
A Large-Scale Analysis of Browser Fingerprinting via Chrome Instrumentation

Mohammadreza Ashouri
Institute of Computer Science - University of Potsdam

Potsdam, Germany

email: ashouri@uni-potsdam.de

Abstract—In this work, we introduce FPTracker as a stan-

dalone, portable and practical browser that utilizes static and

dynamic analysis to obtain concise results on a large set of

websites. In contrast to the previous works, which rely on

native code instrumentation that have low performance and high

cost for monitoring each fingerprint Application programming

interface (API), FPTracker is developed as an independent tool

that does not need to interact with users’ web browsers. In order

to prove the usefulness of FPTracker, we have evaluated the top

10,000 European websites (according to Alexa.com) that comprise

1,393,426 links. We have chosen popular European websites to

discern how these websites employ user tracking third parties

concerning the EU General Data Protection Regulation (GDPR).

Accordingly, we found that 117,012 links out of 1,393,426 use

invisible user fingerprinting systems. For instance, one of the

biggest European banks and a leading advertising website still

fingerprint their visitors.

Keywords - browser fingerprinting; privacy; security; web API ;

encryption.

I. INTRODUCTION

Browser fingerprinting is a user tracking technique which

extracts a wide range of unique information about online users

through web browser APIs. Numerous methodologies have

been proposed in order to dispute with browser fingerprinting,

often are based on static analysis techniques and predefined

blacklists. However, despite recent advances in privacy en-

hancement in web browsers, fingerprinting systems are not

only improving their accuracy but also trying to avoid being

caught by anti-tracking systems.

The information obtained in this technique includes web

browser software and version (e.g., Google Chrome, Mozilla

Firefox, Apple Safari, Microsoft Edge, Opera), operating sys-

tem (Windows, Mac OS, Linux), screen resolution (mobile,

tablet or desktop), established fonts, browser plugins and

extensions, time zone, ad-blockers, language, and the hardware

properties of users device.

These items may not be individually identifiable; for in-

stance, millions of users may use the same version of Chrome

browser. However, the combination of these pieces of infor-

mation is enough to identify users uniquely. In other words,

there is enough distinction among the aforementioned features

so that only one in several thousand can have the same

combination of blueprints, which is perfectly accurate for the

fingerprinting objectives (e.g. advertising). Hence, a successful

web fingerprinter relies on this slight variance between users

devices in order to create and label online users by unique

hash strings (unique fingerprint IDs).

When for the first time, Electronic Frontier Founda-

tion (EFF) published research called ”How Unique is

Your Browser?” in May 2010, browser fingerprinting got

widespread attention. Via analyzing over a million visits to

their research website [36], they found that 83.6% of the

browsers seen had a unique fingerprint; 94.2% between those

with Java or Flash enabled. It also proved that the combi-

nation of its fingerprint algorithm had at least 18.1 bits of

entropy, meaning that users had a 1 in 286,777 chance of

receiving the same fingerprint hash string as another one.

The interesting point is that they got this fingerprints only

through 8 web browser features (e.g., fonts, plugins, timezone,

supercookies, cookies enabled, user agent, Hypertext Transfer

Protocol (HTTP) accept, screen resolution). However, due

to the advancement in web browser software and privacy

systems, some of these features are out of function (e.g.

Flash). Therefore, it sounds that by elaborating of functional

features of new browsers, it is possible to extract accurate

browser fingerprint of the users which is a desirable target for

advertising companies.

Moreover, browser fingerprinting is on a debated subject

with privacy laws. Compared to more well-known tracking

cookies, browser fingerprinting is complicated for users and

browser extensions to contend: websites can do it without

disclosure, and it is difficult to modify browsers. As cookies

are more noticeable and more comfortable to tackle, corpora-

tions have been more moved to turn to trickier fingerprinting

techniques. Companies also have to obey the law as well as

the residents of the European Union. However, during this

study, we found that still many European websites including

online banks still use this technique regardless of the law.

Web browser fingerprinting methods have been changing

based on the new features providing by the full-fledged web

browsers as well as the recent development in anti-tracing and

anti-fingerprinting systems (e.g. ad-blockers). Hence, in this

work we introduce FPTracker, which analyzes the presence of

advanced and encrypted fingerprinting scripts and third-parties

in websites. FPTracker can also enhance the privacy level of

web users via identifying and reporting the latest fingerprinting

tricks on the web.

Accordingly, we built FPTracker based on similar tech-

nologies used in previous works, such as FP-STALKER [26],

FPGaurd [18], and FPDetective [20]. However, it has several

key differences that provide more accurate, thorough, and
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reliable analysis. Hence, the key contributions in our work

are as follows:

1) Minimal cost of monitoring new fingerprinting APIs.

While most of the previous works rely on native instru-

mentation code [20]–[22] (produce a high maintenance

cost and a high cost-per-API monitored), in FPTracker

the monitoring cost of new fingerprinting APIs is mini-

mal. It means that fingerprinting metrics can be enabled

or disabled by users without web browsers recompilation

or rendering engines manipulation. This feature also

permits users to conduct their customized analysis.

2) Performing in-depth analysis. FPTracker uses a a new

combined method based on static and runtime analysis,

which enables us to perform more in-depth analysis and

get accurate results.

3) Analyzing encrypted scripts. Since the industrial fin-

gerprinting libraries tries to utilize encryption methods

to evade anti-fingerprint systems (e.g. ad-blockers), FP-

Tracker analyzes encrypted scripts to recognize their

actual intention via a light and innovative approach (this

is explained in the next sections).

4) Running independently. Our approach works based on

the instrumentation of Chrome driver [33]. Therefore,

our proposed tool does not need to communicate through

the installed user web browsers (e.g., Chrome, Firefox,

Opera) and makes FPTracker standalone and agile in

comparison with similar tools.

