
TeStID: A High Performance Temporal Intrusion Detection System

Abdulbasit Ahmed, Alexei Lisitsa, and Clare Dixon
Department of Computer Science

University of Liverpool
Liverpool, United Kingdom

{Aahmad, Lisitsa, CLDixon}@liverpool.ac.uk

Abstract—Network intrusion detection systems are faced
with the challenge of keeping pace with the increasingly high
volume network environments. Also, the increase in the number
of attacks and their complexities increase the processing and
the other resources required to run intrusion detection systems.
In this paper, a novel intrusion detection system is developed
(TeStID). TeStID combines the use of high-level temporal logic
based language for specification of attacks and stream data
processing for actual detection. The experimental results show
that this combination efficiently make use of the existing testing
machine resources to successfully achieve higher coverage rate
in intensive network traffic compared with Snort and Bro.
Additionally, the solution provides a concise and unambiguous
way to formally represent attack signatures and it is extensible
and scalable.

Keywords-network intrusion detection system; temporal
logic; parallel stream processing; runtime verification

I. INTRODUCTION

Intrusion Detection Systems (IDS) detect intruders’ ac-
tions that threaten the confidentiality, availability, and in-
tegrity of resources [1]. Network Intrusion Detection Sys-
tems (NIDS) reside on the network, and are designed to
monitor network traffic. An NIDS examines the traffic packet
by packet in real time, or close to real time, to attempt to
detect intrusion patterns [2].

The increasing network throughput challenges the current
NIDS running on customary hardware to monitor the net-
work traffic without dropping packets. Consequently, many
attacks are not detected by the current NIDS [3], [4].
Some vendors provide a highly specialized and configured
hardware to prevent the drop of packets [5], [6].

The techniques developed to solve the problem of IDS
reliability due to packets loss in high-speed networks can
be grouped into the following:

• Data reduction techniques (i.e., data based approach)
[7].

• Load balancing, splitting, or parallel processing of traf-
fic (i.e., distributed/parallel execution based approach)
[3].

• Efficient algorithms for pattern matching (i.e., algo-
rithm based) [8].

• Hardware based approach such as using graphics pro-
cessing units [9] or field-programmable gate array
(FPGA) devices [10].

Some works use combinations of the above techniques as
in [8] where the algorithm is hardware implementable. The
research area is still active and there is no solution that can
keep up with the increase in bandwidth.

Another issue with current IDS is that the attack sig-
natures are often specified in rather low-level languages
and, especially, in the case of multiple packets attacks,
may become cumbersome and error-prone, difficult to write,
analyse and maintain. For instance, Bro [11] has special
scripting language for detecting multiple packet attacks.

In this paper, we present a new Temporal Stream Intrusion
Detection System (TeStID), the design of which addresses
both the issue of efficiency and reliability in high-speed
networks and the issue of the high-level and unambiguous
specifications. In TeStID a multiple packet attack is repre-
sented with a formula, whereas in Bro one page of code
or more might be needed to represent the same attack. The
system uses Temporal Logic (TL) [12] for the attack sig-
nature specifications and available Stream Data Processing
(SDP) [13]–[15] technology for the actual detection. TL is
the extension of classical logic with operators that deal with
time which allow us to formally specify temporal events
(i.e., network packets) as they traverse the network. The SDP
is a database technology applied to streams of data which
are designed with processing capabilities suitable for data
intensive applications.

We use Many Sorted First Order Metric Temporal Logic
(MSFOMTL), which was defined in [16] to represent data
packets arriving over time and attack patterns. This allows
us to state, for example, “a packet arrives between 6 and 9
seconds”.

In [16], we described the architecture of TeStID and
provided preliminary experimental results using the DARPA
IDS Evaluation Data [17]. The experiments and case studies
focussed on the detection of multiple packet attacks.

In this paper, we extend our work and provide further
detailed experimental analysis considering both single and
multiple packet attacks, allowing single packet attacks with
payload and experimenting with the high performance fea-
tures available in stream data processing. Additionally, we
compare the performance of TeStID with two well known
open source NIDSs: Snort [18] and Bro [11].

The rest of the paper is organized as follows. Section

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

II presents an overview of the proposed system and its
design. Section III presents the experiment setup environ-
ment. Section IV presents the experimental results with and
without using the high performance features of stream data
processing. Related work is presented in Section V. Finally,
Section VI concludes this paper and discusses future work.

