
 

Algorithm for Sensor Exclusion and Dynamic Cluster Head Selection in  

Cognitive Radio Networks 

 

 

Alcides Mário Joaquim Tomás  

National Institute of Telecommunications - Inatel  

Minas Gerais – MG, Brasil 

e-mail: alcides.tomas@mtel.inatel.br 

José Marcos Camara Brito 

National Institute of Telecommunications - Inatel 

Minas Gerais – MG, Brasil 

e-mail: brito@inatel.br 

Abstract— Cognitive Radio (CR) is a promising technology for 

optimizing spectrum utilization in wireless communication 

networks, particularly in fifth (5G) and sixth (6G) 

generationscenarios. In massive Internet of Things (IoT) 

environments, where numerous devices share network 

resources, reducing energy consumption is essential to extend 

the lifespan of both devices and the secondary network (CR 

network). This article proposes an algorithm that combines 

temporary and permanent sensor exclusion with the dynamic 

selection of Cluster Heads (CHs). The goal is to reduce energy 

consumption without compromising the system's detection 

capability, thereby ensuring greater network longevity. The 

simulations conducted prove that the proposed algorithm 

ensures robust and efficient detection, while significantly 

increasing the lifespan of the secondary network. 

Keywords— Cognitive radio network; cooperative spectrum 

sensing; energy detector; k-means clustering; network lifespan. 

I. INTRODUCTION 

In recent years, the rapid growth of wireless 
communication systems has intensified the scarcity of 
Radio Frequency (RF) spectrum. This is mainly due to the 
fixed allocation policy, which grants exclusive spectrum 
usage rights to a network of licensed users, known as 
Primary Users (PUs). The demand for new 
telecommunication services drives research and 
technologies such as Fifth Generation (5G), the Internet of 
Things (IoT), and, in the future, Sixth Generation (6G). 
However, to enable most wireless communication services, 
overcoming spectrum limitations is essential, as many 
frequency bands are required to support the increasing 
number of transmitters and receivers expected in 5G, 6G, 
and IoT networks. In this context, the concept of Cognitive 
Radio (CR) emerges as a proposal to efficiently utilize idle 
bands in the RF spectrum allocated to PUs. The concept of 
CR was initially proposed by Joseph Mitola III in 1999 [1]. 
This technology consists of intelligent transceivers 
integrated into a secondary network, which, among other 
functions, perform Spectrum Sensing (SS) to 
opportunistically transmit in the gaps left by the primary 
network. SS is one of the main attributes of CRs and is 
considered a fundamental element for enabling dynamic 
spectrum access. 

A. Related work 

Numerous studies have proposed cluster-based 
Cooperative Spectrum Sensing (CSS) approaches in 
Cognitive Radio Networks (CRNs) to reduce energy 
consumption. CSS involves multiple Secondary Users 
(SUs) co-participating in the sensing process to improve the 
accuracy of channel occupancy state decisions. The most 
common form of CSS is the centralized approach, in which 
the sensing information gathered by the SUs is transmitted 
to the fusion center (FC) of the secondary network, where 
the decision on the state of the sensed channel is made [2]. 

In [3], a sensor node selection scheme is proposed, 

which prioritizes sensors with higher Signal-to-Noise Ratio 

(SNR) and greater residual energy. This ensures that only 

an optimized subset of nodes performs CSS, while the 

remaining ones stay in energy-saving mode. Although 

effective in reducing energy consumption in CRNs, the 

main limitation of this approach is the absence of a node 

rotation strategy, which may compromise the long-term 

efficiency of the network.  In [4], a sensor selection method 

based on residual energy levels is proposed, prioritizing 

nodes with higher energy for cooperative sensing. 

Although this approach is energy-efficient, it may 

introduce overhead in dense networks and compromise 

detection accuracy, which constitutes its main limitation. 

In [5], a scheme is proposed that employs peer-to-peer 

coupling of sensor nodes, alternating between sleep and 

wake modes to balance energy consumption. Although 

effective in conserving energy, its main limitation lies in 

the potential latency introduced in scenarios with high 

detection demands, due to the constant switching between 

modes. In [6], a distributed Cluster Head (CH) election 

scheme based on the residual energy of nodes is proposed. 

