
Applying Lomb Periodogram to Round-trip Time Estimation

from Unidirectional Packet Traces with Different TCP Congestion Controls

Toshihiko Kato, Xiaofan Yan, Ryo Yamamoto, and Satoshi Ohzahata

University of Electro-Communications

Tokyo, Japan

e-mail: kato@is.uec.ac.jp, yanxiaofan@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract—Network operators often attempt to analyze traffic in

the middle of their networks for various purposes. In such

traffic analysis, the estimation of Round-Trip Time (RTT) is

indispensable. Primarily, the RTT estimation is performed by

consulting the relationship between a request and its response,

such as a data segment and the associated ACK segment.

However, in the middle of Internet, it is common that a network

operator monitors traffic only in one direction. In such a case,

an operator is required to estimate RTT from unidirectional

packet traces. So far, several methods have been proposed for

RTT estimation from unidirectional traces. In this paper, we

adopt the Lomb periodogram method and apply it to various

TCP traces, collected through Ethernet or wireless LAN, with

different congestion control algorithms. As a result, the method

can estimate RTT roughly, but the results are not accurate

enough for subtle analysis, such as congestion window

estimation.

Keywords- Unidirectional Packet trace; Round-trip Time;

Lomb Periodogram; Congestion Control.

I. INTRODUCTION

Traffic analysis in the middle of Internet is an important
issue for network operators. It can be applied the traffic
classification, the traffic demand forecasting, and the
malicious traffic detection. In the previous paper, we
proposed a method to infer TCP congestion control algorithm
from passively collected packet traces [1]. It adopts the
following approaches.
(1) Focus on a specific TCP flow using source/destination IP

addresses and ports.
(2) From the mapping between data segments and

acknowledgment (ACK) segments, estimating Round-
Trip Time (RTT) of the focused flow.

(3) Estimate a congestion window size (cwnd) from the data
size transferred during one RTT.

(4) Obtain a sequence of cwnd values, and calculate a
sequence of cwnd difference between adjacent cwnd

values (we call ∆cwnd).

(5) From the mapping between cwnd and ∆cwnd, infer a

congestion control algorithm for the TCP flow.
This method requires a bidirectional trace to obtain both data
and ACK segments.

In actual networks, however, it is often possible that only
unidirectional traces are collected in the middle of networks.
In this case, the above method cannot be applied. So, in
another previous paper, we tried to modify the above method
to infer TCP congestion control algorithms from
unidirectional traces [2]. In the modified method, a fixed time

duration is used instead of RTT, and data size transferred
during this duration was handled as cwnd. As a result,
congestion control algorithms were estimated in some cases,
but not in other cases. This is because our method depends
largely on RTT value.

On the other hand, the estimation of RTT from traces has
been actively studied and there are several proposals [3]-[6].
The RTT estimation methods proposed so far are classified
into three categories. One is a method called Data-to-ACK-
to-Data, which measures time between a data segment and the
data segment sent just after the first data segment is ACKed
[3]-[5]. This requires bidirectional packet traces and our first
paper used it. Next is a method based on the autocorrelation
[4][5]. This method counts the number of data segments in a
short interval, and makes an array of counts indexed by the
normalized interval. Then, it calculates the autocorrelation
over the array and takes the maximum as a RTT. This method
can be applied to unidirectional packet traces. The third one
is use of spectral analysis [5][6]. A sequence of data segments
are handled as a pulse function of time, which takes 1 when
there is a data segment. Then, the frequency characteristic of
this function is analyzed and the inverse of first harmonic is
taken as RTT. Since the interval of data is irregular, the
special analysis is performed by the Lomb periodogram [7].

For the purpose of precise RTT estimation from
unidirectional traces, we adopt the third method because it can
work for various type of traffic [5]. In this paper, we apply
the Lomb periodogram to the RTT estimation from
unidirectional packet traces, which we used in our previous
papers, including different TCP congestion control algorithms,
and discuss the results in detail. The rest of this paper is
organized as follows. Section II explains the related work,
including the problems we suffered from in our second
previous paper [2] and the conventional RTT estimation
methods. Section III describes a detailed scheme to estimate
RTT using the Lomb periodogram. Section IV gives the
results of RTT estimation for different TCP congestion
control algorithms. In the end, Section V concludes this paper.