II. TESTID OVERVIEW AND DESIGN

In TeStID attack signatures are formally represented us-
ing temporal logic. The signature based intrusion detection
problem is reduced to the problem of checking whether a
temporal formula φ representing an attack pattern s true in
a temporal model M representing a linear sequence of all
received (observed) network packets, that is M |= φ?

In our model, we are dealing with finite initial segments
of potentially infinite sequences. This and the fact that prop-
erties considered are time bounded makes the decidability
of model checking trivial.

In the TeStID system the TL formulae specifying attacks
are automatically translated into stream SQL (SSQL) lan-
guage constructors. We use StreamBase [15] as the stream
data base engine and it uses SSQL as the stream query
language. Consequently, this SSQL code is executed to detect
temporal patterns specified in the original formula in the
incoming events.

The syntax of temporal logic MSFOMTL used in the
system is as follows. An atomic formula has the form
P (te1, te2, . . . , ten) where P is a predicate and for i =
1, . . . , n, tei is a term. The atomic formulae represent the
information about individual packets and terms correspond
to the fields within a packet.

The syntax of MSFOMTL formulae are defined as follows:

L :=P | ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♦[t1,t2] | �[t1,t2]

| �[t1,t2]ϕ | �[t1,t2]ϕ | (∀x)ϕ | (∃x)ϕ (1)

In addition to the usual connectives of propositional logic
these formulae include bounded temporal operators “always
in the time between t1 and t2” �[t1,t2], “eventually in the
future in a time between t1 and t2” ♦[t1,t2], “sometime in the
past in a time between t1 and t2 before now” �[t1,t2], and
“always in the past in all time between t1 and t2” �[t1,t2].
The incoming events form the temporal models,M = 〈T , <
, I〉 where:

- T = {τ0, τ1, . . . } ⊂ R+, where R+ is a non-empty set
of positive real numbers and T is the set of all arrival
moments.

- < is a linear order on T .
- I is an interpretation which maps T into the set of all

possible packets JPK: I : T → JPK
So, I(τi) represents a packet arriving at a moment τi ∈ T .

III. THE EXPERIMENT SETUP

The setup of the test environment closely resembles the
actual deployment of NIDS. In a typical NIDS deployment,

the network sensor device receives a copy of all the traffic
that traverse the network. The testing environment is setup
as follows:

• TeStID is installed on an INTEL R© CoreTM i5 2.26 GHz
machine with 4 GB of memory and a Gigabit Network
interface that is capable of running in promiscuous
mode (i.e., listening to all network traffics). TeStID was
developed with StreamBase developer version 7.1.

• Another computer (INTEL R© CoreTM2 Quad Processor
Q6600 and 2 GB memory) with a Gigabit Network
interface is used to replay the data.

• TCPREPLAY [19] was used to replay the trace files.
TCPREPLAY is a tool that replays TCP dump files [20]
at specified speeds onto the network.

• A switch to connect the two PCs or simply crossover
network cable.

• A custom data file, which was prepared using a DARPA
dump test file and some test files from the free license
version of Traffic IQ ProfessionalTM [21].

• Snort version 2.9.1, and Bro version 1.5.1.

The data file has 3,014,600 packets. It has 50 different
single packet with payload attacks which are distributed
over 792 packets. This means 792 total instances of the 50
attacks.

During the experiments, the send and receive buffers were
increased to ensure that all packets are sent successfully
and are received with no loss of packets. The reading
buffer parameters rmem max and rmem default increased
significantly to 110 MB. Also, the writing buffer buffer
parameters wmem max and wmem default increased to the
same value. Using these values, TCPREPLAY successfully
replayed the dump files at top speed multiple, that is, the
maximum that can be send on the designated hardware. On
the receiving end, TCPDUMP successfully captured all the
packets. This was important tuning step as Snort, Bro, and
TeStID use TCPDUMP to sniff packets.