5) Simulating user interactions. In order to bypass anti-

crawler mechanisms in industrial browser fingerprint

third parties, FPTracker performs arbitrary user interac-

tions on websites to deceive the anti-crawler systems and

traces the hidden APIs that work by user interactions.

6) Identifying new fingerprinting techniques. In FP-

Tracker we have specified a long set of distinct metrics

almost based on the recent fingerprinting approaches

(e.g., WebRTC, WebGL, etc.) . We also consider other

common techniques, such as canvas fingerprinting and

font enumeration. Hence, we have achieved concise and

more reliable results in comparison with previous studies

which only focus on one or a few metrics.

7) Analyzing secondary web pages. Many popular web

sites are interested in tracking their visitors based on

their search results or favorite items (which are typ-

ically located on secondary pages, such as searching

or booking pages). Thus, unlike previous studies that

only analyze homepages, FPTracker detects the presence

of web tracking scripts in all website pages including

homepages and secondary pages.

In the following section, we introduce Browser fingerprint-

ing techniques. Next, in the methodology section, we present

our approach, and in the implementation section, we describe

the details of FPTracker implementation. In the experimental

results section, we express our evaluation results. Finally,

in the related works section, we will compare our proposed

system with similar works, and we represent the advantages

of FPTracker in comparison with the previous works.

II. BACKGROUND

Web-Based fingerprinting requires certain types of infor-

mation which are collected from user’s systems. A client’s

browser requests such information. Executed web scripts like

JavaScript which are placed on different web pages determine

the type of collected information. The operations of client-side

fingerprinting scripts are done based on HTTP header fields. It

is one of the primary data transfer mechanism in many popular

browsers. Unparalleled retrievement of data from web servers

is one of the critical features of client-side fingerprinting which

gives the web trackers, such as advertisement third parties, the

ability to authorise online users based on their environment

properties directly.

The computed fingerprint is a unique identifier which

stores collected data on specific databases. The contents of

these databases are defined after the completion of necessary

processes in the browser. Eventually, the acquired results are

sent to the web server.

In more advanced web-based fingerprinting schemes, the

website provider is replaced by a third-party agent. Finger-

printing script is anonymously inserted in the website’s main

code only under permission of owners or business partners.

In other words, such web-scripts are invisibly retrieved by

visitors. The new scheme provides a more comprehensive set

of information about users, and they are referring to websites.

This technique might be useful only in cases where the website

owner agrees on publishing advertising content on different

parts of web pages.

A. Browser behavior

Every browser (type and version) has its unique character-

istics which lead to unprecedented behavior. Such differences

can be used for the creation of unique fingerprints.

JavaScript can gather information about screen properties

of user devices. ”Windows. Screen” object is the unique tool

allocated to this process. Characters like depth, width, height

and colour of devices screen can be gathered by such object

which leads to a determination of the type of device (smart-

phone, tablet, two screened PCs). Lack of generalisation is a

severe problem for this technique since different browsers use

different run-time codes which interrupts the comparability of

fingerprints. Some features of users systems like the number

of CPUs or available free RAM can be useful for browser fin-

gerprinting. The extraction of such information is not possible

for all browsers, but the rest of the collected data can have

critical applications for advertisers and web-owners.

B. Font detection/ enumeration

Any information in the OS is shown using fonts. These

visual symbols are considered as unique features of devices.

Also, installed software like MS-word or Acrobat creative suite

use their special fonts, and on their front, the installation of

customized fonts by users increase the diversity of available
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fonts in any system. The fingerprinting procedure might use

these differences in order to attribute a unique signature to

any device. The list of enumerated fonts is a meaningful basis

for collecting a significant amount of data about the system’s

situation. The more comprehensive the font database, the

higher the accuracy of fingerprinting based on font features.

C. Canvas fingerprinting

Canvas is an HTML5 API which is used to draw graphics

and animations on a web page via scripting in JavaScript.

However, apart from this, Canvas can be used as further

entropy in web-browser’s fingerprinting and applied for online

fingerprinting targets. The approach is based on the fact that

the corresponding canvas image may be rendered uniquely

in distinct machines. This occurs for numerous causes. At

the image format level, web browsers use diverse image

processing engines and compression level; therefore, the final

images can get distinctive checksum [25]. At the system

level, operating systems have many fonts which use different

algorithms for pixel rendering. Listing 1 represents an example

of Canvas fingerprinting in JavaScript.

Listing 1. Sample code showing how Canvas fingerprinting works

function doFingerprinting(evt) {
let canv = document.createElement("CANVAS");
canv.height = canv.width = windSize;
canv.style.height = canv.style.width = windSize + "em";
let ctx = canv.getContext("2d");
ctx.fillStyle = "black";

let d = document.createElement("DIV");
d.style.position = "fixed";
d.style.left = d.style.top = "0px";
d.style.zIndex = -1000;
d.style.visibility = "hidden";
document.body.appendChild(d);

...

D. WebGL fingerprinting

WebGL is a JavaScript API for rendering interactive graph-

ics within any web browser without using extra plugins. Since

GPU makes the rendering process of interactive graphics, the

effect can be different in machines with different GPUs [24].

E. WebRTC tracking

WebRTC is an API with a complex set of protocols for

establishing communications applications. It is created for

applications such as voice and video chat (e.g., Facebook

Messenger, OpenTokRTC, Google Hangouts ) [32]. WebRTC

offers TCP-like reliable and UDP-like unreliable data chan-

nels. Since WebRTC has recently become generally accessible

and well established in web browsers, this API has become

attractive for user fingerprinting purposes.

