i.e., a 3-layers Neural Network,
a Random Forest, A Support Vector Machine (SVM), and A

13

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

Naive Bayes Classifier). In the following, we provide detailed
information about the CICIDS2017 benchmark dataset and the
implementation of SIGMA using the four selected machine
learning-based IDS.

A. Dataset

The CICIDS2017 benchmark dataset [22] consists of more
than 80 network flow features (flow duration, destination port,
etc.). Table I provides a summary of those characteristics. This
recent intrusion detection dataset contains 11 types of attacks
along with benign traffic. Each entry of the dataset consists
of more than 80 columns (namely the extracted network flow
features) and is labeled as one of those 11 types of attacks or
as benign traffic. We grouped the 11 different attacks into four
different groups as shown in Table II, building four different
balanced binary datasets (Attack, Benign), to counterbalance
the unbalanced number of attacks per type.

TABLE I

SOME NETWORK FEATURES USED BY CICIDS 2017.
Feature name | Description
fl_dur Flow duration
tot_fw_pk Total packets in forward direction
tot_bw_pk Total packets in backward direction
fl_pkt_s Number of packets transferred per second
ack_cnt Number of packets with ACK
pkt_size_avg Average size of packet
idl_avg Mean time a flow was idle

TABLE I
ATTACKS LABELS AND DISTRIBUTION IN THE CICIDS2017 DATASET.

Nl::t];):krs()f Types of attack
DOS Hulk

DOS GoldenEye
DOS Slowloris
DOS Slowhttptest
DDOS
FTP-Patator
SSH-Patator
Bruteforce
Portscan

Botnet

SQL Injection
XSS

Heartbleed
Infiltration

Attack group

Denial of Service 252661

Distributed DOS 128027

Bruteforce 15342

Infiltration 720

We first deleted the constant columns of the dataset, as they
don’t provide any useful information for classification. Data
now consists of 71 columns, 70 of them being network flow
features, and the last one being the label (i.e., O if it is benign
traffic, 1 if it is an attack).

Then, since the values of each feature throughout the data
widely varies, each column was normalized to have values
between O and 1. Feature scaling allows for much faster
convergence for neural networks.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

We normalized data by applying the min-max normaliza-
tion, namely:

/ C—Cmi
Ci — min

Cmax

Where:

e ¢; is the column from the original dataset.

e . is the normalized column.

e Cmin 18 the minimum value of the column.
e Cmag 1S the maximum value of the column.

Each dataset was split into a training set and a test set,
respectively representing 90% and 10% of the overall dataset.

B. Implementation of SIGMA

Step 1: GAN training

We chose to implement SIGMA with a 4-layers Wasserstein
GAN. The architecture of the GAN is detailed on Fig. ??.
The dimensions of hidden layers were chosen experimentally,
being the ones with the best results.

As mentioned in Section II.B., the Wasserstein GAN takes
random numbers (or random noise) as input to generate
attacks. We refer to the number of random numbers as the
random noise size.

The goal of this generator is to generate attacks able to
deceive the IDS. To ensure that the output of the generative
algorithm is indeed an attack, we keep the functional features
of an original attack.

Since every feature of our data has been normalized, each
feature is represented as a number between 0 and 1. As shown
on Figure 2, we keep the functional features of real attacks
for our generated attacks.

0.762

0.912

0.563

0.889

0.919

0.003

®

0.1 | 06 ‘ 0.1 ‘ 0.7 | 0.01 ’ 0.23 ‘ 0.99 ‘ Attack from dataset

|

0.003‘ 0.6 ‘0‘211 ‘0.793‘ 0.01

0.456

0.211

0.793

0.012

0.145

0.377

Generator output

0.2 ‘ 0.4

04 | 081 ‘ 0.67

0.2 ‘ 0912 Generated attack

0.563 ‘ 0.81

0919

0.145

0.377

Figure 2. Diagram of the generative algorithm’s process. In green, the functional
features of the attack.

The functional features per attack type were identified by
a statistical analysis of the datasets, with the help of the
analysis conducted by the creators of the dataset [22]. They
are presented in Table III.

With the aim to have a Generative Adversarial Networks
with the best performance and therefore explore the largest
attack space possible, we trained several Generators with
different sizes of noise as input. Furthermore, since there
is unpredictability in the training of Generators due to the
randomized weights initialization, we trained the Generators
several times. We then select the GAN with the best
performance among those, i.e., the most able to deceive the
IDS.

