
A Study on How to Characterize TCP Congestion Control Algorithms

from Unidirectional Packet Traces

Toshihiko Kato, Leelianou Yongxialee, Ryo Yamamoto, and Satoshi Ohzahata

Graduate School of Information Systems

University of Electro-Communications

Tokyo, Japan

e-mail: kato@is.uec.ac.jp, zoosiab@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract— Although traffic in the Internet increases largely, it

is sometimes pointed out that a small number of giant users

exhaust large part of network bandwidth. In order to resolve

such problems, a practical way is to suppress large traffic flows

which do not conform to Transmission Control Protocol (TCP)

congestion control algorithms. For this purpose, the network

operators need to infer congestion control algorithms of

individual TCP flows using packet traces collected passively in

the middle of networks. We proposed, in our previous paper, a

new scheme to characterize TCP algorithms from packet traces.

It estimates the congestion window size (cwnd) at a TCP sender

at round-trip time intervals, and specifies the cwnd growth as a

function of the estimated value of cwnd. We showed that our

previous scheme can characterize most TCP algorithms

introduced recently. In an actual network environment,

however, a packet trace captured over some link, especially a

backbone link, often contains only unidirectional TCP segments

due to the asymmetric routing. In this case, it is difficult to

estimate the cwnd itself, and a new analysis scheme is required.

This paper shows a study on how to characterize the TCP

congestion control algorithms from unidirectional packet traces.

We use a data size transmitted during a short period of time and,

using it, we apply our former scheme to the unidirectional trace.

This paper shows the results that we apply the proposed method

to popular TCP algorithms, such as TCP Reno and CUBIC TCP.

Keywords- TCP congestion control; passive monitoring;

unidirectional trace; congestion window.

I. INTRODUCTION

Recently, traffic in the Internet increases largely according
to the increase of network capacity. The benefit of this
capacity increase needs to be given equally to individual users.
However, it is sometimes pointed out that some giant users
exhaust large part of network bandwidth. Since most of traffic
in the Internet uses TCP, the network congestions will be
resolved by the TCP congestion control mechanisms.
However, if any giant users do not conform to them
intentionally, the problem will be worse. So, an important
approach for network operators is to infer congestion control
algorithms based on TCP segment exchanges captured over
some link in the network. This is called the passive approach
for TCP congestion control inferring. This is in contrast with
the active approach, where an active tester sends test
sequences to a target node and checks the replies

In the TCP congestion control [1], a data sender transmits
data segments under the limitation of the congestion window
size (cwnd) maintained within the sender itself, beside the
advertised window reported from a data receiver. The value

of cwnd grows up as a sender receives acknowledgment
(ACK) segments and is decreased when it detects congestions.
How to grow and decrease cwnd is the key of congestion
control algorithm.

Although there were only a few congestion control
algorithms, such as Tahoe, Reno and NewReno [2] in the early
stage, many TCP congestion control algorithms have emerged
recently [3]. For example, CUBIC TCP [4] and High Speed
(HS) TCP [5] are designed for high speed and long delay
networks. Among them, CUBIC TCP is used as a standard
version in the Linux operating system. While many
algorithms are based on packet losses, TCP Vegas [6] triggers
congestion control against an increase of round-trip time
(RTT). TCP Veno [7] combines loss based and delay based
approaches such that the congestion control is triggered by
packet losses but the delay determines how to grow cwnd.

This proliferation of algorithms complicates their
inference in the passive approach. In our previous paper [8],
we proposed a scheme for characterizing TCP congestion
control algorithms from passively collected packet traces. As
far as we know, this is the only passive approach which can
handle most of the major TCP algorithms, differently from
other proposals [9]-[14].

Our previous proposal requires both TCP data and
acknowledgment segments are captured in a packet trace. It
observes a RTT by mapping a data segment and its
corresponding ACK segment, and estimates the value of cwnd
as an outstanding data size during the RTT period. However,
in an actual network environment, due to the asymmetric
routing, a packet trace captured over some link, especially a
backbone link, often contains only unidirectional TCP
segments. In this case, it is difficult to estimate cwnd, and
therefore, a new analysis scheme is required.