III. METHODOLOGY

Regarding our studies, almost all previous studies de-

tect browser fingerprinting scripts in web pages based on

web crawling and performing static analysis. This traditional

approach is losing its functionality due to the recent ad-

vancements in fingerprinting techniques (such as using anti-

crawling, anti-robot and code encryption methods to track real

users instead of web bots). Moreover, we have observed that

the popular browser fingerprinting libraries (e.g., Bluecava,

fingerprint.min.js, client.js, google analytics, etc.) only finger-

print the actual users. In other words, these scripts do not run

their fingerprinting functions until online users interact on web

pages.

In this work, we attempt to support all of the practical

features in FPTracker. Hence, we have created a static ana-

lyzer that co-operates with a runtime analyzer. We have also

specified our fingerprint metrics based on the new techniques

and recent updates in the popular user tracking third parties.

In this section, we explain the outline of our method, and in

the next section, we present the details of the implementation.

Figure 1 represents an overview of FPTracker, a standalone

web browser inside FPTracker is responsible for loading

websites, enabling the analyzers to work on the interactive

web pages and performing user interaction on the loaded

web pages. After loading a website, our investigation will be

conducted based on the following steps:

1) The static analyzer starts as a background thread in order

to find any match between the enabled fingerprint APIs

(Fingerprint Metrics) and the web page loaded objects

(e.g., DOM, JavaScript, and CSS).

2) The runtime analyzer performs user interactions on the

loaded web pages to trigger and trace the potential

hidden fingerprinting functions.

A. Static Analyzer

When a webpage is entirely loaded on the internal browser,

the Static Analyzer begins to parses the webpage as a set of

DOM objects and separates the JavaScript, CSS, and HTML

scripts. Then, the analyzer looks for any match between

the tool enabled fingerprinting APIs and the extracted web

APIs of the web page (Figure 2 shows the static analyzer in

FPTracker).

We present some of the web metrics that we have specified

for FPTracker in Table I. The purpose of the specification of

these metrics is their usability in browser fingerprinting as

well as their output values, which combines with each other

to precisely identify online users. We obtained these metrics

by investigating popular fingerprinting libraries and scripts.

The Static Analyzer iterates this process to analyze all of the

web pages and third party libraries of an examined website.

After ending the process, FPTracker submits the identified

fingerprints to the scoring module, which is responsible for

providing the details of identified fingerprinting APIs in a

website for the report database.

B. Runtime Analyzer

The Runtime Analyzer module is responsible for detecting

and tracking suspicious JavaScript calls in websites, which
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Figure. 1. Framework overview

TABLE I. SOME OF THE SPECIFIED JAVASCRIPT METRICS IN FPTracker WHICH CAN BE USED IN BROWSER FINGERPRINTING

Object Name Usage

navigator.plugins List of Plugins
navigator.userAgent User agent header sent by the browser
navigator.language Preferred language of the user
navigator.languages Preferred languages of the user
navigator.cpuClass CPU class of the user’s OS
navigator.geolocation Access to the location of device
navigator.platform Platform of the browser
navigator.hardwareConcurrency Number of logical processor cores available
navigator.deviceMemory Device memory in gigabytes
navigator.doNotTrack User do-not-track preference
navigator.appName Official name of the browser
navigator.connection Information about network connection
screen.colorDepth Bit depth of color palette for displaying images
screen.height Total height of users screen in pixel
screen.width Total width of users screen in pixel
window.localStorage Access a session storage object for the document origin
window.sessionStorage Access a session storage object for the current origin
window.indexedDB Store the data inside user browser
window.RTCPeerConnection WebRTC connection
window.AudioContext Audio-processing graph

either are encrypted or stimulated by user interactions. This

module, which is shown in Figure 3, has two main threads:

The first thread is responsible for simulating user inter-

actions on web pages (e.g., moving the mouse, clicking on

buttons, etc.). In the meanwhile, the runtime analyzer traces

hidden fingerprinting calls that serve for user interactions. For

instance, in the case of fingerprint.js, which is a popular

browser fingerprinting library, user uniques hash ID will be

generated when an online user start to interacts on web pages

(Listing 2 presents a sample hash function.).

Listing 2. Sample browser fingerprinting hash function

var my_hasher = new function(value, seed){ return value.length %
seed; };

var fingerprint = new Fingerprint({hasher: my_hasher}).get();

The second thread of the Runtime Analyzer (RA) is re-

sponsible for intercepting and monitoring encrypted JavaScript

codes inside of a web page. During our research, we have

discerned that real-life user tracking third parties take ad-

vantage of web encryption algorithms to evade being caught

and blocked by anti-tracking/ anti-fingerprinting systems (e.g.

ad-blocking web extensions). Hence, it is inevitable that

FPTracker must be able to disclose fingerprinting scripts even

in encrypted formats. Therefore, the RA module analyzes the

actual purposes of the encrypted scripts through monitoring

web pages function calls, which is done via lightweight

instrumentation of JavaScript engine. We describe the analysis

of this technique in the next section.

IV. IMPLEMENTATION

In this section, we describe the implementation of FP-

Tracker. As we mentioned earlier, our tool consists of three

main modules: an internal instrumented browser, a static

analyzer and a runtime analyzer. The entire platform is built

on Python, Selenium [23], and Chrome web driver [33].

Selenium is a compact framework for inquiring web appli-
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Figure. 2. Static Analyzer in FPTracker

Figure. 3. Runtime Analyzer in FPTracker

cations. Selenium gives a playback tool for creating sound,

browser-based regression automation tests. We also use Beau-

tifulsoup [35] for parsing the contents of web pages. Beautiful

Soup is a library that makes it simple to parse HTML and

XML documents. Moreover, It produces a parse tree for parsed

pages that can be used to obtain data from HTML, which is

helpful for web scraping.