14

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

TABLE III
FUNCTIONAL FEATURES PER ATTACK TYPE. THOSE FEATURES ARE NOT
GOING TO BE MODIFIED BY THE GENERATOR.

Functional features

Flow Duration, Active Mean,
Packet Size,

Packet Length Std, Flow IAT Mean, PSH
Flag Count, Idle Max

Flow Duration, Bwd Packet Length Std,
Average Packet Size, Packet Length Std,
Flow IAT Std, ACK Flag Count

PSH Flag Count, Flow Duration, Total
Length of Fwd Packets, Init Win bytes
forward, Packet Length Std, Subflow Fwd
Bytes, Fwd PSH Flags

Subflow Fwd Bytes, Total Length of Fwd
Packets, Flow Duration, Idle Mean, Active
Mean, Init Win bytes backward, PSH Flag
Count

Attack group

Average

DOS

DDOS

Bruteforce

Infiltration

Algorithm 3: Pseudocode of the GAN training process

Input: IDS (IDS), training_set (train_set), Maximum noise size
(max_noise_size), Number of training epochs

(nb_epoch)
Output: Trained GAN
/* Initialization x/
1 best_score = 1.0;
2 noise = 1;
3 for attempt = 1 to 5 do
4 for noise_size = 1 to max_noise_size do
/* We construct a GAN with the
corresponding noise size as input
*/
5 GAN = Generator(noise_size);
for epoch = 1 to nb_epoch do
7 for (batch, labels) in train_set do
/* First select the attacks from
the training set */
is_attack = non_zero(labels);
9 attacks = select(batch, is_attack);
/* Then generate attacks x/
10 z = random_noise(noise_size);
1 generated_attacks = GAN(attacks,z);
/* Backpropagation */
12 loss = mean(IDS(generated_attacks));
13 loss.backward();
14 optimizer.step();
15 if loss < best_score then
16 best_score = loss;
17 noise = noise_size;
18 best_ GAN = GAN;
19 end
20 end
21 end
22 end
23 end

N4
-

return best_ GAN

The process followed to train the GAN is presented in
algorithm 3.

Step 2: Attack generation and evaluation

This step is to evaluate the current score of our IDS. To do
so, we need to generate attacks with the GAN and gauge the
robustness of our IDS against those attacks.

After the GAN has been trained at step 1, we use it to

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

generate attacks. Generated attacks will use the functional
features of attacks from the test set.

We evaluate the score of the IDS with those generated
attacks. With previous notations, we consider that an instance
x is considered an actual attack by the IDS if D(z) > 0.5.
The score is therefore the number of generated attacks G(z)
with D(G(z)) > 0.5, divided by the total number of generated
attacks.

If the score has not improved in three rounds, we stop the
algorithm.

Step 3: Search-based method

In this step, we run a metaheuristic algorithm in order to
generate additional attacks to further improve our detection
system.

As our Search-based method, we used an hybrid genetic
local-search algorithm. Indeed, local search and the Genetic
Algorithm both have their pros and cons. The Genetic Al-
gorithm is rather slow to converge whereas the Local search
could converge to local optima. We chose to combine the two
with an hybrid genetic algorithm [21], as it has been demon-
strated to have been more efficient in complex problems, such
as the Traveling Salesman [20].

The hybrid algorithm that we chose is a modification of the
genetic algorithm: before proceeding to the selection process
of the algorithm, every solution from the solution pool is
improved by the local-search algorithm. As each solution is
enhanced before the selection process, this algorithm allows
for overall better performances, and usually a faster conver-
gence than the standard Genetic Algorithm.

The goal of this metaheuristic algorithm is also to generate
attacks against the IDS. Similarly to the proceedings of the
GAN, functional features of our generated attacks will be from
real attacks from the original dataset.

We first create a population of random solutions. We chose
a population size of 30, as the recommended values in the
literature are within the range of 30 to 80 [26]. Having a
bigger population affected the performances of our algorithm.

Before the selection process, we optimize each solution of
the population with a local search algorithm. The pseudocode
for this local search method is given in algorithm 25.

Crossover is made by selecting two parents in the solution
pool. We select only members of the population with the
highest score (meaning, the attacks the most able to fool the
IDS). The offspring will have the first half of its features from
its first parent, and the other half from its second parent.