In this paper, we show a study on how to characterize the
TCP congestion control algorithms from unidirectional packet
traces. We propose an approach based on sent data size
during a short time period. From the unidirectional trace, we
cannot estimate either the RTT or cwnd values. Instead, we
presume that the data size sent in a short time period is
proportional to a cwnd value. Using this data size, we applied
our former proposal to the unidirectional trace. We apply the
proposed method to TCP Reno, CUBIC TCP, HS TCP, TCP
Vegas, and TCP Veno.

The rest of this paper consists of the following sections.
Section 2 surveys the related works. Section 3 discusses the
detailed study on our proposal through applying the actual
packet traces of TCP Reno and CUBIC TCP. Section 4 shows

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

the results of our scheme being applied to other TCP versions.
In the end, Section 5 gives the conclusions of this paper.

II. RELATED WORKS

The works on the passive approach TCP congestion
control algorithm inference in the early stage [9][10] accepted
an approach to keep track of the sender’s cwnd based on the
predefined TCP finite state machine. But, they considered
only TCP Tahoe, Reno and New Reno and did not handle any
of recently introduced algorithms. Oshio et al. [11] proposed
a scheme to discriminate one out of two different TCP
versions randomly selected from fourteen versions. They
adopted an approach to keep track of changes of cwnd from a
packet trace and to extract several characteristics, such as the
ratio of cwnd being increased by one packet. But, they
assumed that the discriminator knows which two TCP
versions are used in the packet trace. Prior to our previous
proposal [8], the only study which can infer the TCP
algorithms including those introduced recently was a work by
Yang et al. [15]. It is an example of the active approach. It
makes a web server send 512 data segments under the
controlled network environment, and observes the number of
data segments contiguously transmitted. From those results,
it estimates the window growth function and the decrease
parameter to determine the TCP algorithm. All of the
proposals so far, including our previous one, based on
bidirectional TCP interactions.

On the other hand, there are several works based on
unidirectional packet traces [12]-[14]. T-RAT [12] used an
approach to separate a unidirectional packet trace into flights,
and then infer the TCP state of each flight (e.g., slow start or
congestion avoidance). K. Lan and J. Heidemann [13]
proposed an approach to examine characteristics of giant TCP
flows in four dimensions, i.e., size, duration, rate, and
burstiness, along with their correlations. Qian et al. [14]
proposed a scheme to extract more detailed statistical features
from unidirectional TCP traces. They focused on the size of
initial congestion window, the relationship between the
retransmission rate and the time required to transfer a fixed
size of data for detecting the irregular retransmissions, and the
flow clock to find TCP data transmissions controlled by the
application or link layer factors. None of them, however,
proposed a way to infer TCP algorithms from unidirectional
packet traces.

In this paper, we discuss on a scheme to characterize
recent TCP algorithms based on unidirectional traces. We use
TCP Reno and CUBIC TCP as examples to design the scheme,
and apply it to HS TCP, TCP Vegas and Veno.

III. STUDY BY ANALYSING TCP RENO AND CUBIC TCP

A. Proposal

In the rest of this paper, we use unidirectional packet traces
which contain only the information on TCP data segments.
From such a trace, we obtain a sequence of the time of
individual packet capture and the TCP sequence number
contained in captured packets for a specific TCP flow. Figure
1 (a) shows an example of such a sequence. This is selected
from a CUBIC TCP trace.

From this information, we use the following procedures to
characterize the TCP algorithms.
 Check the sequence numbers and select retransmissions

which can be detected by its decreasing.
 Pick up a portion where the sequence numbers are

increasing continuously (no retransmissions occur).
Figure 1 (a) is such a portion in a CUBIC TCP trace.

 Select a short time period to analyze the data size sent
during this period. In Figure 1 (b), we select 100 msec as
the period and apply it to the no retransmission portion
given in (a) in this figure. The data size sent in a TCP
segment is calculated by the TCP sequence number of the
next segment.

 Use the data size sent during a selected time period as
sentData. We use this as a value proportional to cwnd. In
the result of Figure 1 (b), 52,128, 146,288, 152,040 (bytes)
are those values.

 Calculate the difference of adjacent sentData. We denote
it by ΔsentData. We presume this value is proportional to
the increase of cwnd. In Figure 1 (b), 94,100 and 5,812
(bytes) are the values.

 Plot ΔsentData versus sentData graph and consult the
result with the relationship obtained by our previous
proposal [8]. We suppose that the result is similar with
that in [8]. In the case of TCP Reno, for the estimated
value of cwnd in a RTT interval, its difference Δcwnd has
the relationship with cwnd such as ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 (in
unit of packet) independently of the value of cwnd. For,
CUBIC TCP, the following relationship is resumed for
Δcwnd and cwnd.

