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Abstract - In this paper, we investigate the problem of the 

availability of complete process execution event logs in order to 

offer automatic process model generation (process discovery) 

possibility by process mining techniques. Therefore, we present 

the Process Observer project that generates manual logs and 

guides process participants through process execution. Like 

this, our project offers the possibility for the automatic 

generation of process models within organizations, without the 

availability of any information system. Process participants are 

encouraged to work with the Process Observer by various 

process execution support functions, like an auto-suggestion of 

process data and dynamic recommendations of following 

processes. 

Keywords - Process Mining, Process Monitoring, Activity 

Tracking, Guidance through Process Execution 

I.  INTRODUCTION 

Business process management (BPM) is considered an 
essential strategy to create and maintain competitive 
advantage by modeling, controlling and monitoring 
production and development as well as administrative 
processes [1] [2]. Many organizations adopt a process based 
approach to manage various operations. BPM starts with a 
modeling phase, which is very time and cost intensive. It 
requires deep knowledge of the underlying application and 
long discussions with the domain experts involved in the 
processes in order to cover the different peculiarities of the 
process [3]. Since process modeling is an expensive and 
cumbersome task, we identify approaches that promise to 
reduce the modeling effort. One of them is process mining. 
Process mining utilizes information/knowledge about 
processes whilst execution. The idea is to extract knowledge 
from event logs recorded by information systems. Thus, 
process mining aims at the (semi-)automatic reconstruction 
of process models using information provided by event logs 
[4]. The computer-aided creation of process models offers 
huge potential of saving time. By deriving process models 
from event logs, the appropriateness of process models can 
be guaranteed to a certain extent, since they are constructed 
according to the way the processes have actually been 
executed. During the last decade, many techniques and 
algorithms for process mining have been developed and 
evaluated in different domains [5]. The basis for a successful 
generation of a process model through process mining is an 
existing and complete process execution log. This is also the 
big challenge for a successful application of process mining. 
First of all, not all processes are executed by information 

systems, i.e., they are executed "external" to computers. In 
such cases, there is no event log that represents a process 
available and process mining cannot be applied. In the case 
that information systems are already used to execute 
processes there must be guarantees that these event logs 
record process execution in such a way that processes can be 
reconstructed. Besides, these event logs must be analyzable 
in such a way that appropriate process models can be 
derived. It is obvious: the quality and availability of event 
logs determine the applicability of process mining 
techniques. Our research starts with the assumption that a 
complete and freely analyzable event log is usually not 
available. We regard this scenario as the most common one. 
Thus, one of the major aims of our research is to harvest 
process execution knowledge. This enables the assembly of a 
process execution log. This log is built up independently 
from the existence of information systems that are (at least 
partly) executing the processes. We developed a special 
software, the Process Observer (PO), that can be envisioned 
as a tool that permanently runs on the computers of process 
participants that asks the process participants “What are you 
doing right now?”. The participants then have to describe 
what they are doing. Here, the user does not need any 
process modeling skills. This is also one very important 
prerequisite since we assume that just few process 
participants do show process modeling skills. The recorded 
data is used by the PO to mine for process models. Of 
course, this process information can be enriched and 
complemented by event logs from information systems that 
are involved in the process execution. Gathering process 
execution information comes with the cost that process 
participants have to record what they are doing. Of course, 
this means additional work for the process participants. 
Therefore, the PO must offer a stimulus that motivates 
process participants to work with the PO. This stimulus is 
put into effect by a recommendation service. The PO 
continuously analyzes available process log data to guide the 
process users. This means, it suggests process steps that the 
user most probably should perform. We have experienced 
that this feature is especially important for users that are still 
not too familiar with the application; they are thankful that 
the PO recommends possible process steps. This dynamic 
recommendation service becomes more and more reliable the 
more process instances have been executed under the 
guidance of the PO. The execution of first instances of a 
process will therefore not considerably be supported. The 
effect becomes apparent when a couple of process instances 
have been executed. At the end of this introduction, we want 
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to classify the PO. As dimensions for this classification we 
take the two issues: attaining a process model and executing 
a process model. We already discussed the two principal 
approaches to attain a process model. They will be assessed 
with respect to the amount of effort a process participant has 
to or is able to invest. The first approach to attain a process 
model is to create it within a process modeling project. This 
task is very costly; it usually cannot be performed by process 
participants but requires process modeling experts. They 
identify the process through interviews with the domain 
experts and need to get a good overview over all possible 
process peculiarities to guarantee the completeness of the 
process model. Process models can also be attained by the 
application of process mining techniques. This approach is 
cheap since only little work from process modelers is 
required. However, it depends on the existence of event logs 
representing the execution of processes. These two 
approaches depict two extreme landmarks: on the one hand 
processes can be performed within information systems. On 
the other hand, information systems could not be involved at 
all. The PO bridges the contrary approaches of process 
execution und thus combines their benefits. It is connectable 
to process execution systems and can leverage them; also it 
provides execution support for "external" process execution.  