A. Internal Browser

The internal browser in FPTracker is responsible for pre-

senting reality and support for Web APIs. We considered

a variety of choices to drive measurements, i.e., to instruct

the browser to visit a set of pages and to perform a set of

actions on each. The two main categories to choose from

are lightweight browsers like PhantomJS and full-fledged

browsers like Chrome and Firefox. We decided to use Se-

lenium which is a cross-platform web driver for Firefox,

Chrome, and PhantomJS. By using our internal browser,

all technologies that web users would have access to (e.g.,

HTML5 storage options, Canvas, WebGL, etc.) are also sup-

ported by FPTracker. The alternative, PhantomJS, does not

support WebGL, HTML5 Audio and Video, CSS 3-D, and

browser plugins making it challenging to run measurements

on the use of these technologies. In retrospect, this has proved

to be a sound choice. Without full support for new web

technologies, we would not have been able to discover and

measure the use of new fingerprinting techniques (such as

webRTC and WebGL) or interacting on web pages.

In order to use Selenium, a real browser should be in-

strumented. Therefore, we have chosen Chrome Driver to be

instrumented by Selenium because Chrome is the most popular

web browser which takes 64% of the global browser market

based on Browser Market Share Worldwide in December

2018 [34]. Hence, using the Chrome Driver make our internal

web browser similar to an ordinary web user.

B. Static Analyzer Module

The Static Analyzer (SA) runs as a background thread, and

it extracts webAPIs of a given web page and looks for tracking

scripts in the load web pages. All the specifications including

fingerprint metrics are stored in a plain text file which is

called Fingerprint Metrics. Users can update this file without

recompilation of FPTracker or struggling with low-level data

structures. Listing 3 shows how users can update and specify

Fingerprint Metrics in a plain text file.

Listing 3. How users can update the fingerprint metrics in FPTracker

navigator.plugins : TRUE ;
navigator.hardwareConcurrency : FALSE ;
navigator.connection : TRUE ;
window.localStorage : FALSE ;
window.AudioContext : TRUE ;

The SA module examines the whole DOM objects of a

given web page, and then it looks for any match between

the stored metrics with parsed DOM objects and JavaScript

functions. For instance, Figure 1 shows a Canvas API that is

commonly used in fingerprinting libraries. In this sample, List-

ing 4 presents how the SA module detects canvas fingerprint

functions in a given web page.

Listing 4. Sample code showing how FPTracker identifies Canvas fingerprint-

ing

{
var methods = []
var canvasMethods = ['getImageData', 'getLineDash',

'measureText','getContext','isPointInPath']
canvasMethods.forEach(function (method) {
var item = {
type: 'Canvas',
objName: 'CanvasRenderingContext2D',
propName: method

}

methods.push(item)
})

C. Runtime Analyzer Module

As we mentioned earlier, the Runtime Analyzer (RA) has

two goals, simulating user interactions on websites and ana-

lyzing encrypted scripts inside of web pages.
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Listing 5. Sample code showing how CrytoJS encrypt scripts in web pages

var encrypted = CryptoJS.AES.encrypt("Message", "Secret
Passphrase");

var decrypted = CryptoJS.AES.decrypt(encrypted, "Secret
Passphrase");

document.getElementById("example1").innerHTML = encrypted;
document.getElementById("example2").innerHTML = decrypted;

The main purpose of the JavaScript encryption is to make

the understanding of the code logic difficult even though the

functionality must be unchanged. Listing 5 shows an example

of using CryptoJS library in JavaScript for code encryption.

Moreover, Encrypting fingerprinting scripts can help malicious

web scripts to twist static analyzers and avoid being detected

by anti-fingerprinting tools. For instance, Listing 6 represents

a simple ”Hello World” JavaScript code before the encryption.

Listing 6. Simple Hello World JavaScript code before the encryption

function hi() {
console.log("Hello World!");

}
hi();

Listing 7 shows the simple ”Hello World” snippet code after

the encryption.

Listing 7. Encrypted Hello World JavaScript code

var _0x5ec0=['log'];(function(_0x83958c,_0xc60544){var
_0x45802b=function(_0x510b72){while(--_0x510b72)

{_0x83958c['push'](_0x83958c['shift']());}};
_0x45802b(++_0xc60544);}(_0x5ec0,0x123));var

_0x551f=function(_0x361366,_0x1e7a76)
{_0x361366=_0x361366-0x0;
var _0x31149b=_0x5ec0[_0x361366];
return _0x31149b;};function

hi(){console[_0x551f('0x0')]('Hello\x20World!');}hi();

Through the runtime analyzer component, we can recognize

the malicious behavior of a encrypted code; however only if

some conditions are true. If those conditions are never met,

the malicious behavior of the code with performing runtime

analyzing cannot be spotted. A condition could be a check if

the actual environment of execution is not virtualized and if

this condition is false, the code will not execute. This happened

with the some of the fingerprinting libraries we have analyzed

(e.g., FingerprintJS, ClientJS, etc.).

Listing 8. Example code presenting how the RAmodule matches inline onload

events via regular expressions

def onLoad(evestr):
regex = r"""
(onload)\s*=(\s*\"\S*\")
"""
oncl = []

matches = re.finditer(regex, evestr, re.IGNORECASE | re.MULTILINE
| re.VERBOSE)

for matchNum, match in enumerate(matches):
matchNum = matchNum + 1

for groupNum in range(0, len(match.groups())):
groupNum = groupNum + 1
if groupNum % 2 == 0:
oncl.append(match.group(groupNum))
for val in oncl:
stri = str(val)
stri = stri.replace("\"", "")

Eventscr.append(stri)
return oncl

1) Analyzing encrypted codes

There are several techniques for encrypting and decoding

JavaScript (JS) codes, which is explained in [38]. However,

we used our innovative approach for decoding JS scripts in

web pages. Our decoding techniques is optimal and does push

overhead to the analysis process.