In each round, the node with the highest residual energy 

within each cluster is selected as the CH, responsible for 

transmitting data to the fusion center. Although this scheme 

effectively reduces energy consumption, its main limitation 

lies in the continuous selection of CHs based solely on 

available energy, which may favor certain nodes and 

accelerate their energy depletion, potentially 

compromising the network’s long-term stability.  

B. Contribution and structure of the article 

In CRNs, energy efficiency and detection performance 

are priorities due to energy limitations and the variability 

of the sensing environment. This paper proposes an 

innovative algorithm that combines temporary and 

permanent sensor exclusion with dynamic CH selection. 

The exclusion works as follows: at each sensing cycle, the 

detection performance of each participating sensor is 

evaluated. If a sensor makes an incorrect decision about the 

spectrum occupancy state, it is penalized and remains 

inactive for some cycles, which characterizes temporary 

exclusion, or backoff. After this inactivity period, the 

sensor is reintegrated into the process. Sensors with 

sufficient energy and good performance are prioritized for 

CSS. 

The CH selection is performed after a predefined 

number of cycles, based on the calculation of the cluster's 

Center of Mass (CM), weighted by the residual energy of 

the sensors with sufficient energy levels. The sensor closest 

to the CM and with the highest available energy is chosen 

as the CH. It is assumed that the reporting channel is error-
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free, ensuring accurate communication between the CH and 

the FC for sensing decisions. 

The integration of these strategies allowed the 

network's operation to be extended without compromising 

the Detection Probability (𝑃𝑑). For example, the dynamic 

selection of CHs ensured a balanced load distribution 

among the sensors, which increased the secondary 

network's lifespan and provided a more stable 𝑃𝑑  over 

several sensing cycles, surpassing the performance of other 

systems. The sensors' energy decreases as they participate 

in sensing, and those that reach critical levels are 

deactivated to ensure network reliability and energy load 

balance. 
The remainder of this paper is organized as follows: 

Section II presents the system model. Cooperative spectrum 
sensing using energy detection is discussed in Section III. 
Signal and channel modeling are addressed in Section IV. 
Section V focuses on energy consumption modeling. The 
proposed algorithm is detailed in Section VI. Section VII 
provides the results, while Section VIII concludes. 

II. SYTEM MODEL 

A. Spatial distribution of SUs 

The SUs are devices that operate in CRNs, using radio 

spectrum dynamically and without a license. In other 

words, SUs take advantage of spectrum gaps that are not 

used by Primary Users (PUs), without interfering with the 

operations of these licensed users. The positions of the SUs 

are determined by two-dimensional coordinates ( 𝑥, 𝑦 ), 

randomly distributed within the coverage area of the 

primary network. This coverage area has a radius 𝑟 around 

the FC, located at coordinate (0,0). The Primary Network 

Transmitter (𝑃𝑈𝑡𝑥 ) is positioned at coordinates (−𝑟, 𝑟), 

with the coverage area radius defined as 𝑟 =  1000 𝑚 . 

Additionally, shadowed areas are defined to evaluate the 

impact of the received signal on SUs located in these 

regions. Due to attenuation caused by obstacles, these 

sensors are more susceptible to detection failures and are 

consequently penalized more frequently. 

This penalty results in periods of inactivity during 

which the sensors cease to participate in the sensing process 

and enter energy-saving mode. However, they can still 

transmit data if the channel is detected as free and, if their 

performance improves, they may be reintegrated into the 

network. On the other hand, sensors with successive cycles 

of inactivity are permanently excluded to prevent 

compromising the decisions of the cluster and, 

consequently, the FC.  

Figure 1 illustrates the execution of the k-means 

clustering process. As shown in Figure 1, the process was 

carried out with 𝑚𝑇 =  20  and 𝑐𝑚𝑎𝑥 = 3 , generated in 

MATLAB. The colors of the points distinguish the clusters 

and their respective SUs, while the shaded areas are 

represented by dashed circles. The centroids resulting from 

the clustering are marked with crosses. The 𝑃𝑈𝑡𝑥, FC, and 

CHs are also highlighted, along with the circular coverage 

area of the primary network.  