In Section II, we will give an overview over related 
works. In Section III we will explain our concepts and the 
general approach. Furthermore, concrete implementation 
techniques will be shown in Section IV. Section V describes 
the influence of the PO on the current process lifecycle. In 
Section VI we will finally conclude and give an outlook on 
further research issues and applications. 

 

II. RELATED WORK 

The idea of automating process discovery through event-
data analysis was first introduced by Cook and Wolf in the 
context of software engineering processes [6]. In the 
following years, Van der Aalst et al. developed further 
techniques and applied them in the context of workflow 
management under the term process mining [5]. Generally, 
the goal of process mining is to extract information about 
processes from event logs of information systems [7]. There 
are already several algorithms and even complete tools, like 
the ProM Framework [8], that aim at generating process 
models automatically. During the last decade, several 
algorithms have been developed, focusing different 
perspectives of process execution data. Van der Aalst et al. 
give a detailed introduction to the topic process mining and a 
recapitulation of research achievements in [5] and [7]. For 
the first prototype of the PO, we use the alpha-algorithm of 
[3]. However, for our future research activity we consider 
algorithms like the HeuristicsMiner [9] appropriate, because 
they are able to deal with noisy logs, i.e., incorrectly or 
incomplete logged information. Process mining algorithms 
rely on complete event logs from information systems. In the 
case of an incomplete log or even the unavailability of an 
information system, events can alternatively be recorded by 
manual activity tracking respectively task management 
methods. There are several approaches for activity tracking 

to generate weakly-structured process models by capturing 
data on personal task management [10] [11]. However, these 
approaches lack the use of process mining techniques during 
and after process run-time. In contrast to that we explicitly 
try to encourage user contribution to an evolving process 
model by using process mining methods. In order to discover 
identical processes between different data storages, we 
suggest using basic automatic ontology matching algorithms 
[12]. Process mining is considered as a part of Business 
Process Management (BPM). BPM relies on a life-cycle 
where different phases of the process are focused. The 
traditional approach consists of the following phases: process 
modeling, implementation, execution and evaluation, started 
by the modeling step. Despite the successful development 
and evaluation of the process mining algorithms named 
above, process mining is ranked among the process 
evaluation phase [1]. Consider, for example, Enterprise 
Resource Planning (ERP) systems such as SAP, OpenERP, 
Oracle, Customer Relationship Management (CRM) 
software, etc. These systems require a designed process 
model before they go into service [3]. In these situations, 
process mining could only be used for process rediscovery 
and not for real process discovery. Therefore, we aim at 
assigning process mining to the discovery phase by recording 
the complete process data covering all aspects of the 
perspective-oriented process modeling (POPM). In order to 
get a general idea about POPM perspectives, we recommend 
[13] and [14]. 