IV. THE EXPERIMENTAL WORK

The experiments were run on Snort, Bro, and TeStID using
the test data file. These attacks were coded in Snort and Bro
according to syntax specified in their documentations [11],
[18]. For TeStID these attacks are written in a file using
MSFOMTL syntax. Then the translator is run to translate
these formulae into SSQL code. A typical example, is Snort
attack id 255 “DNS Zone Transfer TCP”. This attack is
identified when the destination port (x4) is 53 and the
payload (x12) contains a string that is identified by the
regular expression ".{14}.∗\u0000\u0000\u00fc.∗" which
means the string must contains any 14 characters, possibly
followed by an additional character, followed by two null
characters, and “ü”. Formally, it is represented in MSFOMTL

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

as follows:

(∃x4, x12)((∃y1, y2, y3, y5, y6, y7, y8, y9, y10, y11)
P (y1, y2, y3, x4, y5, y6, y7, y8, y9, y10, y11, x12) ∧ (x4 = 53)

∧ (x12 = f(".{14}. ∗ \u0000\u0000\u00fc. ∗ ")))
(2)

The meaning of the terms y1,y2,y3,y5,y6,y7,y8,y9,y10,y11
are source IP address, source port, destination IP address,
sequence number, acknowledgement number, ack flags, syn
flag, reset flag, push, and urgent flag, respectively. These are
free terms and can take any valid value from its correspond-
ing sort domain.

When translating the above formula into SSQL we obtain
the following code:

CREATE STREAM out_Input;
APPLY JAVA "TCP_W_Payload" AS Input (
schema0 = "<?xml version=\"1.0\" encoding=
\"UTF-8\"?>\n<schema name=\"schema:Input\">

\n
<field description=\"\" name=\"x1\"
type=\"string\"/>\n
.
.
<field description=\"\" name=\"x12\"
type=\"string\"
/>\n</schema>\n"
)
INTO out_Input;

CREATE OUTPUT STREAM Output;
SELECT * FROM out__Input
WHERE (out_Input.x4 = 53)
and (regexmatch(".{14}.*\u0000\u0000\u00fc.*"

, x12))
INTO Output;

Each of the 50 attacks produce similar code to the above.
There are two main parts in each code: the input adapter call
(APPLY JAVA) and the select statement (from here onward
we refer to it as the filter code).

A. The Experiments Results: multiple packet attacks

The results of experiments on multiple packet attacks
using TeStID were presented previously in [16]. The results
obtained is reproduced in Table I. The first column contains
the attack names, the second column contains the DARPA
[22] data files used, the third column contains the number of
attacks detected in normal replay, the fourth column contains
the number of attacks detected in 1350 speed multiple of
normal recorded speed (the highest speed achieved without
packet loss), and the last column is the actual number of
attacks in the data. The bandwidth achieved is 524 Mbits/Sec
and the peak number of packets was about 250,000 packets
per second. In Snort the specification of multiple packet
attacks is not possible but in Bro it is feasible. These attacks
need to be written in Bro scripting language. We ran the
script for the Syn Flood or Neptune which comes with Bro

Table I. Results of Multiple Packet Attacks

Attack Data Packets Normal 1350X Actual No.
Name Set Replayed Replay Normal of Attacks

DoSNuke 01/04/99 in 2,356,503 1 1 1
05/04/99 in 2,291,319 2 2 2
06/04/99 in 3,404,824 1 1 1

Neptune 05/04/99 in 2,291,319 1 1 1
06/04/99 out 2,558,481 3 3 3
09/04/99 in 3,393,918 1 1 1

TCPReset 06/04/99 in 3,404,824 2 2 2
07/04/99 in 2,087,942 1 1 1
09/04/99 in 3,393,918 1 1 1

ResetScan 08/04/99 in 3,201,381 2 2 2

default installation. Bro achieves about 300 Mbits/Sec and
about 76,000 packets/Sec using the same test data file in
Table I and the same testing environment. Bro crashed within
seconds at the speed multiple of 1350 after consuming the
available resources on the testing machine.

In this paper, the experiments on TeStID are further
extended to explore its capabilities to detect single packet
attacks with payload. The experiments on these attacks can
be grouped into two sets. In the first set, no high performance
features are used. In the second set the high performance
features are used. The following sections give more detail
and the results of each set.

B. The Experiments Results: single packet attacks

Here, we present the results of the experiments with the
detection of single packet attacks with payload. In this type
of attacks the packets are inspected deeply and not only the
headers as in the multiple packet attacks. Three different
variants of the execution of SSQL code were considered.