The secondary network consists of three main 

components: the FC, which makes global decisions; the 

SUs, which perform spectrum sensing; and a subset of SUs 

that act as CHs, coordinating the cluster decisions. 

 

Figure 1. Model of the spatial distribution of SUs, clustering using k-

means algorithm and representation of shadowed areas. 

B.  Clustering Model 

For cluster formation, the K-Means clustering 

algorithm was used due to its simplicity, ease of 

implementation, and computational efficiency. This 

algorithm aims to partition the SUs into 𝑘 clusters, where 

each SU corresponds to the cluster whose centroid is the 

closest. 

The process begins with the random selection of 𝑘 initial 

centroids, which are iteratively adjusted until the cluster 

positions stabilize or no longer change significantly. This 

method allows the partitioning of SUs based on their two-

dimensional positions (𝑥, 𝑦) . The necessary information 

for the clustering process includes the total number of SUs 

(𝑚𝑇) and the maximum number of clusters (𝑐𝑚𝑎𝑥). 

III. COOPERATIVE SPECTRUM SENSING USING ENERGY 

DETECTION 

Spectrum sensing is a binary hypothesis test where 𝐻1 

and 𝐻0  represent the hypotheses of the presence and 

absence of the primary signal in the sensed band, 

respectively. The decision is made by comparing a test 

statistic 𝑇 with a predefined decision threshold 𝛾. If 𝑇 >
 𝛾, the hypothesis 𝐻1 is chosen. Otherwise, the hypothesis 

𝐻0 is selected [7].  

Spectrum detection performed individually by each SU 

is prone to performance degradation, making CSS the 

preferred approach. In CSS without clustering (classic), 

each SU operates independently, acting as a CH and 

directly reporting its detection decision to the FC. In 

cluster-based CSS, the nodes are organized into groups, and 

the cluster members send their detection information to the 

CHs. The CHs, in turn, forward the received data (with or 

without their own sensing information) to the FC. At the 

FC, a global decision is made using a 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑚 

fusion rule: the presence of the primary signal is confirmed 

if k or more SUs agree on the channel state.  

In decision fusion-based CSS, each SU generates a test 

statistic that allows it to locally determine the spectrum 

occupancy state. There are different methods to construct 

this test statistic, resulting in various types of detectors. The 

Energy Detector (ED) is the most widely used due to its 

simplicity of implementation. The ED differentiates 

between the presence and absence of the primary signal 

based on the energy of the samples collected during the 
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sensing interval. The test statistic of the ED for the 𝑗 − 𝑡ℎ 

SU is: 

 
𝑇𝑗 =  

1

𝑛
∑ |𝑦𝑗𝑖|

2
,

𝑛

𝑖=1
 

 (1)    

 

where 𝑛 is the number of samples at the 𝑗 − 𝑡ℎ SU, and 

|𝑦𝑗𝑖| represents the magnitude of the 𝑖 − 𝑡ℎ sample at the 

𝑗 − 𝑡ℎ SU. In CSS with decision fusion, local decisions (at 

the SUs) are made by comparing 𝑇𝑗 with the corresponding 

decision threshold. 

The performance of SS is commonly measured using 

two main metrics: the Probability of False Alarm (𝑃𝑓𝑎) and 

the , mathematically defined by (2) and (3):  

 

𝑃𝑑 = 𝑃𝑟[𝑇 >  𝛾 | 𝐻1], (2) 

 

and 𝑃𝑓𝑎 is defined as:  

 

𝑃𝑓𝑎 = 𝑃𝑟[𝑇 >  𝛾 | 𝐻0],   (3) 

 

where 𝐻1 and 𝐻0 represent the hypotheses of the presence 

and absence of the signal transmited by PUs, respectively.  

A low 𝑃𝑓𝑎  is desirable as it maximizes efficient 

spectrum utilization, allowing the secondary network to 
exploit communication opportunities when the spectrum is 
truly unoccupied. Conversely, a high 𝑃𝑑 is crucial to ensure 
the protection of the primary network, minimizing the risk 
of interference caused by the secondary network. 

