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Abstract— Although traffic in the Internet increases largely, it 

is sometimes pointed out that a small number of giant users 

exhaust large part of network bandwidth.  In order to resolve 

such problems, a practical way is to suppress large traffic flows 

which do not conform to Transmission Control Protocol (TCP) 

congestion control algorithms.  For this purpose, the network 

operators need to infer congestion control algorithms of 

individual TCP flows using packet traces collected passively in 

the middle of networks.  We proposed, in our previous paper, a 

new scheme to characterize TCP algorithms from packet traces.  

It estimates the congestion window size (cwnd) at a TCP sender 

at round-trip time intervals, and specifies the cwnd growth as a 

function of the estimated value of cwnd.  We showed that our 

previous scheme can characterize most TCP algorithms 

introduced recently.  In an actual network environment, 

however, a packet trace captured over some link, especially a 

backbone link, often contains only unidirectional TCP segments 

due to the asymmetric routing.  In this case, it is difficult to 

estimate the cwnd itself, and a new analysis scheme is required.  

This paper shows a study on how to characterize the TCP 

congestion control algorithms from unidirectional packet traces.  

We use a data size transmitted during a short period of time and, 

using it, we apply our former scheme to the unidirectional trace.  

This paper shows the results that we apply the proposed method 

to popular TCP algorithms, such as TCP Reno and CUBIC TCP.   

Keywords- TCP congestion control; passive monitoring; 

unidirectional trace; congestion window. 

I.  INTRODUCTION 

Recently, traffic in the Internet increases largely according 
to the increase of network capacity.  The benefit of this 
capacity increase needs to be given equally to individual users.  
However, it is sometimes pointed out that some giant users 
exhaust large part of network bandwidth.  Since most of traffic 
in the Internet uses TCP, the network congestions will be 
resolved by the TCP congestion control mechanisms.  
However, if any giant users do not conform to them 
intentionally, the problem will be worse.  So, an important 
approach for network operators is to infer congestion control 
algorithms based on TCP segment exchanges captured over 
some link in the network.  This is called the passive approach 
for TCP congestion control inferring.  This is in contrast with 
the active approach, where an active tester sends test 
sequences to a target node and checks the replies 

In the TCP congestion control [1], a data sender transmits 
data segments under the limitation of the congestion window 
size (cwnd) maintained within the sender itself, beside the 
advertised window reported from a data receiver.  The value 

of cwnd grows up as a sender receives acknowledgment 
(ACK) segments and is decreased when it detects congestions.  
How to grow and decrease cwnd is the key of congestion 
control algorithm.   

Although there were only a few congestion control 
algorithms, such as Tahoe, Reno and NewReno [2] in the early 
stage, many TCP congestion control algorithms have emerged 
recently [3].  For example, CUBIC TCP [4] and High Speed 
(HS) TCP [5] are designed for high speed and long delay 
networks.  Among them, CUBIC TCP is used as a standard 
version in the Linux operating system.  While many 
algorithms are based on packet losses, TCP Vegas [6] triggers 
congestion control against an increase of round-trip time 
(RTT).  TCP Veno [7] combines loss based and delay based 
approaches such that the congestion control is triggered by 
packet losses but the delay determines how to grow cwnd.   

This proliferation of algorithms complicates their 
inference in the passive approach.  In our previous paper [8], 
we proposed a scheme for characterizing TCP congestion 
control algorithms from passively collected packet traces.  As 
far as we know, this is the only passive approach which can 
handle most of the major TCP algorithms, differently from 
other proposals [9]-[14].   

Our previous proposal requires both TCP data and 
acknowledgment segments are captured in a packet trace.  It 
observes a RTT by mapping a data segment and its 
corresponding ACK segment, and estimates the value of cwnd 
as an outstanding data size during the RTT period.  However, 
in an actual network environment, due to the asymmetric 
routing, a packet trace captured over some link, especially a 
backbone link, often contains only unidirectional TCP 
segments.  In this case, it is difficult to estimate cwnd, and 
therefore, a new analysis scheme is required.   

In this paper, we show a study on how to characterize the 
TCP congestion control algorithms from unidirectional packet 
traces.  We propose an approach based on sent data size 
during a short time period.  From the unidirectional trace, we 
cannot estimate either the RTT or cwnd values.  Instead, we 
presume that the data size sent in a short time period is 
proportional to a cwnd value.  Using this data size, we applied 
our former proposal to the unidirectional trace.  We apply the 
proposed method to TCP Reno, CUBIC TCP, HS TCP, TCP 
Vegas, and TCP Veno.   