The mutation process is carried out to the entire population
of children of this iteration. For each child, a non-functional
feature selected at random is modified. The modification
follows a uniform distribution, varying from -0.01 to 0.01.
Then, the new generation is equally composed of parents from
the previous generation, and of its offspring. The fact of having
members of the previous generation prevents the deterioration
of the ability of the overall population to deceive the Intrusion
Detection System.

We stop the hybrid genetic algorithm after 500 generations,
or after 50 generations without improvement. These numbers
were found to be experimentally sufficient for successfully
training the four different IDS.

15

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

Algorithm 4: Pseudocode of the used local search algo-
rithm

Function score(sol: array): float is
score = 1 - max(discriminator(sol),classifier(sol));
return score;

E NI S

end

Input: Population of solutions (solutions), Discriminator,
Classifier, functional features (func_feat)

Output: Optimized population of solutions

5 for sol in solutions do

/* For each solution in the population,
we slightly modify all the non
functional characteristics to find
the best solution in the neighborhood

x/
6 for characteristic in sol do
7 if characteristic not in func_feat then
3 modif = -0.01;
9 current_value = characteristic;
10 best_value = characteristic;
11 best_score = score(sol);
/* We test all modifications from
-0.01 to 0.01 */
12 while modif < 0.01 do
13 modif = modif + 0.001;
14 characteristic = current_value + modif ;
15 score = score(sol);
16 if score > best_score then
17 best_value = characteristic;
18 best_score = score;
19 end
20 end
21 characteristic = best_value;
22 end
23 end
24 end

25 return solutions

This population-based approach makes the solution pool
iteratively evolve to better evade the detection system, and
therefore generates a wide variety of adversarial attacks.

Step 4: IDS training

In this final step, we aim to retrain the detection system for
it to take the generated attacks into account. We train the IDS
with:

« All the attacks generated by the hybrid algorithm during

its run at step 3.
o The trained GAN generated attacks from the training set.
o Examples from the original training set.

C. Execution of SIGMA

We executed SIGMA on the CalculQuebec Cloud service
with the following computing resource: 15 X Intel Xeon
@2,5Ghz, 128Go RAM, 10 core, 8 X Nvidia K20-GK110
GPU.

The Pytorch module was used to implement all the neural
networks.

In Table IV, we present all the parameters used to train the
Neural Networks.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

Input
(noisesize)

Layer 1
(10)

Layer 2
(20)

Layer 3
(32)

Layer 4

TanH

Output

(64) (70)

Figure 3. Architecture of the Generator.

TABLE IV

TRAINING PARAMETERS FOR OUR GENERATIVE ADVERSARIAL
NETWORK, AND FOR NEURAL NETWORKS USED AS IDS.

Number of training epochs | 30

Batch size 64

Learning rate 0.01
ul v1
u2 v2

Loss function Li(| . |,) =0 lus — v
Um Um

Optimizer Adam

D. Research questions

To evaluate the effectiveness of SIGMA at improving the
effectiveness of IDSs, we formulate the following two research
questions:

e (RQI1) To what extent SIGMA can generate adversarial
attacks able to deceive trained classifiers, acting as
Intrusion Detection System?

This research question aims to assess the effectiveness
of SIGMA at generating meaningful adversarial attack
queries.

¢ (RQ2) To what extent is the effectiveness of IDS improved
using SIGMA?

This research question aims to examine if through the
successive re-training steps of SIGMA, IDSes are suc-
cessfully improved.

In the following, we describe the approach followed to
answer RQ1, RQ2.

For RQ1, we use four different classification algorithms
as IDS: Neural Network, Random Forest, Support Vector
Machine and a Naive Bayes Classifier. We generate attacks
against each of the IDS for all four attacks datasets (DOS,
DDOS, Bruteforce, Infiltration) by using a GAN, trained with
the methodology described above.

We compute the score of each of the detection systems for
the GAN generated attacks, and therefore assess if SIGMA
is able to deceive standard classification algorithms acting as
IDS.