IV. SIGNAL AND CHANNEL MODELING 

Consider a CSS with 𝑚𝑇 SUs, each collecting 𝑛 

complex samples of the signal transmitted by the PU in 

each sensing interval. The samples collected by the SUs can 

be organized into a matrix 𝒀 ∈  ℂ𝑚×𝑛, given by: 

 

𝒀 = 𝑯𝑿 + 𝑽,   (4) 

 

the vector 𝑯 ∈  ℂ𝑚×𝑝  models the Rayleigh fading 

channels between the PU and the SUs, with elements {ℎ𝑗}, 

where 𝑗 = 1, 2, . . . , 𝑚𝑇, representing the channel gains 

between the PU and the 𝑗 − 𝑡ℎ SU. 𝑿 ∈ ℂ𝑛×𝑝 models the 

signal transmitted by the PU, while 𝑽 ∈  ℂ𝑚×𝑛 represents 

the additive white Gaussian noise (AWGN) at the SUs. 

Under 𝑯𝟏, the expression 𝒀 = 𝑯𝑿 + 𝑽  holds, whereas 

under 𝑯𝟎 , 𝒀 = 𝑽, where 𝒀 represents the signal received 

by the SUs. 

The Gaussian distribution was adopted for the 

transmitted signal (𝑿)  as it simplifies mathematical 

analysis [8]. Moreover, the choice of the Gaussian 

distribution facilitates the evaluation of detection 

performance, proving to be an effective and reasonable 

approach for signal modeling in various practical 

communication scenarios. 

The elements of 𝑯 are complex samples of zero-mean 

Gaussian variables, Independent and Identically 

Distributed (i.i.d.), modeling a flat Rayleigh fading channel 

between PU and each SU [8]. The Rayleigh channel was 

chosen to represent a scenario without a direct line of sight 

between the transmitter and receiver, characterizing an 

environment dominated by multipath propagation and 

reflections.  

The samples in 𝑿  are complex Gaussian random 

variables with zero mean and variance 𝑃𝑡𝑥𝑃𝑈, where 𝑃𝑡𝑥𝑃𝑈 

represents the transmission power of the PU. Thus, the 

power of the primary signal received by the 𝑗 − 𝑡ℎ  SU 

(𝑃𝑟𝑥𝑆𝑈𝑗
) is given by the Log-Normal prediction model [2], 

as described by   (5): 

 

𝑃𝑟𝑥𝑆𝑈𝑗
(𝑑𝐵) = 𝑃𝑡𝑥𝑃𝑈(𝑑𝐵)10𝛼 𝑙𝑜𝑔10 (𝑑𝑃𝑈𝑗

),   (5) 

 

where 𝑑𝑃𝑈𝑗
 is the distance from the PU to the 𝑗 − 𝑡ℎ SU, 

and 𝛼 is the path loss exponent. Higher values of 𝛼 indicate 

greater signal attenuation. The shadowing effect was 

considered by adjusting the value of 𝛼, resulting in greater 

attenuations in the power received by the SUs in these 

regions. 

V. ENERGY CONSUMPTION MODELING 

Initially, the SUs perform sensing simultaneously during 

the period 𝜏𝑠. Subsequently, they transmit their decisions to 

the corresponding CH within the period 𝜏𝑟𝑆𝑈. The CH then 

makes the cluster decision and forwards it to the FC within 

the period 𝜏𝑟𝐶𝐻. 

Energy consumption in the sensing process is directly 

related to the adopted fusion mode. In decision fusion, 

sensing requires higher energy consumption compared to 

data fusion, as the processing of the received signal goes 

beyond simple sample collection. However, in the 

reporting stage, the local decision can be represented by 

just 1 bit, significantly reducing energy expenditure 

compared to transmitting multiple bits per sample in data 

fusion. In this work, the decision fusion approach was 

adopted.  