The rest of this paper consists of the following sections.  
Section 2 surveys the related works.  Section 3 discusses the 
detailed study on our proposal through applying the actual 
packet traces of TCP Reno and CUBIC TCP.  Section 4 shows 

23Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection



the results of our scheme being applied to other TCP versions.  
In the end, Section 5 gives the conclusions of this paper.   

II. RELATED WORKS 

The works on the passive approach TCP congestion 
control algorithm inference in the early stage [9][10] accepted 
an approach to keep track of the sender’s cwnd based on the 
predefined TCP finite state machine.   But, they considered 
only TCP Tahoe, Reno and New Reno and did not handle any 
of recently introduced algorithms.  Oshio et al. [11] proposed 
a scheme to discriminate one out of two different TCP 
versions randomly selected from fourteen versions.  They 
adopted an approach to keep track of changes of cwnd from a 
packet trace and to extract several characteristics, such as the 
ratio of cwnd being increased by one packet.  But, they 
assumed that the discriminator knows which two TCP 
versions are used in the packet trace.  Prior to our previous 
proposal [8], the only study which can infer the TCP 
algorithms including those introduced recently was a work by 
Yang et al. [15].  It is an example of the active approach.  It 
makes a web server send 512 data segments under the 
controlled network environment, and observes the number of 
data segments contiguously transmitted.  From those results, 
it estimates the window growth function and the decrease 
parameter to determine the TCP algorithm.  All of the 
proposals so far, including our previous one, based on 
bidirectional TCP interactions.   

On the other hand, there are several works based on 
unidirectional packet traces [12]-[14].  T-RAT [12] used an 
approach to separate a unidirectional packet trace into flights, 
and then infer the TCP state of each flight (e.g., slow start or 
congestion avoidance).  K. Lan and J. Heidemann [13] 
proposed an approach to examine characteristics of giant TCP 
flows in four dimensions, i.e., size, duration, rate, and 
burstiness, along with their correlations.  Qian et al. [14] 
proposed a scheme to extract more detailed statistical features 
from unidirectional TCP traces.  They focused on the size of 
initial congestion window, the relationship between the 
retransmission rate and the time required to transfer a fixed 
size of data for detecting the irregular retransmissions, and the 
flow clock to find TCP data transmissions controlled by the 
application or link layer factors.  None of them, however, 
proposed a way to infer TCP algorithms from unidirectional 
packet traces.   

In this paper, we discuss on a scheme to characterize 
recent TCP algorithms based on unidirectional traces.  We use 
TCP Reno and CUBIC TCP as examples to design the scheme, 
and apply it to HS TCP, TCP Vegas and Veno.   

III. STUDY BY ANALYSING TCP RENO AND CUBIC TCP 

A. Proposal 

In the rest of this paper, we use unidirectional packet traces 
which contain only the information on TCP data segments.  
From such a trace, we obtain a sequence of the time of 
individual packet capture and the TCP sequence number 
contained in captured packets for a specific TCP flow.  Figure 
1 (a) shows an example of such a sequence.  This is selected 
from a CUBIC TCP trace.   

From this information, we use the following procedures to 
characterize the TCP algorithms.   
 Check the sequence numbers and select retransmissions 

which can be detected by its decreasing.   
 Pick up a portion where the sequence numbers are 

increasing continuously (no retransmissions occur).  
Figure 1 (a) is such a portion in a CUBIC TCP trace.   

 Select a short time period to analyze the data size sent 
during this period.  In Figure 1 (b), we select 100 msec as 
the period and apply it to the no retransmission portion 
given in (a) in this figure.  The data size sent in a TCP 
segment is calculated by the TCP sequence number of the 
next segment.   

 Use the data size sent during a selected time period as 
sentData.  We use this as a value proportional to cwnd.  In 
the result of Figure 1 (b), 52,128, 146,288, 152,040 (bytes) 
are those values.   

 Calculate the difference of adjacent sentData. We denote 
it by ΔsentData.  We presume this value is proportional to 
the increase of cwnd.  In Figure 1 (b), 94,100 and 5,812 
(bytes) are the values.   

 Plot ΔsentData versus sentData graph and consult the 
result with the relationship obtained by our previous 
proposal [8].  We suppose that the result is similar with 
that in [8].  In the case of TCP Reno, for the estimated 
value of cwnd in a RTT interval, its difference Δcwnd has 
the relationship with cwnd such as ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 (in 
unit of packet) independently of the value of cwnd.  For, 
CUBIC TCP, the following relationship is resumed for 
Δcwnd and cwnd.   