16

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

For RQ2, we use a more complex intrusion detection
system. We build an IDS consisting of two classifiers: an
attack classifier, and a discriminator. The attack classifier is
trained with the entries from the original dataset, whereas
the discriminator is trained with both regular attacks from the
dataset as well as with generated entries to classify the input as
a generated attack or as regular traffic. Traffic is first analyzed
by the discriminator to determine whether it is an adversarial
instance or real traffic. If the input is labeled as real traffic,
it then comes through the attack classifier whose role is to
recognize attacks. This architecture prevents from training the
classifier with the adversarial examples, which could lead to a
loss of performance for previously seen regular attacks because
of overfitting to adversarial instances. It consists of a simple
adaptation of the GAN discriminator to detect both generated
instances and attacks from the dataset. Therefore, since the
goal of the discriminator is to identify generated instances, it
will be the part of the IDS trained with the SIGMA generated
attacks.

The overall process of the Intrusion Detection System
studied is detailed on Figure 4.

Attack Classifier
Benign
- a{ }_[
Attack

f

Discriminator

Trafic—— >

D
R — L

Generated

Generator

Figure 4. Diagram of the Intrusion detection system.

As attack classifier and discriminator, we used the same
algorithms as for RQI1: Neural Network, Random Forest,
Support Vector Machine (SVM), and a Naive Bayes Classifier.

We study the largest dataset of the four (the DOS attacks
dataset). For each round of improvement of SIGMA, we
compute the score of the IDS.

To measure the performance of SIGMA, we compare our
strengthened model to a baseline, in which the discriminator
is trained only with GAN generated instances. We also verify
that metaheuristics alone are not enough to train our system
against generated adversarial attacks by comparing the model
strengthened by SIGMA with a model trained only with the
metaheuristics attacks, and submitting it to GAN generated
attacks.

We will judge the quality of the reinforcement by:

o The speed of convergence of the detection rate.
o The value of the limit of the detection rate.
o The overall performance of the model for all iterations.

It should be noted that for the first iteration of the algorithm,
the discriminator has not yet been trained: the generator is thus
only trained against the classifier at the first iteration.

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

E. Results of the Evaluation of SIGMA

In this section we present the answers to our two research
questions that aim to evaluate SIGMA.

RQI: To what extent SIGMA can generate adversarial
attacks able to deceive trained classifiers, acting as Intrusion
Detection System?

The results of the detection of normal and generated attacks
are presented in Table V, and on Figure 5.

All four classifiers in our study (Neural Network, Random
Forest, SVM, Naive Bayes) have good results in classifying
standard entries of the datasets. Even though our classifiers
are standard machine learning algorithms, they are sufficient
to obtain high accuracy, with the Random Forest algorithm
performing with the best results with an overall 99,9% accu-
racy, followed by the Support Vector Machine with 97,1%. In
fact, those two algorithms have often been used in intrusion
detection thanks to their good performances [28].

However, the generated attacks detection rates is signifi-
cantly low for all classifiers with most type of attacks. Both
the Random Forest and the Naive Bayes are utterly unable
to detect the GAN generated adversarial attacks. The neural
network and the SVM are the most resilient classifiers, but the
generator still manages to deceive our IDS with over a 90%
evasion rate for the DOS, Bruteforce and Infiltration attacks.

Detection rate of standard and generated DDOS attacks per classifier type

100

0 | | I

Neural Net Random Forest SVM
Classifier type

®
3

o
3

W standard attacks from dataset
GAN Generated attacks

Naive Bayes

Detection rate (%)

5
8

N
S

Figure 5. Detection scores per classifier with test set attacks and generated attacks for
the DDOS dataset.

The results show very good performance of the Generative
Adversarial Network for all different types of attacks. It is
therefore possible to generate attacks able to fool Machine
Learning based classifiers for all four types of attacks.

RQ2: To what extent is the effectiveness of IDS improved
using SIGMA?

We compared the evolution of our model trained with the hy-
brid local-search-genetic reinforcement and adversarial attacks
with a model trained only with adversarial attacks.

The results are presented in Table VI and Figure 6.

First, we notice that both models with the SVM and
the Naive Bayes as classifiers only need one step to detect
adversarial attacks: those two classifiers are the most able
to generalize from the previously seen data. The generated
attacks detection rate converges after only one iteration for
both the strengthened and the standard model.

17

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

TABLE V
DETECTION RATES FOR TEST ATTACKS FROM THE DATASET AND GAN GENERATED INSTANCES.