Precisely, our method is based on the monitoring of function

calls inside of web pages so that the RuntimeAnalyzer controls

whether JavaScript function calls and related access properties

are related to fingerprinting.

In order to identify function calls and related to fingerprint-

ing purposes, we have already analyzed all of the standard

browser fingerprinting scripts and libraries and extracted their

common used objects and methods. Whenever an encrypted

JavaScript code or library, attempt to make any function call

associated with any of our blueprinted functions, The Runtime

Analyzer labels that encrypted code as browser fingerprinting.

Moreover, because almost all standard browser fingerprinting

scripts trace online users based on a unique hash code, if these

functions are made, the RA identifies them as fingerprinting

suspicious scripts.

Listing 9. Setting Proxy for Navigator.plugins object

Object.defineProperty(window, "navigator", {
value: new Proxy(window.navigator, {
get: function(target, name) {
if (name == "plugins") {
console.log("Navigator.plugins is accessed");
}

We perform the function call tracing via lightweight instru-

menting of JavaScript Engine in our internal web browser. The

method of instrumentation in FPTracker is relatively easy. It

works by handling a proxy listener for all JavaScript native

objects in a given website. Listing 9 shows a sample of the

instrumentation for navigator.plugins object, and Listing 10

shows a sample of encrypted code which performs Plugin

enumeration navigator.

Listing 10. Sample encryption function which performs Plugin enumeration

var _0xe2d9=["\x6C\x65\x6E\x67\x74\x68",
"\x70\x6C\x75\x67\x69\x6E\x73",
"\x50\x6C\x75\x67\x69\x6E\x73\x3A\x20",
"\x6E\x61\x6D\x65","\x3C\x62\x72\x2F\x3E",
"\x6C\x6F\x67"];
var x=navigator[_0xe2d9[1]][_0xe2d9[0]];
txt= _0xe2d9[2];
for(var i=0;i< x;i++)
{
txt+= navigator[_0xe2d9[1]][i][_0xe2d9[3]]+ _0xe2d9[4];
}

Lastly, overhead due to the use of cryptographic algorithms

in encrypted JavaScript codes in web pages can also help us

for identifying browser fingerprinting libraries. For instance,

by measuring the estimated overhead based on the version of

our internal web browser, we can recognize the encryption

function calls and the type of browser fingerprinting libraries.

Although this method is not accurate, in some cases, such as
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large scale analysis, can speed up the investigation. Table II

represents our experimental result performed by FPTracker for

having the comparison of the performance between popular

JavaScript libraries used for encryption in Chrome and Firefox.

In this comparison, we have evaluated the performance of

SHA256 and AES-CBC algorithms on Chrome and Firefox

web browsers. We also chose asmcrypto, CryptoJS and

SJCL as the most widely used libraries for performing the

encryption tests in JavaScript.

2) User interactions simulation

The RA module simulates user interaction on web pages

via DOM objects information that has taken from the SA

module (e.g., ID, Name, Object related events, etc.). The user

interactions starts by scamping DOM objects in an arbitrary

way. For instance, moving mouse on the web images, clicking

on the form elements, entering data to the web form inputs.

As an illustration in Listing 11, the RA module creates click

events on three types of DOM elements to trigger JavaScript

event handlers and potential hidden fingerprinting functions.

Listing 11. Three types of DOM elements

<button>tag
<input type = button>
<input type = submit>

Based on our study and experimental observation, the page

load event is one of the most common places where trigger

fingerprinting scripts. The scripts usually start to fingerprint

visitors after some purposeful delays to avoid most of the

anti-fingerprint browser extensions. These delays are made by

window.requestIdleCallback() or WindowOrWorkerGlob-

alScope.setTimeout() JavaScript methods. The RA module

also triggers document onload event and trace the potential

fingerprinting scripts behind of this event. The RA module

triggers events via dispatchEvent method. Listing 12 presents

how the RA module triggers page onload event.

Listing 12. Sample code showing how the RA triggers the page onload event

var load_event = document.createEvent('Event');
load_event.initEvent('load', false, false);
window.dispatchEvent(load_event);

V. EXPERIMENTAL RESULTS

In this section, we summarize the results of our experiments

with FPTracker. We begin by outlining our benchmark and

experimental setup, describe some representative fingerprints

found by our analysis and interpret the results.

In this paper, we have analyzed the top 10K European

websites (according to Alexa.com). The total number of links

that our tool actually reached is 1,393,426. Our evaluation

was conducted on a single Linux machine with an Intel Core

i7-8500Y and 16GB memory from 7 February 2019 until end

of April 2019.

A. Fingerprinting links

The total number of distinct fingerprinting URLs where

FPTracker found is 117,012, and 8% of the total reached links

are browser fingerprinting while 92% are non-fingerprinting.

Moreover, 110,583 links have plain-text browser finger-

printing scripts and 6429 have encrypted scripts. In other

words, 806 domains use browser fingerprinting scripts that

are in plain-text, and 44 domains use the encrypted scripts

(Figure 4 presents the percentages of fingerprinting links

without/ with encryption).

95 %
5 %

plain-text fingerprint links

encrypted fingerprint links

Figure. 4. Percentages of fingerprinting links without, with encryption

B. Third parties analysis

Since most of the fingerprinting scripts that FPTracker re-

vealed are third-party libraries, it would be interesting to know

about these libraries as well. Therefore, we first concentrated

on identifying the most popular third parties’ libraries in our

benchmark. Accordingly, we determined how many distinct

third-party libraries were called. In Figure 5, the 10 most used

fingerprinting libraries in our evaluation are shown.