The residual energy, in joules, of the 𝑗 − 𝑡ℎ SU in the 

secondary network during a sensing cycle can be calculated 

by:  

 

𝐸𝑟
(𝑗)

= 𝐸(𝑗) − (𝑃𝑠 ∗ 𝜏𝑠 + 𝑃𝑡𝑥𝑆𝑈
(𝑖,𝑗)

∗ 𝜏𝑟𝑆𝑈 + 𝑃𝑡𝑥𝐶𝐻
(𝑗)

∗ 𝜏𝑟𝐶𝐻),  (6) 

 

𝜏𝑟𝐶𝐻where 𝐸𝑟
(𝑗)

 represents the residual energy of the 𝑗 − 𝑡ℎ 

SU during the sensing process, 𝐸(𝑗)  refers to the energy 

available in the 𝑗 − 𝑡ℎ SU, which is initially uniform across 

all SUs. 𝑃𝑠 is the power for SS, 𝑃𝑡𝑥𝑆𝑈
(𝑖,𝑗)

 is the power used by 

the 𝑗 − 𝑡ℎ SU to transmit its decision to the 𝑖 − 𝑡ℎ CH, and 

 𝑃𝑡𝑥𝐶𝐻
(𝑗)

 is the power of the signal transmitted by the 𝑗 − 𝑡ℎ 

CH to communicate the cluster decision to the FC, 

calculated in (7) and    (8). If the reporting occurs from SU 

to CH, the term 𝑃𝑡𝑥𝐶𝐻
(𝑗)

∗ 𝜏𝑟𝐶𝐻 = 0. On the other hand, if the 

reporting is from CH to FC, the term 𝑃𝑡𝑥𝑆𝑈
(𝑖,𝑗)

∗ 𝜏𝑟𝑆𝑈 = 0. 

Applying the distance path loss model [2], the values of 

𝑃𝑡𝑥𝑆𝑈
(𝑖,𝑗)

 and 𝑃𝑡𝑥𝐶𝐻
(𝑗)

 are calculated as follows:  

 

𝑃𝑡𝑥𝑆𝑈
(𝑖,𝑗)

= 𝑃𝑟𝑥𝐶𝐻 ∗ 𝑑𝐶𝐻 𝑖𝑗
𝛼

, (7) 

 

and 

𝑃𝑡𝑥𝐶𝐻
(𝑗)

= 𝑃𝑟𝑥𝐹𝐶 ∗ 𝑑𝐹𝐶𝑗
𝛼

,    (8) 
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where 𝑑𝐶𝐻 𝑖𝑗
 represents the distance from the 𝑗 − 𝑡ℎ SU to 

the 𝑖 − 𝑡ℎ CH, and 𝑑𝐹𝐶𝑗
 is the distance from the 𝑗 − 𝑡ℎ CH 

to the FC.  𝑃𝑟𝑥𝐹𝐶  and 𝑃𝑟𝑥𝐶𝐻  are the sensitivities of the CHs' 

and FC's receivers (minimum admissible levels of received 

power) and 𝛼 is the path loss exponent. 

At each sensing cycle, the energy of the active SUs is 

reduced as described in (6). Active SUs are those that have 

not been excluded, either temporarily or permanently, and 

have sufficient energy to continue participating in the 

sensing process. Sensors with energy below a defined 

threshold are permanently excluded from the sensing 

process, being classified as inactive or "dead." Since any 

SU can be a CH, the energy threshold was defined as the 

minimum energy required to perform sensing and report the 

decision, considering the distance between the SU and the 

FC equal to the radius of the coverage area. 

VI. PROPOSED ALGORITHM 

A. Preliminaries 

An algorithm is presented that integrates temporary and 

permanent sensor exclusion with the dynamic selection of 

CHs. The components of the algorithm are detailed 

individually, as described below:  

Temporary and Permanent Exclusion of 

Underperforming SUs: This algorithm temporarily 

deactivates SUs with poor performance and permanently 

excludes them if the insufficient performance persists over 

consecutive sensing cycles. 

Dynamic CH Selection: This approach is based on the 

calculation of the CM, weighted by the residual energy of 

the sensors assigned to the cluster. The new CH is selected 

as the sensor closest to the CM that also has the highest 

available  energy within the cluster.  

B. SUs Exclusion Algorithm 

The exclusion of SUs is determined based on the 

individual performance of each sensor. During each 

sensing cycle, the algorithm evaluates the SUs, penalizing 

those that exhibited detection errors. The penalty, 

represented as 𝑓𝑗  (penalty number of the 𝑗 − 𝑡ℎ  SU), is 

assigned to the SU according to the type of failure 

identified.  