In StreamBase a basic execution unit running on the
server is called a container. The SSQL codes run inside this
container which has a name and a set of associated handling
processes that are created by the stream server. In this set
of experiments there are three possible implementations to
run single packet attack detection on the StreamBase server
without using the high performance features.

• In the first variant of implementation, each translated
specification of an attack is written as an independent
program that runs in its own container.

• In the second implementation each translated specifi-
cation of an attack is an independent program but all
programs are using the same container.

• In the third implementation all the translated specifica-
tions of the attacks are written as one program and run
in one container sharing the input adapter.

The results obtained for this set of experiments are shown
in Table II. Each experiment is an average of three runs and
before each run the machine was restarted. The first column
shows the tested implementation. Columns two through four
contain the results of running each system while using
multiple replay speeds of 2, 4, and 8 respectively, to send
the packets (blank if no test is done).

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

Table II. results without using high performance features

Implementation X 2 X 4 X 8

50 independent programs files -6 -139 -384
50 programs in one file 0 -116 -323
50 programs sharing input adapter 0 -6 -74
BRO v1.5.1 0 0 -1
SNORT v2.9.1 -119 -125

In the first row, 50 different program files are run where
each program corresponds to one attack. This implementa-
tion gives the worst coverage rate as it misses six attacks in
the speed multiple of two (x 2 column). The result makes
sense as each program needs to capture the packets with the
input adapter code which in turns calls a JAVA code that
interfaces with the network interface and then the rest of the
program processes the packets (tuples) in sequential fashion.
This scenario is the same for all the 50 programs which
means each program will have its own space (parallel region
or container in StreamBase terminology). The StreamBase
engine suffers from the overhead of having to interact with
all these regions.

The second row shows the results of running the code for
all 50 attacks in one container (i.e., the attacks are all written
in one file). This implementation gives slightly better results
as it misses 116 attacks in the speed multiple of four. With
this implementation the StreamBase engine achieves more
efficient processing with the decrease of the inter process
handling overhead.

In the third row, all the 50 filter codes are in one file
but only one input adapter code is used. All the filtering
codes read from the same input adapter. This means less
resources from the system are used. In StreamBase when a
tuple (packet) arrives it must be processed till completion
before the next tuple arrives. This means the input adapter
feeds the tuple to the first coded filter and then coded map
of the first attack. Then the codes of the second and so
on. If another tuple (packet) arrived, it will be retained in
a buffer until the first processing is finished. This type of
implementation was the best without the use of concurrency
and multiplicity options as it misses only 6 attacks at the
multiple speed of four. Unfortunately, this is worse than what
Bro achieved in the fourth column. Bro misses only one
attack in the speed multiple of eight. The Snort result is
shown in the fifth column and it misses 119 attacks in the
speed multiple of two. It was worse in speed multiple of four
as it missed 125. The blank in the table for speed multiple of
eight for Snort means that test was not done as we thought
it is not necessary.

These results gave the motivation to investigate the high
performance features of StreamBase and thus a second set
of experiments were carried out as described in the next
section.

V. INVESTIGATING HIGH PERFORMANCE FEATURES

In general, stream data processing engines have high
performance features. StreamBase has concurrency and mul-
tiplicity options that can be used to allow us to achieve
higher performance. In this set of experiments we use
these features. First of all we explain the following related
definitions to the high performance features used:

• Concurrency means part of the code runs in its own
thread.

• Multiplicity refer to the number of instances of the
code.

• Dispatch style is related to the multiplicity. The dis-
patch style specifies how each instance receives data
tuples: in round robin, broadcast, or based on a data
value. In broadcast each instance will receive a copy
of the incoming tuple. In round robin, the first tuple
goes to the first instance and the second goes to the
second and so on. Based on value is by checking the
value against a test condition and then dispatching to
the designated instance for that value.

In StreamBase the concurrency, the multiplicity, or both can
be set. According to StreamBase manual, these options can
be used for portions of the application if the code portion
is long-running or compute-intensive, can run without data
dependencies on the rest of the application, and it would not
cause the containing module to be waiting or blocked.