 ⊿𝑐𝑤𝑛𝑑 = 3𝑅𝑇𝑇 ∙ √𝐶
3

(√𝑐𝑤𝑛𝑑 − 𝑐𝑤𝑛𝑑𝑚𝑎𝑥
3 )

2
  (1) 

time (sec) tcp.seq (byte) time (sec)
sentData

(byte)
23.48312 52023289 23.48312 1448
23.48327 52024737 23.48327 2896
23.48368 52026185 23.48368 4344
23.48407 52027633 23.48407 5792
23.48433 52029081 23.48433 7240
・・・ ・・・ ・・・ ・・・

23.49136 52072521 23.49136 50680
23.49146 52073969 23.49146 52128
23.5222 52075417 23.5222 1448

23.52236 52076865 23.52236 2896
・・・ ・・・ ・・・ ・・・

23.59184 52218809 23.59184 144840
23.59184 52220257 23.59184 146288
23.6227 52221705 23.6227 1448

23.62271 52223153 23.62271 2896
・・・ ・・・ ・・・ ・・・

23.69383 52370849 23.69383 150592
23.69383 52372297 23.69383 152040
23.72319 52373745 23.72319 1448
23.7232 52375193 23.7232 2896

23.72364 52376641 23.72364 4344
・・・ ・・・ ・・・ ・・・

(a) capture time and TCP
sequence number

(b) sent data size
 

Figure 1.  Example of a unidirectional packet trace.   
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Here, C is a predefined constant and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥is the value 
of cwnd just before the last loss detection.   

B. Study on Scheme Using TCP Reno 

Next, we discuss the effectiveness of the proposal above 
through some experiments using actual packet traces.  We use 
the packet traces collected in our previous study [8].  In our 
previous experiment, iperf TCP data transfer is performed 
between sending and receiving terminals.  The sending 
terminal runs the Linux operating system and one of supported 
TCP versions is selected in the experiment.  Those terminals 
are connected via a bridge, which inserts 100 msec delay (50 
msec in one way) and packet losses whose probability is 
1.0 × 10−4 .  The sending terminal and the bridge are 
connected by a 100 Mbps Ethernet link.  The receiving 
terminal and the bridge are connected by an Ethernet link or 
an IEEE 802.11g WLAN.  The TCP segments transmitted are 
monitored by tcpdump at the sending terminal.  We used 
either result of an Ethernet link or a WLAN depending on 
individual algorithms.   

The obtained packet traces contain bidirectional TCP 
segments.  From them, we selected only segments from the 
sending terminal to the receiving terminal, and obtained 
unidirectional packet traces such as one given in Figure 1 (a).   

First, we tried a TCP Reno trace.  We picked up a portion 
at the trace from 22.5 sec to 35.9 sec containing 11,437 
segments whose sequence numbers continue to grow up.  We 
selected 100 msec as the short time period for calculating 
sentData.  The orange line in Figure 2 shows the relationship 
between sentData and time in this case.  As this figure shows, 
the sentData is increasing linearly along with time.  This result 
seems to reflect the behavior of TCP Reno correctly.  Figure 
3 shows the relationship between ΔsentData and sentData.  
The result indicates that ΔsentData mainly takes 0 byte and or 
1448 bytes, and that it takes -1448 bytes and 2896 bytes 
sometimes.  This result seems to be similar with that in our 
previous paper using bidirectional packet traces.   

But, it needs to be mentioned that the period of 100 msec 
is equal to the round-trip delay inserted by the bridge in the 
experiment.  So, the result in Figure 3 becomes similar to that 
in the previous paper.   

As another value of time period, we use 200 msec.  Figure 
2 blue line shows the relationship between sent data and time 
in this case.  The result is linear, but the value is twice of that 
in the above case.  Figure 4 shows the relationship between 
ΔsentData and sentData obtained from the result above.  In 
this case, the result shows that ΔsentData mainly takes 1448 
bytes and or 4344 bytes.  These values correspond to the 
segment size or three times of it.  This result comes from the 
fact that the period for sentData calculation differs from the 
RTT value.  We can say that, for TCP Reno, ΔsentData keeps 
constant irrelevant with sentData and takes two values mainly.   

Figure 5 shows the relationship between cwnd and cwnd 
obtained in our previous paper in the same portion in the trace.  
The result in Figure 3 is similar with that in Figure 5.  So, our 
scheme in this paper seems to be able to characterize TCP 
Reno from unidirectional packet traces.  This is because the 
proposed scheme uses a time period identical to the delay 
inserted in the experiment.  In Figure 4, the time period is 200 

msec which is twice of the inserted delay.  Still, there is a 
strong similarity among the result in Figure 4 and that in 
Figure 5, and so our scheme is working well in the case that 
the time period for calculating sentData is 200 msec.   
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Figure 2.  sentData vs. time for TCP Reno with 100 and 200 msec period. 