C. The adoption of the GDPR

It seems after the adoption of the General Data Protec-

tion Regulation (GDPR), websites warn users about using

cookies. However, they are still interested in using browser

fingerprinting scripts to collect more information about online

visitors (especially in news websites which monetizing options

are limited). For example, we found that Fingerprint2 (a

popular browser fingerprinting library) has been used at least

in some popular crowd-sourcing websites such as www.ebay-

kleinanzeigen.de (a popular online advertising service in

German-speaking counties.).
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Figure. 5. The most used browser fingerprinting libraries
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TABLE II. THE ANALYSIS OF THE OVERHEADS IN WEB ENCRYPTION

Cryptography Libraries Chrome Firefox

asmcrypto.js1 SHA256= 51 MiB/s AES-CBC: 47 MiB/s SHA256: 144 MiB/s AES-CBC: 81 MiB/s

CryptoJS.js2 SHA256= 5.6 MiB/s AES-CBC: 3.6 MiB/s SHA256: 28.8 MiB/s AES-CBC: 27 MiB/s

SJCL.js3 SHA256= 5.6 MiB/s AES-CBC: 2.35 MiB/s SHA256: 7.2 MiB/s AES-CBC: 10.12 MiB/s

D. Fingerprinting in secondary pages

Since almost all of the previous works have studied the

presence of browser fingerprinting only in the homepages of

websites, the using of browser fingerprinting in the secondary

pages of websites has been remained unexplored. During

our experiment, we found 850 domains out of 1000 use

browser fingerprinting. However, only 112 domains still use

fingerprinting in the homepages, and the rest of the 688

websites fingerprint their visitors in the secondary pages. It

seems that fingerprinting is becoming popular in the secondary

pages of websites instead of the homepages. We presume there

are two main grounds for this.

The first reason is the valuable information about users’

interests (e.g. searched results) are more likely to be shown in

the sub-pages (e.g., search pages, booked items, registration

forms, etc.). For instance, websites such as online shopping

or travel agencies can fingerprint their visitors based on their

search results. The second reason can be because most of

the previous large scale analysis focused only on the home

pages for fingerprinting detection. Therefore, popular websites

listed in Alexa.com have attempted to conceal their fingerprint

scripts by placing them in the secondary pages.

TABLE III. THE MOST USED FINGERPRINT TECHNIQUES IN OUR

BENCHMARK

Canvas WebGL WebRTC Font Enumeration

6.7% 2.2% 0.87% 0.69%

E. Most used fingerprinting techniques

The most commonly used fingerprint techniques we found

via FPTracker are Canvas, WebGL, WebRTC and Font enu-

meration fingerprinting (Table III). Also, the most called

fingerprinting JavaScript objects in our analysis as shown in

Figure 6. We have noticed that many of the domains in our

benchmark, use a combination of fingerprinting techniques

instead of one single method. For instance, in most domains

where Canvas fingerprinting has been used, WebGL finger-

printing has existed as well.
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Figure. 6. The most fingerprinting access objects in the benchmark

F. Canvas fingerprinting

Our experiment recognized that 6.7% domains out of

10,000 use Canvas fingerprinting. However, because Canvas

methods can have typical applications (e.g. online gaming),

we mark only those URLs as browser fingerprinting that

either have any of identified fingerprinting third-party libraries

or any hash computation functions related to Canvas finger-

printing. We also perceived that using Canvas fingerprinting

cause about 30 milliseconds process overhead to the visitors’

web browsers. Listing 13 represents an example method in

FPTracker that recognizes Canvas fingerprinting. Especially,

FPTracker classifies fillText(), strokeText(), toDataURL(),

getImageData() as the most used function calls in the Canvas

fingerprinting method.

Listing 13. Sample code showing how Canvas detection method in FPTracker

works

var origToDataURL = HTMLCanvasElement.prototype.toDataURL;
HTMLCanvasElement.prototype.toDataURL = function() {
var r = origToDataURL.apply(this, arguments);
window.tourl++;
return r;
};

...
var origgetimagedata =

CanvasRenderingContext2D.prototype.getImageData;
CanvasRenderingContext2D.prototype.getImageData = function() {
var r = origgetimagedata.apply(this, arguments);
window.getimagedata++;
return r;
};

G. Font detection results

Our experiment results demonstrate that 0.69% of the

domains use font enumeration fingerprinting. Enumerating

installed fonts on the user web browser can have normal

application for web design purposes, for instance, enumerating
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fewer than 20 fonts does not indicate any web browser finger-

printing activities. However, the most of the non-fingerprinting

websites enumerate fewer than 16 fonts, but some of the

fingerprinting websites request between 100 to 500 fonts. The

maximum number of inquired fonts in our experiment was

500 fonts (the result of Font detection is shown in Figure 7).
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Figure. 7. Number of fonts requested for top 10K European websites. The

most of the non-fingerprinting websites enumerate fewer than 16 fonts, but

some of the fingerprinting websites request between 100 to 500 fonts.

We set 45 as the threshold for the number of fonts that

a website can load — the threshold for the average number.

Therefore, when a given website requests to load more than

45 fonts, we label its domain as sceptical about adopting

font enumeration fingerprinting. FPTracker identified 16 web-

sites that were loading more than 100 fonts. Also, during

our analysis, we found that the time of font enumeration

fingerprinting has more overhead in comparison with the other

studied techniques introduced in this research (the average

overhead for font enumeration method is approximately 90ms

on desktop Chrome).

H. WebGL fingerprinting

Based on our analysis 2.2% of the domains use WebGL fin-

gerprinting, using this method for fingerprinting is becoming

popular since it is reliable for websites to track their users’

device even if users surf the websites with several different

browsers. In other words, this technique works based on user’

hardware regardless of the attitudes of the web browsers.