In this set of experiment, each SSQL code for detecting
an attack in the previous section contains two components:
the input adapter and filter code. For the input code, we
can use the concurrency option but not the multiplicity as
it has no input stream. For the filter code part we can
use both options. This means that there are eight possible
implementations as can be seen in Figure 1. Table III shows

Figure 1. All Possible Implementations Using Concurrency/Multiplicity

the results of the experiments of this category. Notice that the
experiments start at speed multiple of 8 as we try to achieve
better result compare to Bro in Table II. Table III (CC)
denotes “Concurrency”. (NC) denotes “No Concurrency”,
(1) denotes single instance or no multiplicity, and (n) denotes
n multiplicity where n is an integer such that n > 1. For
instance, the first row shows the results of running non
concurrent input code (NC) and non concurrent (NC) 50
filter codes of (1) instance each (i.e., no multiplicity). The
following are observations on these results:

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

Table III. Experiments Results Using Concurrency and Multiplicity

Implementation X8 X16 X24 X48
1 NC Input Code + 50 NC Filter Code (1) -79
2 NC Input Code + 50 NC Filter Code (2) -67
3 NC Input Code + 50 CC Filter Code (1) -293
4 NC Input Code + 50 CC Filter Code (2) -299
5 CC Input Code + 50 CC Filter Code (1) -126
6 CC Input Code + 50 CC Filter Code (2) -128
7 CC Input Code + 50 NC Filter Code (1) 0 0 0 -5
8 CC Input Code + 50 NC Filter Code (2) 0 0 0 -2
9 CC Input Code + 50 NC Filter Code (3) 0 0 0 -1
10 CC Input Code + 50 NC Filter Code (5) 0 0 0 -2
11 CC Input Code + 50 NC Filter Code (10) 0 0 0 -5

• The first row result is almost the same result obtained
previously with no concurrency and no multiplicity
(the third row in Table II). The difference is that we
implement the attack code as a module and we did not
use the concurrency or the multiplicity.

• Using 50 concurrency for the filter code give the worst
result (row 3-6).

• Using input code with concurrency and no concurrency
for the filter code gives better results in general (rows
7-11).

• The reason for the bad performance results when using
50 CC (row 3-6) compared with using 50 NC for the
filter code (row 7-11) is that the system running in
the CC implementation maintains many thread-switches
per attack vs. no switch per attack with NC implemen-
tations.

• Row number 9 has the result of best performance where
three non concurrent instances of filter codes are used.
This is consistent with StreamBase rule of thumb that
is for best performance the number of instances should
be equal to the number of cores on the machine or less.
So, we have three instances in addition to the input code
running on four cores on the testing machine.

• In rows 7-8 less than three number of instances used
and in rows 10-11 more than three instances used.
Increasing or decreasing the number of instances from
three cause the performance to degrade.

This set of experiments using the concurrency and multiplic-
ity features of StreamBase enable us to achieve a result that
exceeded the results of Snort and Bro which are presented
in Table II. Furthermore, the testing machine has four cores,
but the solution can take advantage of using more cores.
Snort doe

VI. RELATED WORK

Temporal logic is used in the network based IDS MONID
[23] and ORCHIDS [24]. MONID a prototype tool based
on Eagle [25]. Eagle is a runtime verification or runtime
monitoring system that uses finite traces. Simply, it monitors

the execution of a program and checks its conformity with a
requirements specification, often written in a temporal logic
or as a state machine. Naldurg, Sen, and Thati [23] propose
the use of Eagle in online intrusion detection systems.
In MONID, TL is used to represent a safety formula φ
(specification of the absence of an attack) and the system
continuously evaluates φ against a model M representing
a finite sequence of events. Whenever φ is violated (i.e.,
M 6|= φ) an intrusion alarm is raised.

ORCHIDS [24] is a misuse intrusion detection tool, ca-
pable of analyzing and correlating temporal events in real
time. ORCHIDS uses an online model checking approach.
ORCHIDS uses temporal logic to define attacks that are
complex, correlated sequences of events, which are usually
individually benign. The attack signatures are represented
or described in the system as automata. The ORCHIDS
online algorithm matches these formulae against the logs
and returns enumerated matches [24]. Similar to MONID,
ORCHIDS reads events from many sources that have dif-
ferent formats (networks and system logs) and this makes
representing attack signatures difficult in standard methods.
As far as we know from published paper [24], the tests for
ORCHIDS, mainly concentrated on the proof of concept and
not performance.