 
Figure 3.  ΔsentData vs. sentData for TCP Reno with 100 msec period. 
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Figure 4.  ΔsentData vs. sentData for TCP Reno with 200 msec period. 
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Figure 5.  Δcwnd vs. cwnd for TCP Reno [8]. 
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C. Study on Scheme Using CUBIC TCP 

Next, we tried a CUBIC TCP trace as another example.  
As described above, our previous paper indicates that, in the 
case of CUBIC TCP, Δcwnd has the relationship of the square 
of cubic root of cwnd.  In order to examine whether this 
relationship can be applied to ΔsentData and sentData, we 
examined the unidirectional packet trace derived from the 
trace in our previous paper, with 100 msec and 200 msec time 
period for calculating sentData.   

We picked up a portion at the trace from 23.5 sec to 38.3 
sec containing 27,041 segments whose sequence numbers 
continue to grow up.  Figure 6 shows the relationship between 
sentData and time for both cases of 100 msec and 200 msec 
time periods.  In both cases, the sentData is increasing as a 
cubic curve of time.   

Figures 7 and 8 show the relationship between ΔsentData 
and sentData for 100 msec and 200 msec time periods, 
respectively.  Both figures indicate that ΔsentData is 
symmetrical for some value of sentData (200,000 and 
400,000 bytes in Figures 7 and 8, respectively), and that 
ΔsentData is decreasing if sentData is smaller than the value 
and increasing if larger than the value.  This situation is similar 
to the result of our previous result described in [9].  Especially, 
the situation is clearer for the case of 200 msec time period.   

Figure 9 shows the relationship between cwnd and cwnd 
obtained in our previous paper in the same portion in the trace.  
The results in Figures 7, 8 and 9 are similar and so we can say 
that the proposed scheme here works well for CUBIC TCP.   

IV. APPLY TO OTHER TCP VERSIONS 

In this section, we apply our scheme to other TCP versions.  
In the following study, we use 200 msec as the time period for 
calculating sentData because we suppose that 200 msec will 
give smoother results.   

A. Result Applied to HS TCP 

HS TCP is designed to obtain high throughput over wide 
bandwidth and long delay networks.  It grows cwnd to 

𝑐𝑤𝑛𝑑 +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑
⁄  in response to every new ACK 

segment.  The coefficient a(cwnd) is defined as 1, 2, and 3 
when cwnd is 38, 118, and 221 (in unit of packet).  So, in our 

previous approach, the estimated cwnd will be as follows.   

 ⊿𝑐𝑤𝑛𝑑 = {

0 𝑜𝑟 1 (𝑐𝑤𝑛𝑑 < 38)
1 𝑜𝑟 2  (38 ≤ 𝑐𝑤𝑛𝑑 < 118)

1, 2 𝑜𝑟 3  (118 ≤ 𝑐𝑤𝑛𝑑 < 221)
 (2) 

Similarly with the study in Section 3, we made the 
unidirectional packet trace, and picked up a portion at the trace 
from 20.2 sec to 28.8 sec containing 2,749 data segments.   

Figure 10 shows the relationship between cwnd and 
cwnd obtained in our previous paper.  Figure 11 shows the 
relationship between ΔsentData and sentData.  These two 
figures are for the identical portion in the trace.  From the 
results, it might be difficult to say that the method proposed in 
this paper can characterize the feature of HS TCP.   
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Figure 6.  sentData vs. time for CUBIC TCP with 100 and 200 msec 

period. 

 
Figure 7.  ΔsentData vs. sentData for CUBIC TCP with 100 msec period. 

 
Figure 8.  ΔsentData vs. sentData for CUBIC TCP with 200 msec period. 
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Figure 9.  Δcwnd vs. cwnd for CUBIC TCP [8]. 
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B. Result Applied to TCP Vegas 

TCP Vegas estimates the bottleneck buffer size using the 
current values of cwnd and RTT, and the minimal RTT for the 
TCP connection.  At every RTT interval, Vegas uses this 
BufferSize to control cwnd in the congestion avoidance phase 
in the following way.   

 ⊿𝑐𝑤𝑛𝑑 = {

1         (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

  0  (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1        (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 (3) 

Here, A = 2 and B = 4 (in unit of segment) are used in the 
Linux operating system (in unit of packet).   