 ⊿𝑐𝑤𝑛𝑑 = 3𝑅𝑇𝑇 ∙ √𝐶
3

(√𝑐𝑤𝑛𝑑 − 𝑐𝑤𝑛𝑑𝑚𝑎𝑥
3)

2
 (1)

time (sec) tcp.seq (byte) time (sec)
sentData

(byte)
23.48312 52023289 23.48312 1448
23.48327 52024737 23.48327 2896
23.48368 52026185 23.48368 4344
23.48407 52027633 23.48407 5792
23.48433 52029081 23.48433 7240
・・・ ・・・ ・・・ ・・・

23.49136 52072521 23.49136 50680
23.49146 52073969 23.49146 52128
23.5222 52075417 23.5222 1448

23.52236 52076865 23.52236 2896
・・・ ・・・ ・・・ ・・・

23.59184 52218809 23.59184 144840
23.59184 52220257 23.59184 146288
23.6227 52221705 23.6227 1448

23.62271 52223153 23.62271 2896
・・・ ・・・ ・・・ ・・・

23.69383 52370849 23.69383 150592
23.69383 52372297 23.69383 152040
23.72319 52373745 23.72319 1448
23.7232 52375193 23.7232 2896

23.72364 52376641 23.72364 4344
・・・ ・・・ ・・・ ・・・

(a) capture time and TCP
sequence number

(b) sent data size

Figure 1. Example of a unidirectional packet trace.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

Here, C is a predefined constant and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥is the value
of cwnd just before the last loss detection.

B. Study on Scheme Using TCP Reno

Next, we discuss the effectiveness of the proposal above
through some experiments using actual packet traces. We use
the packet traces collected in our previous study [8]. In our
previous experiment, iperf TCP data transfer is performed
between sending and receiving terminals. The sending
terminal runs the Linux operating system and one of supported
TCP versions is selected in the experiment. Those terminals
are connected via a bridge, which inserts 100 msec delay (50
msec in one way) and packet losses whose probability is
1.0 × 10−4 . The sending terminal and the bridge are
connected by a 100 Mbps Ethernet link. The receiving
terminal and the bridge are connected by an Ethernet link or
an IEEE 802.11g WLAN. The TCP segments transmitted are
monitored by tcpdump at the sending terminal. We used
either result of an Ethernet link or a WLAN depending on
individual algorithms.

The obtained packet traces contain bidirectional TCP
segments. From them, we selected only segments from the
sending terminal to the receiving terminal, and obtained
unidirectional packet traces such as one given in Figure 1 (a).

First, we tried a TCP Reno trace. We picked up a portion
at the trace from 22.5 sec to 35.9 sec containing 11,437
segments whose sequence numbers continue to grow up. We
selected 100 msec as the short time period for calculating
sentData. The orange line in Figure 2 shows the relationship
between sentData and time in this case. As this figure shows,
the sentData is increasing linearly along with time. This result
seems to reflect the behavior of TCP Reno correctly. Figure
3 shows the relationship between ΔsentData and sentData.
The result indicates that ΔsentData mainly takes 0 byte and or
1448 bytes, and that it takes -1448 bytes and 2896 bytes
sometimes. This result seems to be similar with that in our
previous paper using bidirectional packet traces.

But, it needs to be mentioned that the period of 100 msec
is equal to the round-trip delay inserted by the bridge in the
experiment. So, the result in Figure 3 becomes similar to that
in the previous paper.

As another value of time period, we use 200 msec. Figure
2 blue line shows the relationship between sent data and time
in this case. The result is linear, but the value is twice of that
in the above case. Figure 4 shows the relationship between
ΔsentData and sentData obtained from the result above. In
this case, the result shows that ΔsentData mainly takes 1448
bytes and or 4344 bytes. These values correspond to the
segment size or three times of it. This result comes from the
fact that the period for sentData calculation differs from the
RTT value. We can say that, for TCP Reno, ΔsentData keeps
constant irrelevant with sentData and takes two values mainly.