The main differences between the system we described
in this paper as compared with MONID and ORCHIDS is
that the model checking problem (M |= φ) is reduced to the
stream query evaluation, which is subsequently executed by
high-performance SDP engine. Also, in the proposed system,
the way of using temporal logic takes advantage of its
expressiveness and conciseness to allow the user to express
attack signatures transparently and independently from the
underlying technical implementations. We could not test
MONID and ORCHIDS in the same testing environment we
used in our experiments, as their implementations were not
available.

Snort [18] and Bro [11] are the oldest and most popular
open source NIDSs known today. According to the Snort
organization site, over 4 million downloads and more than

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

400,000 registered users show the wide popularity of Snort
as a deployed IDS solution. Specifying multiple packet
attacks is not possible in Snort, but it is possible in Bro.
Bro is considered highly stateful (i.e., it keeps track of each
established session states) and was developed primarily as a
research platform for intrusion detection and traffic analysis.
It has no subscription service where users can download new
attack signatures like what the Snort community provides.

Data stream processing was suggested to be used in
intrusion detection by the StreamBase Event Processing
Platform

TM
software development team. An example of using

SB in intrusion detection was given in the demo package
in which a statistical method was used to predict anomaly
behaviour of network traffic.

GIGASCOPE [26] is a proprietary data stream manage-
ment system (DSMS) and was developed by AT&T and it is
currently used in many AT&T network sites. GIGASCOPE is
special purpose DSMS engine for detailed network applica-
tions. Johnson, Muthukrishnan, Spatscheck, and Srivastava
[27] from AT&T research lab argued that GIGASCOPE can
serve as the foundation of the next NIDSs because of the
functionality and performance. They presented some written
examples to detect Denial of Service attacks.

VII. CONCLUSION AND FUTURE WORK

The combine use of temporal logic and stream data
processing as proposed in this paper is a promising solution
toward network intrusion detection system in high-volume
network environments. The use of TL gives the system the
advantage of providing a concise and unambiguous way to
represent attacks. Also, using TL abstracts the user away
from the technical requirements details. In addition, the
system is extensible as it is easy to add new attacks and
recompile the system to include these.

Using stream data processing gives the system the ad-
vantage of having scalable performance. As the results of
our experiments suggest the system outperforms both Snort
and Bro systems in high-speed network environments. The
system benefits from adding additional CPUs to meet a
larger volume of data. To show the feasibility and benefits
of using stream processing, the SB development version was
adequate, even though that it has less capabilities in terms
of execution speed and utilizing machine resources than the
server version [15].

In the future work, we are planning to extend TeStID
to be used in protocol anomaly based network intrusion
detection. MSFOMTL will be used to represent parts of the
TCP protocol normal specification and any deviation from
this specification will be reported at the runtime.

ACKNOWLEDGMENT

The first author would like to thank the Saudi Ministry of
Higher Education for partially funding this research. Also,
we would like to thank the Stream Base Inc. for giving us
the necessary license to use their products in our work.

REFERENCES

[1] W. Stallings, Network Security Essentials: Applications and
Standards. Upper Saddle River, NJ: Prentice Hall, 2000.

[2] K. Scarfore and P. Mell, “Guide to intrusion detection and
prevention systems (IDPS),” National Institute of Standards
and Technology (NIST), Special Publication 800-94, Feb.
2007.

[3] H. Lai, S. Cai, J. Xi, and H. Li, “A parallel intrusion detection
system for high-speed networks,” ACNS 2004. LNCS, vol.
3089, 2004, pp. 439–451.

[4] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Opera-
tional experiences with high-volume network intrusion detec-
tion,” in Proceedings of the SIGSAC: 11th ACM Conference
on Computer and Communications Security (CSS’04), 2004,
pp. 2–11.

[5] Endace Ltd., “EndaceAccess
TM

,” http://www.endace.com/,
2012, Accessed on 02 January 2013.

[6] Hewlett-Packard Development Company, L.P., “Tipping Point
Digital Vaccine Services,” http://h17007.www1.hp.com/docs/
security/400931-004 DigitalVaccine.pdf, 2012, Accessed on
02 January 2013.

[7] K.-Y. Lam, L. Hui, and S.-L. Chung, “A data reduction
method for intrusion detection,” J. Syst. Softw., vol. 33, no. 1,
Apr. 1996, pp. 101–108.

[8] S. Dharmapurikar, J. Lockwood, and M. Ieee, “Fast and
scalable pattern matching for network intrusion detection sys-
tems,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 10, Oct. 2006.