Generally, there are two methods for WebGL fingerprinting:

1) The entire of WebGL Browser Report Table will be

retrieved and examined. In some cases, it is converted

into a hash for faster analysis.

2) A hidden 3D image is rendered and hashed in the

browser. Because the ending result depends on users’

hardware which performs the computation, this method

yields distinct values for different devices and drivers.

AmongWebGLmethods that FPTracker found in our bench-

mark, many of them draw a gradient with drawArrays()

and converts it to Base64 string with toDataURL(). They

also enumerate advanced WebGL extensions by getSupport-

edExtensions(). Another common extension, which interests

trackers, is WEBGL_debug_renderer_info and provides infor-

mation about users’ graphics driver. FPTracker identifies this

fingerprinting method via monitoring JavaScript function calls

relate to these functions.

I. WebRTC fingerprinting

Tracing users through webRTC method is done through

STUN servers. A STUN server allows users to find out their

public IP address, the type of Network address translation

(NAT) with a particular local port. Chrome, Firefox and Safari

have implemented WebRTC which enables requests to STUN

servers be made that will return the local and public IP

addresses for users. In our analysis, 0.87% of the domains

use WebRTC fingerprinting method and FPTracker detects the

method (in Listing 14) which is commonly used for checking

the compatibility of webRTC in the users’ browser [10].

Moreover, we have observed that some websites use iframe

tag to bypass webRTC blocking in client web browsers. This

method is shown in Listing 15.

Listing 14. Checking the possibility to use WebRTC in Chrome, Firefox and

Safari

var RTCPeerConnection = window.RTCPeerConnection
|| window.mozRTCPeerConnection
|| window.webkitRTCPeerConnection;

var useWebKit = !!window.webkitRTCPeerConnection;

Listing 15. Using the iframe tag to bypass webRTC blocking in fingerprinting

codes

if(!RTCPeerConnection){
//<iframe id="iframe" sandbox="allow-same-origin"

style="display: none"></iframe>
//<script>...getIPs called in here...
//
var win = iframe.contentWindow;
RTCPeerConnection = win.RTCPeerConnection

|| win.mozRTCPeerConnection
|| win.webkitRTCPeerConnection;

useWebKit = !!win.webkitRTCPeerConnection;
}

J. Avoiding static analyzers by intentional delay

New fingerprinting libraries to avoid being detected by

static analyzers do not fingerprint visitors right after page

load event. Instead, they wait for a few seconds based on

the visitor’s web browser software (in average 30 seconds).

Also, our results show that fingerprint libraries are removing

font enumeration as a classic fingerprinting method due to its

process overhead (between 80ms to 2000ms) that increases the

chance of being detected by ad-blocker plugins (e.g., uBlock

Origin, Adblock Plus, and AdBlock). The overhead of font

enumeration is unusually high, especially in mobile phone web

browsers (e.g. Firefox mobile edition).

TABLE IV. THE AVERAGE OVERHEAD RELATED TO COMMON FIN-

GERPRINTING METHODS

Canvas WebGL WebRTC Font Enumeration

10 ms 35 ms 30 ms 40 ms
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VI. RELATED WORKS

Peter Eckersley is the founder of Panopticlick website. In

his studies [2], three sources were used for the collection

of features which are HTTP protocol, JavaScript and Flash

API. Eckersley extracted 470161 fingerprints in total. There

is a potential bias in collected data since these data represent

those users that consider web privacy as an essential matter.

Attributes such as list of installed fonts or list of installed

plugins were the most dominant ones in Eckersley’s data.

In recent years, the capability of the JavaScript engine as

an appropriate basis for identification of the client’s browser

type and version (even operating system) had been confirmed.

Relevant benchmarks, JavaScript conformance test [6] and

website rendering analysis [9], were all used for the creation of

unique fingerprints. Some other techniques which are placed

in the same category of fingerprinting but depend on their

unique mechanism are Profiling [3], use of Evercookies [4]

and History stealing [5]. Firegloves [30] is a Mozilla Firefox

extension which replaces random values for the browser

properties such as screen resolution. Firegloves restricts the

number of available fonts on each browser tab and also returns

random values for the offsetWidth and offsetHeight attributes

of the HTML elements. However, it is possible to get the width

and height of the HTML elements using the width and height

attributes of the getBoundingClientRect method.

Another similar work is ExtensionCanvasFingerprint-

Block [31] which is a browser extension for protecting users

against canvas fingerprinting by returning empty images for

canvas elements. Similarly, FP-Block [27] is an interesting

prototype web browser extension which maintains the use and

management of web identities. The web identities produced by

FP-Block are distinct and logical (e.g. they are not generally

randomized) that is achieved by implementing a Markov

model for the generating of attribute values.

The above works diminish the fingerprinting surface by

disabling browser functionalities because they do not have de-

tection capability to perform before blocking, they block both

regular and fingerprinting websites. This eventually will build

annoying experience users due to the reduced functionality of

the browser.

Metwalley, S. Traverso, and M. Mellia [28] proposed an

algorithm based on web services that often exchange users

identifiers as parameters in HTTP GET format. They look for

HTTP GET requests and possible signs for the presence of

user identifiers. It worth remarking that the assumption that

web services transfer user identifiers through GET request is

not practical because in many cases user identifiers are sent

by POST queries. Another interesting work for detecting and

analyzing browser fingerprinting is FPDetective [20]. They

investigated the presence of fingerprinting on the home pages,

using JavaScript-based font probing. FPDetective considers

font-based fingerprinting as the main evidence for the exis-

tence of fingerprinting, and it proposes that fingerprinting is

more popular than previously believed.