We made the unidirectional packet trace from the trace in 
the previous experiment, and picked up a portion at the trace 
from 38.0 sec to 59.7 sec containing 8,155 data segments.   

Figure 12 shows the relationship between cwnd and 
cwnd obtained in our previous paper.  Figure 13 shows the 
relationship between ΔsentData and sentData.  For the values 
of sentData 100,000 through 120,000 bytes in Figure 13, 
ΔsentData are distributed between +10,000 bytes and – 
10,000 bytes.  It can be said that there might be some 
similarities between the results of Figures 12 and 13 in those 
parts.   

C. Result Applied to TCP Veno 

TCP Veno (Vegas and ReNO) uses the BufferSize used by 
Vegas to adjust the growth of cwnd in the congestion 
avoidance phase as follows.  If 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵  (B is the 
Vegas parameter B), cwnd grows by 1/cwnd for every other 
new ACK segment, and otherwise, it grows in the same 
manner with TCP Reno.  Therefore, if the delayed ACK is not 

used, cwnd at RTT intervals will be as follows.   

 ⊿𝑐𝑤𝑛𝑑 = {
  1 𝑜𝑟 0(𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 (4) 

If the delayed ACK is used, ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1  even if 

𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵.  But in this case, the ratio of cwnd being 
1 and 0 is different for BufferSize.  It will be 1:3 for 
BufferSize >B, and 1:1 for 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵.   

We made the unidirectional packet trace from the trace in 
the previous experiment, and picked up a portion at the trace 
from 37.6 sec to 52.7 sec containing 23,261 data segments.   

Figure 14 shows the relationship between cwnd and 
cwnd obtained in our previous paper.  Figure 15 shows the 
relationship between ΔsentData and sentData.  From the 
results, it can be said that ΔsentData are flat independent of 
sendData.  Although the values of ΔsentData are not fit to 
zero and one segment, it can be said that there might be some 
similarities between the results of Figures 14 and 15.   

V. CONCLUSIONS 

This paper presented some studies on how to characterize 
the TCP congestion control algorithms from passively 
collected unidirectional packet traces.  We applied our 
previous scheme, which compares cwnd, estimated from 
bidirectional packet traces, and its difference.  Since we 
cannot estimate cwnd from unidirectional traces, the proposed 
scheme in this paper selects a short time period and treats the 
sent data size during this period as being proportional to cwnd 
at this time.  Our scheme characterizes the TCP algorithm by 
use of the graph ofΔsentData and sentData.    

We applied this scheme to TCP Reno and CUBIC TCP in 
detail and showed that our proposal seems to work.  We also 
applied our scheme to HS TCP, TCP Vegas and TCP Veno.  
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The results were worse than those for Reno and CUBIC.  For 
Vegas and Veno, the results in this paper have some similarity 
with the results in our previous paper, but there are some 
difficulties to distinguish Reno, Vegas and Veno.   On the 
other hand, for HS TCP, our proposed scheme could not 
characterize it although our previous scheme could.  It seems 
to characterize TCP Reno and CUBIC TCP algorithms well in 
our controlled in-laboratory setup.  For the other TCP 
algorithms, the approach must be refined.   

The points to be improved include the followings.  First of 
all, the accuracy of our scheme needs to be increased.  For this 
purpose, one important approach is to estimate a RTT 
correctly from unidirectional traces, because our scheme is 
sensitive for the fact that the short time period for calculating 
sent data is equal to RTT or integral multiples of RTT.   

As describe above, the results in Figures 4, 13 and 15 have 
some similarities in the sense that the graphs have flat parts 
independent of sentData.  So, it may be difficult to 
discriminate them.  The next point is to invent a procedure to 
categorize the TCP algorithms into more general groups.  , 
such as  
 a flat type such as TCP Reno, HS TCP, TCP Westwood+ 

[16], TCP Vegas and Veno,  
 a symmetric cubic root square type (CUBIC TCP),  
 a monotonous increasing cubic root square type (Hamilton 

TCP [17]), and  
 a random type (TCP Illinois [18]).   

Thirdly, our previous scheme uses the estimation of 

multiplicative decrease parameter  is also used together with 
the estimation of window growth function.  The scheme in this 
paper also needs to consider the multiplicative decrease 
parameter.   

The last point is that the evaluation in this paper is done in 
a controlled laboratory setup.  For the generalization of the 
results, the test has to be conducted under realistic network 
conditions 
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 Figure 14.  Δcwnd vs. cwnd for TCP Veno [8]. Figure 15.  ΔsentData vs. sentData for TCP Veno. 
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