II. RELATED WORK

A. Problems on congestion window size estimation from

unidirectional traces

In our previous papers [1][2], we collected packet traces
in the configuration shown in Figure 1. A TCP data sender is
connected with a bridge through 100 Mbps Ethernet. The
bridge inserts 100 msec RTT (50 msec delay for each
direction) and 0.01% packet losses. The bridge is connected
with a TCP data receiver through IEEE 11g wireless LAN

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

mailto:%7d@net.is.uec.ac.jp

(WLAN) or 100 Mbps Ethernet. The packet trace is collected
at the TCP sender side. The collected traces include
bidirectional ones, and in the unidirectional analysis, we
picked up only data segments from the TCP sender to the TCP
receiver.

Figures 2 and 3 show the results for CUBIC TCP [8] and
TCP Vegas [9]. In the analysis a from bidirectional trace,

cwnd and ∆cwnd are estimated in the way described in Section

I, and their relationship is given in the figures (by blue dots).
In the analysis from a unidirectional trace, we assumed that
RTT is 100 msec. The data size transferred during 100 msec

and its difference are called sentData and ∆sentData,

respectively, and shown in the figures by orange dots. In the
case of CUBIC TCP, both results show the similar graph,

which is a function in the form of (√𝑐𝑛𝑤𝑑
3

)
2
 with decreasing

and increasing parts [1]. This result means that the
unidirectional analysis works well. In the case of TCP Vegas,
however, the results for bidirectional analysis and
unidirectional analysis are significantly different. According

to the Vegas algorithm, ∆cwnd takes 1,460 bytes (one segment

size), 0, or -1,460 bytes independently of cwnd values, which
is represented by the blue dots [1]. But, in the result for

unidirectional analysis, the ∆sentData values indicated by the

orange dots are unstable. So, the unidirectional analysis does
not work well.

In our experiment, the trace for CUBIC TCP is collected
in the configuration that uses Ethernet between the bridge and
the TCP receiver, and that for TCP Vegas is collected by use
of WLAN. This is one of the reasons. Figure 4 shows
examples of the time variation of TCP sequence number for
CUBIC TCP and TCP Vegas. In the case of CUBIC TCP,
data segments are transferred in groups and there are idle time
periods without any data transmissions. Therefore, in the
unidirectional analysis, a sequence of data segments sent
within a congestion window can be traced by use of 100 msec,
which is a RTT determined tentatively. But, in the case of
TCP Vegas, data segments are transmitted contiguously, and
therefore, if RTT is not estimated correctly, a sentData value
does not match the real cwnd value.

There considerations mean that the RTT estimation is
critical for inferring TCP congestion control algorithms.

B. Related work on RTT estimation

As described in Section I, the RTT estimation methods are
classified into three categories; the Data-to-ACK-to-Data
method, the autocorrelation based method, and the spectral
analysis method.

Figure 1. Experiment configuration.

Figure 2. Result for CUBIC TCP [1][2].

Figure 3. Result for TCP Vegas [1][2].

-4000

-2000

0

2000

4000

6000

8000

10000

12000

100000 200000 300000 400000 500000

cwnd/sentData (byte)

Δcwnd/ΔsentData (byte)

ΔsentData

Δcwnd

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

-2000

-1500

-1000

-500

0

500

1000

1500

2000

20000 40000 60000 80000 100000 120000 140000

Δ
se

n
tD

at
a

(b
yt

e)

Δ
cw

n
d

 (
b

yt
e)

cwnd/sentData(byte)

Δcwnd

ΔsentData

Figure 4. Sequence number vs. time.

89.2

89.4

89.6

89.8

90

90.2

90.4

90.6

37.8 37.85 37.9 37.95 38 38.05 38.1 38.15

se
q

u
en

ce
 n

u
m

b
er

 (
M

B
)

time (sec)
(a) CUBIC TCP

23.9

23.92

23.94

23.96

23.98

24

24.02

24.04

24.06

58.7 58.75 58.8 58.85 58.9

se
q

u
en

ce
 n

u
m

b
er

 (
M

B
)

time (sec)
(b) TCP Vegas

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

The Data-to-ACK-to-Data method is illustrated in Figure
5. Since there is some transmission delay between a TCP data
sender and a monitor capturing packet traces, the following
procedure is used to estimate RTT between sender and
receiver. (1) A monitor focuses on a data segment, and
remembers the time (t1). (2) A monitor catches the ACK
segment that acknowledges the data segment. (3) A monitor
detects the data segment sent by the sender just after the ACK
segment in (2), and remember the time (t2). (4) t2 – t1 is a
RTT for this moment. In order to detect data segment (3), the
TCP time stamp option is used.