Classifier type Neural Net Random Forest SVM Naive Bayes
Type of attack | Normal | Adversarial | Normal | Adversarial | Normal | Adversarial | Normal | Adversarial
DOS 94,9% 0% 99,8% 0% 97,6% 0% 95,9% 0%
DDOS 98,6% 29,9% 99,9% 0% 98,3% 47,1% 97,1% 0%
Bruteforce 95,6% 1,9% 99,9% 0% 96,3% 0% 97,8% 0%
Infiltration 95,4% 5,8% 100% 0% 96,2% 4,1% 97,4% 0%

TABLE VI
EVOLUTION OF THE DETECTION RATES OF ADVERSARIAL ATTACKS FOR OUR MODEL
Classifier type Neural Net Random Forest SVM Naive Bayes
Iteration number | Normal | Reinforced | Normal | Reinforced | Normal | Reinforced | Normal | Reinforced

1 0% 0% 0% 0% 0% 0% 0% 0%
2 6,3% 0% 51% 0% 100% 100% 100% 100%
3 49% 100% 99% 100% 100% 100% 100% 100%
4 100% 100% 18% 100% 100% 100% 100% 100%
5 68% 100% 100% 100% 100% 100% 100% 100%
6 100% 100% 100% 100% 100% 100% 100% 100%
7 100% 100% 100% 100% 100% 100% 100% 100%

Comparison of the generated attacks detection rates for the strengthened and standard models

100

80

60

40

Generated attacks detection rate (%)

20

—— Neural Network
Neural Network Reinforced

_

1 2 3 4 5 6 7
Iteration number

100

—— Random Forest
0 Random Forest Reinforced

1 2 3 4 5 6 7

Figure 6. Time evolution of our reinforced model with two different classifiers.

The multi-layer Neural Network and the Random Forest
standard models both take time to converge to a 100% gen-
erated attacks detection rate: 6 iterations for the model with
the Neural Network as classifier, 5 iterations for the Random
Forest model. Furthermore, we also note that both models
suffered from overfitting: their performance increased (until
iteration 4 and 3 respectively) before dropping significantly
by 32% and 81%.

The SIGMA method improved the models’ results: as we
can see, the strengthened model converged faster than the
standard model to a 100% detection rate for both the Neural
Network and the Random Forest classifiers; the reinforced
versions took only two iterations to detect all adversarial
instances, that is to say respectively four and three iterations
less. As the other two classifiers, namely the SVM and the
Naive Bayes classifier, detected all attacks from iteration 2,

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

the reinforcement method did not affect their performance.
Furthermore, we can observe that the SIGMA method
prevented the Neural Network and the Random Forest model
from overfitting to generated attacks, therefore preventing
a performance drop of the algorithm. The combination of
the metaheuristic algorithm and the Generative Adversarial
Network permitted to generate a sufficiently wide variety of
attacks; avoiding fitting closely to previously seen attacks.

Table VII presents the results of models trained only from
the Metaheuristics generated attacks. From these results, we
can also conclude that Metaheuristics alone are not sufficient
to train an IDS against generated adversarial attacks: every
classifier, except the Support Vector Machine, was utterly
unable to detect any instance generated by our Wasserstein

18

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

TABLE VII
EVOLUTION OF THE DETECTION RATE OF ADVERSARIAL ATTACKS FOR A
MODEL TRAINED ONLY WITH METAHEURISTICS GENERATED ATTACKS.

Iteration | Neural Net | Random Forest | SVM | Naive Bayes
1 0 0 0 0
2 0 0 0 0
3 0 0 40.1 0
4 0 0 100 0
5 0 0 58.1 0
6 0 0 0.8 0
7 0 0 52.9 0

GAN. The SVM stands out from the other classifiers thanks
to its ability to generalize, but fails at consistently detecting
GAN generated attacks.

We can conclude that the attacks generated by the Meta-
heuristics algorithm complement the ones generated by the
Generative Adversarial Networks, as the Metaheuristics algo-
rithm alone was not enough to successfully train the IDS.

VI. THREATS TO VALIDITY

This section discusses the threats to validity of our study
following common guidelines for empirical studies [6]

Construct validity threats concern the relation between the-
ory and observation. This is mainly due to possible mistakes in
the generation of attacks. Even though we kept the functional
features of real attack untouched for our generated attacks, we
can not guarantee that the generated attacks metrics are indeed
plausible attacks.

Internal validity threats concern the selection of tools and
analysis methods. We split the dataset into a training and a
test set in order to ensure the validity of our results. This
prevents having a biased evaluation of our model. As the aim
of the method was to try to detect as many generated attacks
as possible, we chose to study the generated attacks detection
rate as a metric to gauge the quality of the strengthening.