 

III. GENERATION OF PROCESS EXECUTION LOGS AND 

GUIDANCE THROUGH PROCESS EXECUTION 

Process mining techniques allow for automatically 

constructing process models. The algorithms are analyzing a 

process execution log file, in the following referred to as 

(process) log; this log is usually generated by information 

systems (IS). However, there are processes that are not 

executed by information systems. This is an observation that 

is very important for the classification of our research. Thus, 

in order to define the application area of our project we have 

to introduce three different types of process execution 

support, classified upon the degree of logging and execution 

support (Fig. 1): 
 

 
 

Figure 1. Application area of the Process Observer project 

 

- IS-unsupported: Here, processes are executed without the 

support of any information system. Thus, there is no log for 

these processes. Furthermore, these processes are also not 

supported during execution. For example, there is no 

information system that guides a user through the process. 
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- IS-supported: Here, processes are executed by an 

information system. Processes of this type are (possibly) 

logged. However, the information system is not directly 

guiding users through the process. The user has to find his 

way through the information system by himself. 

- WF-supported: Here, processes are executed by Workflow 

management systems (WFMS). WFMS build a subset of IS. 

Typically, they maintain a process log. Additionally, the 

process participants are guided through process execution 

with concrete recommendations of how to continue process 

execution (work list) [15]. 

The basis for the successful generation of process 

models through process mining is an existing and complete 

log. Thus, WF-supported processes are a great source for 

process mining. Nevertheless, the existence of a process log 

is the main prerequisite and also the major drawback for a 

successful application of process mining. Since we assume 

that in many applications, WF-supported processes will not 

be encountered the PO turns its attention to IS-supported 

and IS-unsupported processes (Fig. 1). In order to log IS-

unsupported processes, we extend process execution by 

manual logging. We define the term manual logging as the 

user action of entering process execution data (e.g., process 

IDs, documents, and services) as well as of marking process 

execution events, among other things process start and 

completion. The action of manual logging is implemented 

by the PO Logging Client. Finally, our goal is to provide 

manual logging in such cases when processes are neither IS-

supported nor WF-supported. The final aim is then to be 

able to apply process mining. 
 

A. Aims of the Process Observer 

The challenge of the PO is to provide a broader basis for 
process mining by implying IS-unsupported processes in 
logs. Therefore, the PO project aims at the adoption and 
generation of manual logs. The generated manual logs open 
the opportunity for the automatic generation of process 
models by process mining techniques even for applications 
that do not involve information systems. As manual logging 
is performed by process participants, it means additional 
work for them. Therefore, the PO must offer a stimulus that 
motivates process participants to support manual logging. 
Since the PO is particularly of interest for IS-unsupported 
and IS-supported processes, it offers a stimulus with respect 
to process execution guidance (this is what these two kinds 
of processes are lacking). The PO offers recommendations 
about how to continue a process execution and offers auto-
suggest support. This kind of guidance during process 
execution is typically exclusively offered by WFMS. 

 

B. Generation of Manual Logs 

From now on, we generally assume that a complete and 
freely analyzable log is not available, i.e., we are focusing on 
IS-(un)supported processes. We regard this scenario as the 
most common one and it needs to be supported to apply 
process mining. 

1) Manual Logging: 

The generation of a manual log is initiated by the PO 

Logging Client. Process participants record what they are 

currently doing, i.e., they provide information about the 

process they are currently performing. It is very important 

that users do not need any process modeling skills to record 

this information.  

An important issue is to determine what data the process 

participants should record. We recommend to record data 

based upon the different aspects of perspective oriented 

process modeling (POPM). We have experienced that most 

users are very familiar with the approach of describing 

process in the POPM method. Process participants have to 

enter data according to the following perspectives: 

- Functional perspective: name of the current process step, 

the name of the corresponding superordinate process (if 

available) 

- Data perspective: data, i.e., documents or generally 

information that was used by the current process step as 

well as the data or documents that were produced 

- Operational perspective: tools, applications or services 

that were used during the execution of the currently 

executed process step 

- Organizational perspective: information about the process 

executor (typically, this is that person that is logged into the 

PO Logging Client), the personal information is enriched by 

group and role memberships 

Besides, process participants have to trace process 

execution: he has to declare that process execution starts, 

ends or is aborted. 
 