In the autocorrelation based method, the RTT estimation
is performed once per measurement interval T. An array 𝑃[𝑛]
maintaining the count of data segments is prepared using unit

time ∆𝑡, where n is ranging from 0 to 𝑇 ∆𝑡⁄ − 1. If a data

segment is detected at an interval [𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + 𝑚 ∙ ∆𝑡,
𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + (𝑚 + 1) ∙ ∆𝑡), one is added to 𝑃[𝑚]. For all
the data segments from start time to start time +T, the array
𝑃[𝑛] is arranged. After that, the autocorrelation function is
defined as

𝐴(𝑙) =
1

𝑇
∆𝑡⁄ −𝑙

∑ 𝑃[𝑗] ∙ 𝑃[𝑗 + 𝑙]
𝑇

∆𝑡⁄ −𝑙

𝑗=1
. (1)

for lags 𝑙 = 0 ⋯ 𝑇 ∆𝑡⁄ − 1. RTT is computed as max(𝐴).

This method can be applied to the unidirectional analysis, and
will work well for the cases that data segments are distributed
unevenly in a trace, such as the case of CUBIC TCP in Figure
4. However, for an evenly distributed trace, such as the case
of TCP Vegas in Figure 4, it is concerned that RTT cannot be
estimated correctly.

The spectral analysis method will be the most promising
for RTT estimation among the three methods. Traditional
spectral analysis, such as Fast Fourier Transform (FFT)
assume that time domain data are regularly sampled [10].
However, in the RTT estimation, the time domain data is
packet inter-arrival time of a specific flow. This data is
sampled at each data packet capturing. This means that the
time domain data in this case is irregularly sampled. In the
case of the spectral analysis for irregularly sampled data, the
Lomb periodogram is commonly used [6]. The details are
shown in the next section.

III. RTT ESTIMATION USING LOMB PERIDGRAM

In the RTT estimation based on the Lomb periodogram,
time sequence {𝑡𝑖} (𝑖 = 1, ⋯) is considered as an input,
where 𝑡𝑖 corresponds to one data segment capturing time. At
a specific time 𝑡𝑘 , the frequency characteristic of this time

sequence is calculated using N time samples 𝑡𝑘−𝑁+1, ⋯ 𝑡𝑘 in
the following way (𝑁 > 𝑘) [6].
 The minimum and maximum frequencies of the range for

power spectrum are defined as

𝑓𝑘
𝑚𝑖𝑛 =

1

𝑡𝑘−𝑡𝑘−𝑁+1
 and 𝑓𝑘

𝑚𝑎𝑥 =
𝑁

2
𝑓𝑘

𝑚𝑖𝑛 .

Accordingly, the power spectrum is calculated for
angular frequency

𝜔𝑖 = 2𝜋𝑓𝑘
𝑚𝑖𝑛 + 𝑖∆𝜔 (𝑖 = 0, . . . 2𝑁 − 1),

where ∆𝜔＝2𝜋
𝑓𝑘

𝑚𝑎𝑥−𝑓𝑘
𝑚𝑖𝑛

2𝑁
.

 The power spectrum at angular frequency 𝜔𝑖 is defined
as

𝑃𝑘
𝑁(𝜔𝑖) =

1

2𝜎𝑘
2 {

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑐𝑜𝑠𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0]

2

∑ 𝑐𝑜𝑠2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

+

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑠𝑖𝑛𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0]

2

∑ 𝑠𝑖𝑛2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

} (2)

where ℎ̅𝑘 and 𝜎𝑘
2 are the mean and variance of N samples

of ℎ𝑘:

 ℎ̅𝑘 =
1

𝑁
∑ ℎ𝑘−𝑗

𝑁−1
𝑗=0 (3)