Another exciting research is [20], which analyzes the preva-

lence of canvas fingerprinting on the web. They discovered

that Canvas fingerprinting is the most generally used tracking

system which is existed in more than 5.5% of the top 100K

Alexa websites. They found a total of 20 Canvas fingerprinting

provider domains that are active in 5542 of the top 100K

websites. FPGuard [18] is another browser fingerprinting

detection tool which evaluated Alexa’s top 10K focusing on

Canvas and Flash-based Fingerprinting. They identified Can-

vas fingerprinting as the most common type of fingerprinting

method on the Web. Another most recent similar works is

FP-STALKER [26] which compares fingerprints to determine

either they arise from the same browser instance, or they come

from unknown cases. They constructed two options of FP-

STALKER, a rule-based option that is fast, and a hybrid option

that uses machine learning to improve precision, but it is

prolonged. They identified languages and user-agent attributes

as essential fingerprinting features.

Even though FPTracker similar to the previous works ana-

lyzes the presence of fingerprinting methods in websites, there

are some remarkable distinctions between our work and these

studies. For instance, these works have not analyzed encrypted

scripts and libraries that potentially can be used for suspicious

purposes (such as browser fingerprinting). Moreover, none of

these previous works measures WebGL fingerprinting (which

is a powerful and popular fingerprinting method these days).

Moreover, during our studies we noticed that most of the state-

of-the-art browser fingerprinting/ user tracking libraries use

anti-crawler mechanisms to avoid Internet bots and spoofed

fingerprints. The principle of these mechanisms is based on

hiding their fingerprinting related functions unless online users

interact with web pages. Thus, FPTracker is the first tool that

traces and analyzes the professional browser fingerprinting

scripts through reproducing user interactions on web pages

(which help us to achieve more concrete results.). Furthermore,

it seems that placing fingerprinting scripts in secondary web

pages (instead of home pages) is becoming popular. This is

because popular websites may attempt to evade their browser

fingerprinting actions to be caught by anti browser fingerprint-

ing systems and analysis. Websites may also desire to gather

more information about their visitors based on their search

results and favorite items which usually are placed on sub

pages (like shopping pages). All of the works mentioned above

only analyze homepages; however, FPTracker investigates all

web pages including the homepage and sub pages of each

website.

TABLE V. THE COMPARISON BETWEEN FPTracker AND SIMILAR

WORKS

Tools FPTracker FP-STALKER FPDetective FPGaurd

JavaScript Objects X X X X
Canvas X X - X
Font Enumeration X X X X
WebGL X X - -

WebRTC X - - -

Encrypted Methods X - - -

User Interaction X - - -
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Finally, in order to demonstrate the usefulness of our pro-

posed approach, we compare FPTracker with other standard

works. Accordingly, we have selected FPDetective, FPGuard

and FP-STALKER as three well-known tools with similar

functionality with our proposed tool. The result of the com-

parison (shown in Table 4) presents the advantages of our

work over these tools.

VII. LIMITATIONS AND FUTURE WORKS

A. Server-side hash calculation

Even though in the past, browser fingerprinting were done

mostly in the user web browser through Flash, JavaScript,

HTML and CSS. However, our analysis indicates that the new

browser fingerprinting libraries try to calculate the user profile

hash IDs in the server side. Therefore, they use JavaScript

agents that collect the value of the browser APIs and send

them to server-side applications intimately.

This technique not only preserves the fingerprint libraries

from being detected by anti-tracing systems, but also it pro-

tects these methods from reverse engineering and spoofing of

fingerprints by Internet bots.

We have not supported this approach in this current version

of FPTracker yet. However, we are working on potential

solutions for tracking the potential fingerprinting data flows

related to the third party servers as a future extensions of our

work.

B. New applications of fingerprinting

Based on our experiments, browser fingerprinting methods

are becoming popular in anti-phishing and fraud detection

systems, especially for online financial and communication

services.

Another advantageous application of this technique can

be in detecting unusual activities on websites. For example,

activities such has account harvesting, DOS attacks or identi-

fying malicious users and Internet bots (automatically fill up

web forms, or crawl the websites’ information). For instance,

during our studies we have noted that one of the European

banks uses browser fingerprinting in one of its online services,

we think that they might use it for the fraud detection purposes.

C. Client-server architecture for FPTracker

Our proposed tool is implemented as a standalone browser.

Since the analyzing process can be time and memory consum-

ing, we want to design a future extension with a client-server

architecture. By doing this, a central server is responsible

for patterning new fingerprint techniques, and clients use the

detection functions to indicate whether a particular website

comprises fingerprinting codes. Moreover, the results from

clients can be used to retrain as a function for increasing

accuracy. The important benefit of this plan can be detecting

other type of threats on websites such as crypto-jacking, which

is widespread presently.

D. Network sniffing

Another interesting extension for FPTracker would be shift-

ing the analysis from web browser to network sniffer, to

have data also on real navigation cases. Since the calls to

the tracker are made from the browser, it would be essential

to understand the output of the requests sent to the tracker

domains, to recognize it in HTTP packets. It is worthwhile

to know whether encrypted scripts can also be found in the

network traffic and not only in the users’ web browser.

VIII. CONCLUSION

In this research, we presented FPTracker as a standalone and

practical tool for fingerprinting detection by the combination

of static and runtime analysis on a large set of websites. To

implement our tool, we used Selenium and Chrome driver as

an instrumented standalone web browser. Moreover, our tool

is able to identify encrypted fingerprints with a lightweight

instrumentation approach. FPTracker also conducts user inter-

actions on web pages to trace hidden fingerprinting scripts

that used anti-crawler mechanisms. Finally, we evaluated FP-

Tracker on the top 10K European websites including 1,393,426

links, and we have proved that standard techniques, such

as font and plugin enumerations, are substituting with new

technologies such as WebGL and WebRTC.
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