2) Merging Logs: 

The application of the PO Logging Client finally results in 

the generation of a manual log. In the case, that an 

information system is applied, there might also be an 

automatic log available. We harness this situation by 

combining the manual log with the automatic log. Doing 

this, missing process information of one of the logs can be 

completed by the other log. In order to be able to combine 

the two logs, conformance between the recorded data of 

both logs must be achieved. Therefore, we suggest a 

component for merging the logs, i.e., locating (matching) 

and unifying processes that were recorded in the manual log 

as well as in the automatic log. This results in one consistent 

log that contains the execution data of IS-unsupported as 

well as IS-supported processes. 
 

C. Guidance through process execution 

According to our classification in Fig. 1, many process 

executions are not assisted by a guidance component, i.e., 

the participants must decide for themselves which process 

step they want to perform next. Only WF-supported 

processes do provide this feature. In this subsection, we will 

show how the PO offers such guidance. It consists of two 

sub-features: dynamic recommendations and auto-suggest 

function. 
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1) Dynamic Recommendations: 

Dynamic recommendations are generated in the following 

way: After the completion of a process step, the PO 

immediately starts a process mining algorithm analyzing 

available log data. It then tries to classify this current 

process execution into former process executions. If it is 

successful, the PO can recommend the execution of a 

subsequent process step according to the processes that have 

been executed formerly. This recommendation service 

becomes more and more reliable the more process instances 

have been executed under the guidance of the PO. When 

only a few or even none processes of this type have been 

executed so far, no recommendations can be made for the 

particular process. Especially when only a few process 

instances have been performed so far, the recommendation 

can be inconsistent. Then, process participants can ignore 

this recommendation. In order to know about the quality of 

the recommendation, the number of process instances the 

recommendation is based upon is displayed in the user 

interface. 

Example: A process participant just completed a process 

step A. This step has already been completed and recorded 

10 times before by other agents. On the one hand, step B 

was executed 7 times after step A; on the other hand, step C 

was executed 3 times after step A. The PO now starts 

process mining and generates a process model that contains 

the information that process A shows two subsequent 

processes B and C. Furthermore, the tool takes into account 

that step B occurred 7 times and step C occurred 3 times 

after step A in the log. Thus, a dynamic recommendation is 

shown to the user suggesting to continue with step B (70%) 

or step C (30%). 
 

2) Auto Suggest Function: 

The second aspect of guidance during process execution 

is provided by an auto-suggest function. This function helps 

the process participant to enter required information. The 

PO compares previously recorded process names, data, tool 

names, etc. with the currently entered term and auto-

suggests terms. This function supports two issues: first, the 

user might nicely be supported through information 

provision; secondly, by suggesting already used terms, the 

probability of having to deal with too many aliases in the 

system is diminished to a certain extent. 

Example: Agent 1 is executing a process "Drinking Coffee". 

Agent 1 starts the process by recording the process name, 

i.e., Agent 1 enters "Drinking Coffee". The agent starts and 

completes the process. The process gets a unique identifier 

and is recorded in the log. Later, Agent 2 also wants to drink 

coffee and executes this process with support of the PO. He 

starts by typing "Coffee" instead of "Drinking" in the 

process name row. This would easily result in the recording 

of a process name like “Coffee Drinking” or just "Coffee". 

So, aliases are produced without even recognizing. 

However, in this case an auto suggestion will appear, 

recommending to choose the process "Drinking Coffee". 

Agent 2 happily chooses the suggested process and thus 

ensures homogenous naming of the process step. 
 