 𝜎𝑘
2 =

1

𝑁−1
∑ ℎ𝑘−𝑗

2 −
𝑁

𝑁−1
ℎ̅𝑘

2𝑁−1
𝑗=0 , (4)

and where is the solution of:

 𝑡𝑎𝑛(2𝜔𝑖𝜏𝑘) =
∑ 𝑠𝑖𝑛2𝜔𝑖𝑡𝑘−𝑗

𝑁−1
𝑗=0

∑ 𝑐𝑜𝑠2𝜔𝑖𝑡𝑘−𝑗
𝑁−1
𝑗=0

. (5)

From the 2𝑁 − 1power spectrum values specified in an
𝜔 − 𝑃(𝜔) plane, local maximum values are calculated.
Among the frequencies generating local maximum power
spectrum values, the fundamental frequency 𝑓0 is estimated
under the condition that other frequencies generating local

maximum values are multiples of 𝑓0. At last, 𝑇 = 1
𝑓0

⁄ is the

estimated RTT.

IV. RESULTS OF APLYING PERIDGRAM TO VARIOUS

CONGESTION CONTROL ALGORITHMS

This section describes the results of RTT estimation for
various types of TCP traces with different congestion control
algorithms. We use the packet traces used in our previous
papers [1][2]. As described in Section II.A, these traces are
collected at the sender side in the configuration shown in
Figure 1. Since packet losses are inserted at the bridge, we
picked up a part of packet traces where no packet losses are
detected, that is, where the sequence number of TCP segments
keeps increasing. The traces themselves have bidirectional
packet information and only the capturing time of data
segments is extracted to build unidirectional traces. Together
with the extraction, the real RTT is calculated from the
mapping between data segments and ACK segments.

A. Result for traces including TCP Reno

TCP Reno is a classic congestion control method which
adopts an additive increase and multiplicative decrease
(AIMD) algorithm. Here, cwnd is increased each time the
TCP sender receives an ACK segment acknowledging new

data. The increase is
1

𝑐𝑤𝑛𝑑
 segments during the congestion

avoidance phase, and as a result, cwnd is expected to be
increased by one segment during one RTT.

Figure 5. Data-to-ACK-to-Data method.

ReceiverSender

Data (1)

Monitor

Data

Data (3)

ACK (2)

t1

t2

t3

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

The Reno packet trace we used here is collected in the
network configuration with Ethernet (see Figure 1), and we
picked up a part from 27.010458 sec. to 45.99513 sec. in the
trace, where there no retransmissions are detected for 7068
data segments. We used N = 500 in calculating the Lomb
periodogram.

Figure 6 shows a result of RTT estimation from the Reno
trace. Figure 6(a) is the result for periodogram at time
28.156143 sec. The horizontal axis is an angular frequency
and the vertical axis is a periodogram. This figure shows there
are several peaks periodically. Figure 6(b) zooms up the low
angular frequency part of Figure 6(a). It shows that there are
harmonized frequencies such that there are large periodogram
values at some frequencies which are integral multiple of a

specific frequency (fundamental frequency 𝑓0). In Figure 6(b),
angular frequencies 60.069583, 120.117243, and 180.164902
are those frequencies. From this result, we can conclude that
2π𝑓0 = 60.069583. So, we obtain 𝑓0 = 9.56037123 and

RTT = 1
𝑓0

⁄ = 0.10459845 sec.

We conducted similar calculations for multiple points of
time in the trace and obtained the estimated RTT as shown in
Figure 6(c). This figure also gives actual RTT values obtained
from data and ACK segments in the original trace information.
This result says that, although the actual RTT is extremely
stable at 100 msec, the estimated RTT includes some errors in
the order of 10 msec. The reason that the actual RTT is stable
is that this experiment is conducted through only Ethernet and
that there are no large delay variations. However, the RTT
estimation by use of the Lomb periodogram cannot reflect this
situation.

B. Result for traces including CUBIC TCP

As described in Section II.A, CUBIC TCP defines cwnd
as a cubic function of elapsed time T since the last congestion
event [8]. Specifically, it defines cwnd by (6).