Reliability validity threats concern the possibility to repli-
cate our study. All the tools used in this study are open-source.

Conclusion validity threats concern the relation between
treatment and the outcome. We paid attention to not make
too broad statements about the performances of our model.

External validity threats concern the possibility to generalize
our results. The results of the SIGMA method have to be
interpreted carefully, as they may depend on the dataset used
to run the experiment and on the used Intrusion Detection
System. The iterative strengthening method has only been
studied for DOS attacks of the CICIDS 2017 dataset [22]. We
used four different classifiers acting as IDS, and were able to
significantly improve the results of two of the four IDS. We
therefore suggest that our results can be generalized to other
detection systems and other datasets.

VII. IMPLICATION FOR PRACTITIONERS AND THE
INDUSTRY

Artificial Intelligence is a really powerful tool that could and
will be used in future cybersecurity systems: IBM’s Watson is
one of the illustrations of the application of Machine Learning

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

in this field. Nonetheless, this work illustrated possible vulner-
abilities of such systems as Artificial Intelligence can also be
leveraged by attackers to disrupt detection systems.

Generative Adversarial Networks can be used to forge
almost undetectable adversarial attacks for systems that have
not already faced such attacks. Our method confronted our
studied Intrusion Detection Systems with attacks generated
with both GANs and Metaheuristics in order to improve the
systems resilience, as our analysis has shown that the more
attacks the system faces, the more it will be able to efficiently
generalize to other potential attacks.

Repetitively training an IDS with generated attacks is a way
to anticipate for every possible generative scheme that could
target the system. By doing so, our method SIGMA is able to
detect all the attacks generated by our GAN, thus preventing
future intrusion by adversarial generated attacks.

These methods should be applied to any Al-based cyberse-
curity system in the industry to preemptively confront them
to new types attacks, therefore preventing them from possible
threats.

VIII. CONCLUSION

The novel ability to use Machine Learning techniques
to generate adversarial attacks requires the development of
a robust IDS able to detect unusual behaviors. Generative
Adversarial Networks are both a terrible weapon for detec-
tion systems, and an incredible opportunity to preemptively
strengthening IDSs against adversarial attacks.

We have shown experimentally that it is possible to ef-
fectively evade intrusion detection classifiers with Generative
adversarial networks. We demonstrated the possibility to forge
undetected adversarial attacks with GANs against four stan-
dard Machine Learning algorithms acting as IDS, with the
generated attacks detection rates dropping near 0% for most
of them.

To prevent adversarial generated attacks, we presented in
this paper a method SIGMA, to improve the robustness of IDS.
This method is based on the iterative generation of attacks by
a Machine Learning Generative algorithm and Metaheuristics.
We have shown that applying this method to Machine Learning
based IDS can speed up the convergence of the generated
attacks detection rate, and prevent overfitting to previously
seen generated attacks.

Our model may help design Intrusion detection systems
robust against recurrent generative attacks and improve the
security of Machine Learning systems.

Further considerations are the explorations of other more
complex detection algorithms, such as Recurrent Neural Net-
works, the application of the SIGMA method to other datasets
and the design of a distributed detection system robust to
adversarial attacks.

REFERENCES

[1] J. Lopez, R. Roman, Jianying Zhou. “On the features and challenges
of security and privacy in distributed Internet of things,” Computer
Networks, Vol. 57, no. 10, pp. 2266-2279, 2013.

[2] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, Y. Bengio, "Generative adversarial nets,” In Advances
in neural information processing systems, pp. 2672-2680, 2014.

19

ICIMP 2021 : The Sixteenth International Conference on Internet Monitoring and Protection

[3] J. Sadeeq, “Automatic generation of tests to exploit XML injection
vulnerabilities in web applications,” IEEE Transactions on Software
Engineering, Vol. 45, no. 4, pp. 335-362, 2017.

[4] C. Kolias, G. Kambourakis, A. Stavrou, J. Voas ”"DDoS in the IoT: Mirai
and other botnets,” In Computer, Vol. 50, no. 7, pp. 80-84, 2017.

[5] C.Tsai, Y. Hsu, C. Lin, W. Lin, "Intrusion detection by machine learning:
A review,” In Expert Systems with Applications, Vol. 36, no. 10, pp.
11994-12000, 2009.