3) Visualization and manual mapping of processes: 

Example: If the example from the former sub-section 

would occur as described, this would be ideal. However, in 

many cases same processes will be referenced by different 

aliases and thus stay unrecognized by the PO. In order to 

handle problems like this, the PO offers an administration 

interface, which allows process administrators to visualize 

recorded processes. Administrators can start process mining 

algorithms and thus generate process models visualizing 

observed processes. Doing this, different aliases of 

processes can be discovered. However, this must be done 

manually by the administrator. In order to map different 

aliases of the same process, the PO administration interface 

offers a mapping panel. This mapping can be declared valid 

for multiple processes (Fig. 2). After defining a mapping 

between processes, a repeated execution of process mining 

results in the visualization of the amended process model. 
 

 
 

Figure 2. Sample mapping of recorded processes 
 

D. Usage scenarios for the Process Observer 

As a conclusion, we will give a short description of three 

different application scenarios of the PO. 

  

1) Use Case 1 – Generation of manual logs: 

 

 
 

Figure 3. First use case – generation of manual logs 
 

 

The first use case comprises the generation of a manual 

log (Fig. 3) without an information system being available. 

The participating agents are executing the corresponding 

processes under the guidance of the PO. The manual log is 

finally analyzed by process mining algorithms. The 

resulting process models can be fed into a WFMS if wanted 

and if available. Thus, processes can afterwards be executed 

by a WFMS. 
 

2) Use Case 2 – Merging of logs: 

The second use case comprises the application of the PO 

in parallel to an information system (Fig. 4). After the 

generation of a manual log, we have to merge the automatic 

and the manual log. 
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Figure 4. Second use case – merging of logs 
 

The intention is to complete the log information mutually. 

Identical processes are merged to one single process. 

Process Mining is finally applied to the joint log. Identified 

processes can be fed back into information systems. 
 

3) Use Case 3 – Running WFMS: 

 

 
 

Figure 5. Third use case – running WFMS 
 

The third use case assumes a fully-fledged WFMS running 

(Fig. 5). Here, manually logging is not necessary anymore 

because the WFMS includes all the processes being 

executed. It is important to define a threshold, when process 

management can shift from case 2 to case 3. Therefore, we 

define a value matching_count (1) as the number of matched 

processes from the manual log and the automatic log 

divided by the complete number of processes recorded in 

the manual log. The procedure of calculating this value is 

the following: the algorithm runs through both logs. It 

compares each process of the manual log with the processes 

of the automatic log. If an ontology matching algorithm 

identified two processes as equal, the numerator 

#matched_processes will be increased by 1. After finishing 

traversing both log files, the resulting value of 

#matched_processes is divided by the total number of 

recorded processes within the manual log. 

 
 (1) 

 

Like this, the calculated value reflects how many processes 

are already executed with support of the WFMS. Generally, 

an organization finally tries to execute all processes under 

the guidance of the WFMS, but the preferred value of 

matching-count can also alternatively be defined by the 

management. For a special organization a matching-count 

value of 0.9 may be enough. This means, 90% of the 

executed processes are implemented and supported by the 

WFMS. Like this, the right time of the application end of 

the PO can be declared by continuously calculating the 

matching_count (1) value. 
 

IV. ARCHITECTURE AND IMPLEMENTATION 

In this section, we will describe the architecture and 
implementation of the PO. In the first part, we will show 
implementation details of the PO Logging Client. After that, 
process mining implementation and data structures will be 
explained. Furthermore, we present the administration and 
mapping components. 