 𝑐𝑤𝑛𝑑 = 𝐶 (𝑇 − √𝛽 ∙
𝑐𝑤𝑛𝑑𝑚𝑎𝑥

𝐶

3
)

3

+ 𝑐𝑤𝑛𝑑𝑚𝑎𝑥  

Here, C is a predefined constant, 𝛽 is the decrease parameter,
and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥 is the value of cwnd just before the loss
detection in the last congestion event. Comparing with TCP
Reno, cwnd increases faster in CUBIC TCP.

We estimated RTT from the unidirectional packet trace
including only data segments with CUBIC TCP. The trace is
collected in the configuration using only Ethernet. We picked
up a part in the trace from 23.483123 sec. to 38.348383 sec.
for the RTT estimation. By applying the Lomb periodogram
similarly with the case of Reno, we obtained estimated RTT
as shown in Figure 7. This figure also gives actual RTT values.

The results show that the actual RTT is stable at 100 msec.
and, on the other hand, the estimated RTT changes a lot
between 90 msec. and 140 msec. The fluctuation is larger for
CUBIC than TCP Reno. Especially, the difference between
the estimated RTT and the actual RTT becomes large when
the time is between 36 sec. and 38 sec. During this period, the
cwnd value itself becomes large and the large cwnd value may
give some bad influence to the RTT estimation.

(a) periodogram at time 27.03713 sec.

(b) zooming up low angular frequency part

(c) estimated RTT and actual RTT

Figure 6. RTT estimation from Reno trace.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400

p
er

io
d

o
gr

am

angular frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300

p
er

io
d

o
gr

am

angular frequency

(60.069583, 0.839296)

(120.117243, 0.942619)

(180.164902, 0.722356)

80

90

100

110

120

27 32 37 42 47

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

Figure 7. RTT estimation from CUBIC trace.

80

90

100

110

120

130

140

24 26 28 30 32 34 36 38

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

C. Result for traces including TCP Vegas

TCP Vegas estimates the bottleneck buffer size using the
current values of cwnd and RTT, and the minimal RTT for the
TCP connection, according to (7) [9].

 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑤𝑛𝑑 ×
𝑅𝑇𝑇− 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇
 

At every RTT interval, Vegas uses this BufferSize to
control cwnd in the congestion avoidance phase in the
following way.

 ⊿𝑐𝑤𝑛𝑑 = {

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

 0 (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 

Here, A = 2 and B = 4 (in unit of segment) are used in the
Linux operating system.

We estimated RTT from the unidirectional packet trace
including only data segments with TCP Vegas. In this case,
in contrast with the above cases, the trace is collected in the
configuration using WLAN. We picked up a part in the trace
from 37.988347 sec. to 59.699611 sec. for the RTT estimation.
By applying the Lomb periodogram to this time sequence, we
obtained estimated RTT as shown in Figure 8, with actual
RTT values.

In this case, the estimated RTT is stable around 100 msec,
and on the other hand, the actual RTT values are scattered
between 100 msec. and 140 msec. That is, although the actual
RTT is changing, the RTT estimated by the Lomb
periodogram does not follow the fluctuation. As we indicated
in Section II.A, the timing of capturing data segments is
almost uniformly distributed in this case. As a result, it is
considered that the Lomb periodogram method cannot detect
the actual RTT.

D. Result for traces including TCP Veno

TCP Veno (Vegas and ReNO) is an example of hybrid
type congestion control method, considering packet losses and
delay. It uses the BufferSize in (7) to adjust the growth of
cwnd in the congestion avoidance phase as follows. If
𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵 (B is the Vegas parameter B), cwnd grows
by 1/cwnd for every other new ACK segment, and otherwise,
it grows in the same manner with TCP Reno. That is, when
the congestion status is heavy, i.e., the bottleneck buffer size
is large, the increasing rate of cwnd is halved.

We estimated RTT from the unidirectional Veno trace
captured in the WLAN configuration in Figure 1. We picked
up a part in the trace from 37.684643 sec. to 52.653736 sec.
including 23,360 data segments. By applying the Lomb
periodogram to this sequence, we obtained estimated RTT as
in Figure 9, which also gives the actual RTT.

Similarly with the case of TCP Vegas, the estimated RTT
is rather stable around 100 msec., which is different from the
actual RTT spreading in the rage between 100 msec. and 130
msec.