[9] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos,
and S. Ioannidis, “Gnort: High performance network intrusion
detection using graphics processors,” in Proceedings of the
11th international symposium on Recent Advances in Intru-
sion Detection, ser. RAID ’08, 2008, pp. 116-134.

[10] D.-H. Kang, B.-K. Kim, J.-T. Oh, T.-Y. Nam, and J.-S. Jang,
in Agent Computing and Multi-Agent Systems, ser. Lecture
Notes in Computer Science, Z.-Z. Shi and R. Sadananda, Eds.,
2006, vol. 4088.

[11] Lawrence Berkeley National Laboratory, “Bro Intrusion De-
tection System,” http://www.bro-ids.org/, 2011, Accessed on
02 January 2013.

[12] M. Fisher, An Introduction to Practical Formal Methods
Using Temporal Logic. Wiley, 2011. [Online]. Available:
http://books.google.co.uk/books?id=zl6OLZv7d1kC

[13] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom, “STREAM: The
Stanford stream data manager,” in SIGMOD Conference,
2003, p. 665.

[14] EsperTech Inc., “Esper - event stream and complex event pro-
cessing for java,” http://esper.codehaus.org/esper-3.3.0/doc/
reference/en/html single/index.html, 2009, Accessed on 02
January 2013.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

[15] StreamBase Systems, “StreamBase Server,”
http://www.streambase.com/products-StreamBaseServer.htm,
2012, Accessed on 02 January 2013.

[16] A. Ahmed, A. Lisitsa, and C. Dixon, “A misuse-based net-
work intrusion detection system using temporal logic and
stream processing,” in Proceedings of the 5th International
Conference on Network and System Security, P. Samarati,
S. Foresti, J. Hu, and G. Livraga, Eds. Milan, Italy: IEEE,
2011, pp. 1-8.

[17] R. Cunningham, R. Lippmann, J. Fried, S. Garfinkel,
R. Kendall, S. Webster, D. Wyschogrod, and M. Zissman,
“Evaluating intrusion detection systems without attacking
your friends: The 1998 DARPA intrusion detection evalua-
tion,” Defense Advanced Research Projects Agency, Depart-
ment of US Defense, Technical report, 1998.

[18] Sourcefire, “SNORT,” http://www.snort.org/, 2010, Accessed
on 02 January 2013.

[19] TRAC, “Welcome to TCPREPLAY,” http://tcpreplay.synfin.
net/, 2010, Accessed on 02 January 2013.

[20] The TCPDUMP Group, “TCPDUMP and LIBPCAP,” http:
//www.tcpdump.org/, 2010, Accessed on 02 January 2013.

[21] IDAPPCOM Ltd., “Traffic IQ Library,” http://www.idappcom.
com/index.php, 2012, Accessed on 02 January 2013.

[22] MIT Lincoln Laboratory, “DARPA Intrusion Detection
Data Sets,” http://www.ll.mit.edu/mission/communications/
ist/corpora/ideval/data/index.html, 1999, Accessed on 02 Jan-
uary 2013.

[23] P. Naldurg, K. Sen, and P. Thati, “A temporal logic based
framework for intrusion detection,” in Proceedings of the 24th
IFIP WG 6.1 International Conference on Formal Techniques
for Networked and Distributed Systems, Madrid, Spain, 2004.

[24] J. Olivain and J. Goubault-Larrecq, “The ORCHIDS intrusion
detection tool,” in Proceedings of the 17th International
Conference on Computer Aided Verification (CAV’05), 2005.

[25] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-
based runtime verification,” in Proceedings of the VMCAI’04,
5th International Conference on Verification, Model Checking
and Abstract Interpretation, Venice, Italy, 2004, pp. 44-57.

[26] C. Cranor, T. Johnson, and O. Spataschek, “Gigascope: A
stream database for network applications,” in SIGMOD, 2003,
pp. 647-651.

[27] T. Johnson, S. Muthukrishnan, O. Spatscheck, and D. Srivas-
tava, “Streams, security and scalability,” in Proceedings of the
19th annual IFIP WG 11.3 working conference on Data and
Applications Security, ser. DBSec’05, 2005, pp. 1-15.

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-281-3

ICIMP 2013 : The Eighth International Conference on Internet Monitoring and Protection