 

A. Process Observer Logging Client 

The core of the PO is constituted by the PO Logging 
Client. We decided to choose a web based implementation of 
the logging interface. This guarantees a great coverage of 
application scenarios, i.e., the PO can be used in almost all 
applications. If the users are working in a "normal" office, 
the PO can run on a stationary PC or notebook, if users are 
working "in the field", the PO could as well run on a mobile 
device (e.g., smartphone). For our prototype we chose an 
implementation based on Microsoft ASP.NET 4.0 and the 
MS SQL Server 2008 database, but surely any equally 
equipped database and server technology would be suitable. 
The core of the web application that implements the PO 
Logging Client is located on a web server connected to a 
database. Users have to identify themselves by logging in 
with their username and password. Users can be assigned to 
one or more organizational roles. Hence, recommendations 
and suggestions can be personalized to the users’ roles. 
When users enter process names they want to log, these text 
strings are immediately sent to the PO to test for similar 
process names. The names of all processes containing a 
similar string are sent back to the client as a generic list. This 
list is finally displayed to the user as an auto suggestion list 
(Fig. 6). The user can select a process from this list. If none 
of the suggested processes is appropriate, the input process 
name is added as a new process. Accordingly, all other 
process data are captured (e.g., superordinate process, current 
process instance, used and produced data/documents and 
supporting tools). Finally, the user starts the process. 
 

 

 
 

Figure 6. Example of auto suggestion list 
 

B. Implementation of process mining, data structures and 

dynamic recommendations 

As already described in Section III, the PO offers 

dynamic recommendations of how to continue after 

finishing a process step. Therefore, a process mining 

algorithm is executed after each process step. In our 

prototype we use the alpha algorithm of [3] in order to 

analyze the available logging information. The algorithm 

analyzes the log and builds up a dependency graph. 

Therefore, we used the graph data structure QuickGraph of 
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[16]. For implementation details concerning the alpha 

algorithm we refer to [3]. The logged execution information 

results in process models represented as graphs. A node is 

an instance of a class "Process" containing fields for process 

name, the executing originator role, used and produced data 

items as well as supporting tool items. Furthermore, the 

class contains two fields for the pre- and post-connectors 

which represent the semantic connection to previous and 

following processes. This information is also provided by 

the alpha algorithm. Once a process model has been 

generated as a graph, the PO can use it in order to display 

recommendations after a user has finished a process step. 

Therefore, the recently completed process is searched within 

the process model, i.e., the graph is traversed until the 

current process ID is identical to the recently completed 

one. After that, all available edges of this node are examined 

and their occurrence is counted. Like this, we generate a list, 

containing the processes that were executed after the 

recently completed one. Thus, a popup is displayed, giving 

the user the possibility to choose the following process step. 
 

C. Administration interface 

Additionally, the PO offers an administration interface that 
allows process administrators to visualize recorded processes 
as well as defining mappings between logged processes as 
described in Section III. The application consists of two 
panels, one for process model selection and visualization and 
the other one for defining mappings between processes. One 
could easily imagine additional applications, like agent-role 
assignments or dataflow applications. Those are planned for 
future versions. 

 

1) Process visualization: 

In order to visualize the generated process model we use 

basic graph visualization frameworks. In our prototype we 

used the Graph# framework [17] to display the QuickGraph 

data structures. The visualization procedure is started by 

examining the recorded event log for contained composite 

processes. A process is recognized as composite, if it was 

chosen as a superordinate process by a process participant 

during the logging phase of a process with the PO. The 

names of the composite processes are loaded in a tree view. 

The user selects a composite process that should be 

displayed from the tree view. The tree view shows the 

underlying process hierarchy. Processes that are contained 

within another one can be displayed by extending a process 

entry. After the selection of an entry, all event log 

information concerning the selected process is fetched from 

the database. After that, the alpha algorithm is applied to the 

resulting event log data. As stated before, the algorithm 

generates a dependency graph. This graph is finally assigned 

to the Graph# framework and displayed to the user. Here, 

the user has various possibilities to scroll within the 

visualization or to open the model of underlying composite 

processes by selecting the corresponding process nodes. 

 

2) Mapping definition panel: 

Furthermore, the administration interface offers a separate 

panel to define mappings between logged processes. 