[6] R. K. Yin "Case Study Research: Design and Methods” Third Edition,3rd
ed. SAGE Publications, 2002.

[71 Z. Lin, Y. Shi, Z. Xue, "IDSGAN: Generative Adversarial Networks for
Attack Generation against Intrusion Detection,” arXiv e-prints, 2018.

[8] W. Hu, and Y. Tan, ”Generating adversarial malware examples for black-
box attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[9] A. Athalye, L. Engstrom, A. Ilyas, K. Kwok, ”Synthesizing robust
adversarial examples,” arXiv preprint arXiv:1707.07397., 2017.

[10] M. Cordy, S. Muller, M. Papadakis, Y. Le Traon, ”Search-based test and
improvement of machine-learning-based anomaly detection systems,” In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 158-168, 2019

[11] H. Kayacik, A. Zincir-Heywood, M. Heywood. "Selecting features for
intrusion detection: A feature relevance analysis on kdd 99 intrusion
detection datasets,” In Proceedings of the third annual conference on
privacy, security and trust, 2005.

[12] S. Prabavathy, K. Sundarakantham, S.M. Shalinie “Design of cognitive
fog computing for intrusion detection in internet of things,” Journal of
Communications and Networks, Vol. 20, no. 3, pp. 291-298, 2018.

[13] L. Dhanabal, and S. Shantharajah, ”A study on NSL-KDD dataset for
intrusion detection system based on classification algorithms,” Interna-
tional Journal of Advanced Research in Computer and Communication
Engineering, Vol. 4, no. 6, pp. 446-452, 2015.

[14] 1. Oh,J. Lee, B. Moon, "Hybrid genetic algorithms for feature selection,”
IEEE Transactions on pattern analysis and machine intelligence, Vol. 26,
no. 11, pp. 1424-1437, 2004.

[15] C. Ledig, "Photo-realistic single image super-resolution using a gener-
ative adversarial network,” arXiv preprint, 2017.

[16] J. McHugh, “Testing intrusion detection systems: a critique of the
1998 and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory,” ACM Transactions on Information and System
Security (TISSEC), Vol. 3, no. 4, pp. 262-294, 2000.

[17] A. Ferdowsi, and W. Saad, “Generative Adversarial Networks for
Distributed Intrusion Detection in the Internet of Things,” arXiv preprint
arXiv:1906.00567, 2019

[18] I. Sharafaldin, A. Gharib, A. Lashkari, A. Ghorbani, "Towards a reliable
intrusion detection benchmark dataset,” Software Networking, pp. 177-
200, 2018.

[19] M. Mitchell, J. Holland, S. Forrest. “When will a genetic algorithm
outperform hill climbing,” Advances in neural information processing
systems. 1994.

[20] N. Ulder, “Genetic local search algorithms for the traveling salesman
problem. International Conference on Parallel Problem Solving from
Nature,” Springer, Berlin, Heidelberg, 1990.

[21] H. Ishibuchi, and M. Tadahiko, “Multi-objective genetic local search
algorithm,” Proceedings of IEEE international conference on evolutionary
computation, IEEE, 1996.

[22] I. Sharafaldin, A. Lashkari, A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization,” In
ICISSP, pp. 108-116, 2018.

[23] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, D. Gan
”Cloud-based cyber-physical intrusion detection for vehicles using deep
learning,” IEEE Access, Vol. 6, pp. 3491-3508, 2017

[24] M. Gen, and L. Lin, “Genetic Algorithms,” Wiley Encyclopedia of
Computer Science and Engineering: pp. 1-15, 2007

[25] M. Arjovsky, C. Soumith, L. Bottou. "Wasserstein GAN,” arXiv preprint
arXiv:1701.07875, 2017.

[26] H. Cobb, J. Grefenstette, "Genetic algorithms for tracking changing
environments,” Naval Research Lab Washington DC, 1993.

[27] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
D. Song, ”Robust physical-world attacks on deep learning visual,”
classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1625-1634, 2018

[28] M. Hasan, A. Mehedi, “Support vector machine and random forest
modeling for intrusion detection system (IDS),” Journal of Intelligent
Learning Systems and Applications, Vol. 6, no. 1, pp. 45-52, 2014

Copyright (c) IARIA, 2021. ISBN: 978-1-61208-862-4