Figure 5 shows the relationship between cwnd and cwnd
obtained in our previous paper in the same portion in the trace.
The result in Figure 3 is similar with that in Figure 5. So, our
scheme in this paper seems to be able to characterize TCP
Reno from unidirectional packet traces. This is because the
proposed scheme uses a time period identical to the delay
inserted in the experiment. In Figure 4, the time period is 200

msec which is twice of the inserted delay. Still, there is a
strong similarity among the result in Figure 4 and that in
Figure 5, and so our scheme is working well in the case that
the time period for calculating sentData is 200 msec.

50000

100000

150000

200000

250000

300000

350000

400000

20 25 30 35 40

time (sec)

sentData (byte)

100msec

200msec

Figure 2. sentData vs. time for TCP Reno with 100 and 200 msec period.

Figure 3. ΔsentData vs. sentData for TCP Reno with 100 msec period.

0

1000

2000

3000

4000

5000

6000

7000

100000 150000 200000 250000 300000 350000 400000

sentData (byte)

ΔsentData (byte)

Figure 4. ΔsentData vs. sentData for TCP Reno with 200 msec period.

0

200

400

600

800

1000

1200

1400

1600

70000 90000 110000 130000 150000 170000 190000

cwnd (byte)

Δcwnd (byte)

Figure 5. Δcwnd vs. cwnd for TCP Reno [8].

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

C. Study on Scheme Using CUBIC TCP

Next, we tried a CUBIC TCP trace as another example.
As described above, our previous paper indicates that, in the
case of CUBIC TCP, Δcwnd has the relationship of the square
of cubic root of cwnd. In order to examine whether this
relationship can be applied to ΔsentData and sentData, we
examined the unidirectional packet trace derived from the
trace in our previous paper, with 100 msec and 200 msec time
period for calculating sentData.

We picked up a portion at the trace from 23.5 sec to 38.3
sec containing 27,041 segments whose sequence numbers
continue to grow up. Figure 6 shows the relationship between
sentData and time for both cases of 100 msec and 200 msec
time periods. In both cases, the sentData is increasing as a
cubic curve of time.

Figures 7 and 8 show the relationship between ΔsentData
and sentData for 100 msec and 200 msec time periods,
respectively. Both figures indicate that ΔsentData is
symmetrical for some value of sentData (200,000 and
400,000 bytes in Figures 7 and 8, respectively), and that
ΔsentData is decreasing if sentData is smaller than the value
and increasing if larger than the value. This situation is similar
to the result of our previous result described in [9]. Especially,
the situation is clearer for the case of 200 msec time period.

Figure 9 shows the relationship between cwnd and cwnd
obtained in our previous paper in the same portion in the trace.
The results in Figures 7, 8 and 9 are similar and so we can say
that the proposed scheme here works well for CUBIC TCP.

IV. APPLY TO OTHER TCP VERSIONS

In this section, we apply our scheme to other TCP versions.
In the following study, we use 200 msec as the time period for
calculating sentData because we suppose that 200 msec will
give smoother results.

A. Result Applied to HS TCP

HS TCP is designed to obtain high throughput over wide
bandwidth and long delay networks. It grows cwnd to

𝑐𝑤𝑛𝑑 +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑
⁄ in response to every new ACK

segment. The coefficient a(cwnd) is defined as 1, 2, and 3
when cwnd is 38, 118, and 221 (in unit of packet). So, in our

previous approach, the estimated cwnd will be as follows.

 ⊿𝑐𝑤𝑛𝑑 = {

0 𝑜𝑟 1 (𝑐𝑤𝑛𝑑 < 38)
1 𝑜𝑟 2 (38 ≤ 𝑐𝑤𝑛𝑑 < 118)

1, 2 𝑜𝑟 3 (118 ≤ 𝑐𝑤𝑛𝑑 < 221)
 (2)

Similarly with the study in Section 3, we made the
unidirectional packet trace, and picked up a portion at the trace
from 20.2 sec to 28.8 sec containing 2,749 data segments.

Figure 10 shows the relationship between cwnd and
cwnd obtained in our previous paper. Figure 11 shows the
relationship between ΔsentData and sentData. These two
figures are for the identical portion in the trace. From the
results, it might be difficult to say that the method proposed in
this paper can characterize the feature of HS TCP.

100000

200000

300000

400000

500000

600000

700000

800000

900000

20 25 30 35 40

time (sec)

sentData (byte)

100 msec

200 msec

Figure 6. sentData vs. time for CUBIC TCP with 100 and 200 msec

period.