V. CONCLUSIONS

This paper described the results of applying the Lomb
periodogram method to estimating RTT from unidirectional

packet traces including TCP segments with different
congestion control algorithms, TCP Reno, CUBIC TCP, TCP
Vegas, and TCP Veno. Among them, the packet traces for
TCP Reno and CUBIC TCP are collected in the network
configuration using only Ethernet, and those for TCP Vegas
and TCP Veno are from WLAN configuration. The
performance evaluation gave the following results.

First of all, the Lomb periodogram method was possible to
estimate an approximate RTT values from unidirectional
packet traces. Strictly speaking, however, the estimated RTT
values have some errors and they are not tolerable for the
approaches that require accurate RTT estimation, such as our
method to infer the TCP congestion algorithms from
unidirectional packet traces [2]. Moreover, although the
experiments adopted here added a fix delay, actual TCP
communications suffer from variable delay like Bufferbloat
[12]. So, the accurate estimation will be more difficult in real
environments.

The second point is that the estimation is affected largely
by the network configuration, such as with Ethernet or with
WLAN. It is also affected somehow by the congestion control
used in packet traces. In our experiment, the traces of TCP
Reno and CUBIC TCP were collected in an Ethernet
configuration. In this case, the actual RTT was stable and the
estimated RTT was fluctuated. In the CUBIC TCP trace,
where the congestion control is more aggressive, the errors of
the estimated RTT increased. On the other hand, the traces of
TCP Vegas and TCP Veno were collected in a WLAN
configuration. In this case, while the actual RTT was

Figure 8. RTT estimation from Vegas trace.

Figure 9. RTT estimation from VENO trace.

80

100

120

140

160

180

40 45 50 55 60

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

80

90

100

110

120

130

140

150

160

37 39 41 43 45 47 49 51 53

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

fluctuated, the Lomb periodogram method could not estimate
this fluctuation and the estimated RTT was stable.

Since it is difficult to estimate RTT correctly from
unidirectional packet traces, we need to develop a new method
to infer TCP congestion control algorithms from
unidirectional traces.

REFERENCES

[1] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP
Congestion Control Algorithms Based on Passively Collected
Packet Traces,” IARIA ICSNC 2015, pp. 135-141, Nov. 2015.

[2] T. Kato, L. Yongxialee, R. Yamamoto, and S. Ohzahata, “How
to Characterize TCP Congestion Control Algorithms from
Unidirectional Packet Traces,” IARIA ICIMP 2016, pp. 23-28,
May 2016.

[3] H. Jiang and C. Dovrolis, “Passive Estimation of TCP Round-
Trip Times,” ACM SIGCOMM Comp. Commun. Rev. vol. 32,
issue 3, pp. 75-88, Jul. 2002.

[4] B. Veal, K. Li, and D. Lowenthal, “New Methods for Passive
Estimation of TCP Round-Trip Times,” Passive and Active
Nework Measurement, PAM 2005, LNCS, vol. 3431, pp. 121-
134.

[5] R. Lance and I. Frommer, “Round-Trip Time Inference Via
Pasive Monitoring,” ACM SIGMETRICS Perf. Eval. Rev., vol.
33, issue 3, pp. 32-38, Dec. 2005.

[6] D. Carra et al., “Passive Online RTT Estimation for Flow-
Aware Routers Using One-Way Traffic,” NETWORKING
2010 LNCS6091, pp. 109-121, 2010.

[7] J. Scargle, “Statistical aspects of spacial analysis of unevently
spaced data,” J. Astrophysics, vol 263, pp. 835-853, Dec. 1982.

[8] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Op. Syst. Review,
vol. 42, issue 5, pp. 64-74, Jul. 2008.

[9] L. Brakmo and L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE J. Sel.
Areas Commun., vol. 13, no. 8, pp. 1465-1480, Oct. 1995.

[10] S. Kay and S. Marple, “Spectrum analysis; A modern
perspective,” Proc. of the IEEE, vol. 69, issue 11, pp. 1380-
1419, Nov. 1981.

[11] C Fu and C. Liew, “TCP Veno: TCP enhancement for
transmission over wireless access networks,” IEEE J. Sel.
Areas Commun., vol. 21, no. 2, Feb. 2003.

[12] S. Strowes, “Passively Measuring TCP Round-trip Times,”
ACM Queue, vol. 11, issue 8, pp. 1-12, Aug. 2013.

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