Therefore, the database provides a separate mapping table 

with three columns: “superordinate process”, i.e., the super 

process within the mapping is valid, “target process”, i.e., 

the process on which another one is mapped and finally 

“mapped process”, i.e., the process which is mapped. 

Considering this data model, the mapping panel consists of 

three columns, too. They appear after the first things first 

principal. In the first list, the user selects the superordinate 

process within the mapping should be valid. After this 

selection, the target process list appears. The list is 

initialized with all processes occurring within the chosen 

superordinate process. Like this, the user can choose the 

target process for the defined mapping. Last but not least, 

the last list, i.e., a checkbox list, appears. It is again 

initialized with all processes of the corresponding super 

process. Here, the user checks all the corresponding boxes 

of the processes he would like to map on the target process 

chosen before. Finally, the mapping is applied to the 

database. 
 

V. CHANGES WITHIN THE PROCESS LIFECYCLE THROUGH 

THE PROCESS OBSERVER 

In this section, we will describe the impact of the PO on 
different phases in the process lifecycle. As already 
mentioned, the previous process lifecycle [1] consists of an 
initial modeling phase that is very time consuming. In this 
lifecycle, process mining is only used for the evaluation of 
the process being executed with support of a WFMS. As any 
WFMS needs at least one predefined process model in order 
to be operable [3], there is no possibility to support the 
intense process modeling phase with the automatic process 
discovery possibilities of process mining. The development 
of the PO offers the possibility to change this situation. With 
support of the PO, the lifecycle can be rearranged in the 
following way (Fig. 7). The initial step consists of process 
execution (as usual) accompanied by manual logging, i.e., 
the generation of a manual log, with the PO. This phase is 
followed by a process mining step. Afterwards, the results of 
process mining possibly have to be reworked in a process 
remodeling phase. The benefit of the application of the PO 
consists of the time saving between the previous process 
modeling phase and the less time consuming remodeling 
phase. 

 
 

Figure 7. Adapted process lifecycle through the application of the PO 
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The previous modeling phase, i.e., the project of process 
discovery and process definition, had to be operated 
completely manual. The process management team had to do 
several interviews with agents, live observations of processes 
and the tracking of documents, for example. In contrast to 
that, process discovery with the PO is generally more 
automatable. Merely reworking effort is required in order to 
annihilate possibly occurring exceptions or execution errors. 
Based on the results of these first three steps, business 
processes can be evaluated and finally optimized. 

 

VI. CONCLUSION AND OUTLOOK 

In this paper, we discussed the problem of the availability 

of complete process execution event logs in order to offer 

automatic process model generation possibility by process 

mining techniques. Therefore, we presented the Process 

Observer (PO) project that generates manual logs and 

guides process participants through process execution. Like 

this, our project offers the possibility for the automatic 

generation of process models within organizations, without 

the availability of any information system. Process 

participants are encouraged to work with the PO by various 

process execution support functions, like the auto-

suggestion of process data and dynamic recommendations 

of following processes. This kind of guidance during 

process execution is typically exclusively offered by 

WFMS. Our future research activity in the field of the PO 

will start with the development of matching methods in 

order to match and merge identical processes. We will also 

implement a module to transfer the recorded process data 

into the new the eXtensible Event Stream (XES) format 

[18]. Furthermore, we will face the problem of recording 

and logging processes in different granularities. This 

research faces one of the great challenges of process mining 

declared during the meeting of the IEEE Task force on 

process mining at the BPM conference in 2011. In order to 

deal with execution exceptions and wrongly logged 

processes, we will implement a heuristic process mining 

algorithm [9]. Like this, some of the manual mapping 

activity will be obsolete. Additionally, the control-flow 

mining algorithm should be featured by decision mining [4] 

in order to enrich the process models with decision 

information based upon data extensions. Furthermore, we 

are developing a new process discovery approach based 

upon explicit semantic definitions. Finally, we are looking 

forward to an extensive application of the PO in an 

organization, accompanied by a detailed documentation of 

the practice. 
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