Figure 7. ΔsentData vs. sentData for CUBIC TCP with 100 msec period.

Figure 8. ΔsentData vs. sentData for CUBIC TCP with 200 msec period.

0

2000

4000

6000

8000

10000

12000

100000 200000 300000 400000 500000

cwnd (byte)

Δcwnd (byte)

Figure 9. Δcwnd vs. cwnd for CUBIC TCP [8].

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

B. Result Applied to TCP Vegas

TCP Vegas estimates the bottleneck buffer size using the
current values of cwnd and RTT, and the minimal RTT for the
TCP connection. At every RTT interval, Vegas uses this
BufferSize to control cwnd in the congestion avoidance phase
in the following way.

 ⊿𝑐𝑤𝑛𝑑 = {

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

 0 (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 (3)

Here, A = 2 and B = 4 (in unit of segment) are used in the
Linux operating system (in unit of packet).

We made the unidirectional packet trace from the trace in
the previous experiment, and picked up a portion at the trace
from 38.0 sec to 59.7 sec containing 8,155 data segments.

Figure 12 shows the relationship between cwnd and
cwnd obtained in our previous paper. Figure 13 shows the
relationship between ΔsentData and sentData. For the values
of sentData 100,000 through 120,000 bytes in Figure 13,
ΔsentData are distributed between +10,000 bytes and –
10,000 bytes. It can be said that there might be some
similarities between the results of Figures 12 and 13 in those
parts.

C. Result Applied to TCP Veno

TCP Veno (Vegas and ReNO) uses the BufferSize used by
Vegas to adjust the growth of cwnd in the congestion
avoidance phase as follows. If 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵 (B is the
Vegas parameter B), cwnd grows by 1/cwnd for every other
new ACK segment, and otherwise, it grows in the same
manner with TCP Reno. Therefore, if the delayed ACK is not

used, cwnd at RTT intervals will be as follows.

 ⊿𝑐𝑤𝑛𝑑 = {
 1 𝑜𝑟 0(𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)
 (4)

If the delayed ACK is used, ⊿𝑐𝑤𝑛𝑑 = 0 𝑜𝑟 1 even if

𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵. But in this case, the ratio of cwnd being
1 and 0 is different for BufferSize. It will be 1:3 for
BufferSize >B, and 1:1 for 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵.

We made the unidirectional packet trace from the trace in
the previous experiment, and picked up a portion at the trace
from 37.6 sec to 52.7 sec containing 23,261 data segments.

Figure 14 shows the relationship between cwnd and
cwnd obtained in our previous paper. Figure 15 shows the
relationship between ΔsentData and sentData. From the
results, it can be said that ΔsentData are flat independent of
sendData. Although the values of ΔsentData are not fit to
zero and one segment, it can be said that there might be some
similarities between the results of Figures 14 and 15.

V. CONCLUSIONS

This paper presented some studies on how to characterize
the TCP congestion control algorithms from passively
collected unidirectional packet traces. We applied our
previous scheme, which compares cwnd, estimated from
bidirectional packet traces, and its difference. Since we
cannot estimate cwnd from unidirectional traces, the proposed
scheme in this paper selects a short time period and treats the
sent data size during this period as being proportional to cwnd
at this time. Our scheme characterizes the TCP algorithm by
use of the graph ofΔsentData and sentData.

We applied this scheme to TCP Reno and CUBIC TCP in
detail and showed that our proposal seems to work. We also
applied our scheme to HS TCP, TCP Vegas and TCP Veno.

0

200

400

600

800

1000

1200

1400

1600

20000 30000 40000 50000 60000 70000 80000 90000 100000

cwnd (byte)

Δcwnd (byte)

 Figure 10. Δcwnd vs. cwnd for HS TCP [8]. Figure 11. ΔsentData vs. sentData for HS TCP.

-2000

-1500

-1000

-500

0

500

1000

1500

2000

20000 30000 40000 50000 60000 70000 80000

cwnd (byte)

Δcwnd (byte)

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

40000 60000 80000 100000 120000 140000

sentData (byte)

ΔsentData (byte)

 Figure 12. Δcwnd vs. cwnd for TCP Vegas [8]. Figure 13. ΔsentData vs. sentData for TCP Vegas.

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

The results were worse than those for Reno and CUBIC. For
Vegas and Veno, the results in this paper have some similarity
with the results in our previous paper, but there are some
difficulties to distinguish Reno, Vegas and Veno. On the
other hand, for HS TCP, our proposed scheme could not
characterize it although our previous scheme could. It seems
to characterize TCP Reno and CUBIC TCP algorithms well in
our controlled in-laboratory setup. For the other TCP
algorithms, the approach must be refined.

The points to be improved include the followings. First of
all, the accuracy of our scheme needs to be increased. For this
purpose, one important approach is to estimate a RTT
correctly from unidirectional traces, because our scheme is
sensitive for the fact that the short time period for calculating
sent data is equal to RTT or integral multiples of RTT.

As describe above, the results in Figures 4, 13 and 15 have
some similarities in the sense that the graphs have flat parts
independent of sentData. So, it may be difficult to
discriminate them. The next point is to invent a procedure to
categorize the TCP algorithms into more general groups. ,
such as
 a flat type such as TCP Reno, HS TCP, TCP Westwood+

[16], TCP Vegas and Veno,
 a symmetric cubic root square type (CUBIC TCP),
 a monotonous increasing cubic root square type (Hamilton

TCP [17]), and
 a random type (TCP Illinois [18]).

Thirdly, our previous scheme uses the estimation of

multiplicative decrease parameter  is also used together with
the estimation of window growth function. The scheme in this
paper also needs to consider the multiplicative decrease
parameter.

The last point is that the evaluation in this paper is done in
a controlled laboratory setup. For the generalization of the
results, the test has to be conducted under realistic network
conditions

REFERENCES

[1] V. Javobson, “Congestion Avoidance and Control,” ACM
SIGCOMM Comp. Commun. Review, vol. 18, no. 4, Aug.
1988, pp. 314-329.

[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” IETF RFC
3728, April 2004.

[3] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-
to-Host Congestion Control for TCP,” IEEE Commun. Surveys
& Tutorials, vol. 12, no. 3, 2010, pp. 304-342.

[4] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 5, July 2008, pp. 64-74.

[5] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”
IETF RFC 3649, Dec. 2003.

[6] L. Brakmo and L. Perterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE J. Selected
Areas in Commun., vol. 13, no. 8, Oct. 1995, pp. 1465-1480.

[7] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for
Transmission Over Wireless Access Networks,” IEEE J. Sel.
Areas in Commun., vol. 21, no. 2, Feb. 2003, pp. 216-228.

[8] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP
Congestion Control Algorithms Based on Passively Collected
Packet Traces,” Proc. IARIA ICSNC 2015, Nov. 2015, pp.

[9] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM Comp. Commun. Review, vol. 27, no.
4, Oct. 1997, pp.167-179.

[10] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP Connection Characteristics Through Passive
Measurements,” Proc. INFOCOM 2004, March 2004, pp.
1582-1592.

[11] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP
Versions Based on Cluster Analysis,” Proc. ICCCN 2009, Aug.
2009, pp. 1-6.

[12] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the
Characteristics and Origins of Internet Flow Rates,” Proc.
ACM SIGCOMM’02, Aug. 2002, pp. 309-322.

[13] K. Lan and J. Heidemann, “Measurement Study of Correlations
of Internet Flow Characteristics,” Computer Networks, vol. 50,
iss. 1, Jan. 2006, pp. 46-62.

[14] F, Qian, A. Gerber, and Z. Mao, “TCP Revisited: A Fresh Look
at TCP in the Wild,” Proc. IMC ’09, Nov. 2009, pp. 76-89.

[15] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP
Congestion Avoidance Algorithm Identification,” Proc.
ICDCS ’11, June 2011, pp. 310-321.

[16] L. Grieco and S. Mascolo, “Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP
congestion control,” ACM Computer Communication Review,
vol. 34, no. 2, April 2004, pp. 25-38.

[17] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long
distance networks,” Proc. Int. Workshop on PFLDnet, Feb.
2004, pp. 1-16.

[18] S. Liu, T. Bassar, and R. Srikant, “TCP-Illinois: A loss and
delay-based congestion control algorithm for high-speed
networks,” Proc. VALUETOOLS ’06, Oct. 2006, pp. 1-13.

0

400

800

1200

1600

150000 200000 250000 300000

cwnd (byte)

Δcwnd (byte)

 Figure 14. Δcwnd vs. cwnd for TCP Veno [8]. Figure 15. ΔsentData vs. sentData for TCP Veno.

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-475-6

ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and Protection