Depending on the global decision, if the decision is 

incorrect, a collision may occur between the primary and 

secondary transmissions. The types of failures that may 

occur are: 

Global Success and Local Failure - Proved (GSLF-P): 
When  the global decision indicated that the medium was 

free (GD=0) and it was indeed unoccupied (TX=0), the 

sensor, however, incorrectly detected it as occupied 

(LD=1). In this case, there were no collisions, but those that 

made the error receive a penalty of 2. 

𝐺𝐷 represents the global decision of the system, where 

1 indicates the presence of the signal and 0 indicates its 

absence. 𝑇𝑋  corresponds to the state of the transmission 

medium, while 𝐿𝐷 refers to the local decisions of the SUs. 

Global and Local Failure - Proved (GLF-P): In this 

case, the global decision was free (𝐺𝐷 = 0) , but the 

medium was occupied (𝑇𝑋 = 1) , and the sensor 

incorrectly detected it as free (𝐿𝐷 = 0). This resulted in 

collisions, for which the sensor that made the error also 

receives a penalty of 2. 

Global Success and Local Failure - Unproved (GSLF-

U): In this case, the global decision was occupied (𝐺𝐷 =
1), the medium was occupied (𝑇𝑋 = 1), but the sensor 

incorrectly detected it as free (𝐿𝐷 = 0) . There was no 

transmission, and the sensors that made the error are 

classified as having an unproven local failure and receive a 

penalty of 1. 

The penalty is assigned to the sensor based on the type 

of local failure, which occurs due to signal detection errors. 

Sensors with proven local failures receive stricter penalties, 

while those with unproven failures are penalized more 

leniently. The penalty value is used to calculate the backoff, 

which determines the number of cycles during which the 

sensor will be temporarily excluded from the sensing 

process. The SU is permanently excluded after a 

predetermined number of consecutive backoffs. 

Proven success and failure are determined based on the 

FC's feedback. When 𝐺𝐷 = 0, the SUs can compete for 

access to transmit their data. Based on the success or failure 

of the transmission, the FC can determine the actual state 

of the medium, resulting in stricter penalties for sensors that 

made errors. In the case of unproven successes and failures, 

when 𝐺𝐷 = 1, the FC cannot verify the actual state of the 

medium, which justifies lighter penalties for SUs that made 

mistakes. TABLE I summarizes this information: 

TABLE I. SENSOR PENALITY BASED ON THE TYPE OF FAILURE 

GD TX LD Type of Failures  Penalty (𝐟𝐣) 

0 0 1 GSLF-P 2 

0 1 0 GLF-P 2 

1 1 0 GSLF-U 1 

 
 The backoff is designed to prevent unnecessary energy 
consumption by underperforming SUs. The type of failure 
determines the penalty value, which directly impacts the 
backoff time (number of inactivity cycles). In (9), 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 
is the initial base time value used for the backoff. The 
backoff is calculated as: 

𝑏𝑎𝑐𝑘𝑜𝑓𝑓𝑗 = 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 ∗ 2𝑓𝑗 − 1, (9) 

C. Dynamic CH selection algorithm 

After grouping the SUs, 𝑘 clusters are formed, each with 
a centroid representing the cluster's CM. The CH is selected 
as the SU closest to the CM, considering that all SUs have 
the same initial energy. However, after a certain number of 
cycles, the CM is recalculated, now weighted by the residual 
energy of the SUs in the cluster. This new centroid reflects 
the current energy distribution of the SUs, and the SU 
closest to the centroid, with the highest available residual 
energy, is selected as the new CH. The CM is calculated as 
follows: 

 

𝑋𝑐𝑚 =
∑ 𝐸𝑟

(𝑗)
∗ 𝑥𝑗

𝑚
𝑗=1

∑ 𝐸𝑟
(𝑗)𝑚

𝑗=1

, 
(10) 

 

𝑌𝑐𝑚 =
∑ 𝐸𝑟

(𝑗)
∗ 𝑦𝑗

𝑚
𝑗=1

∑ 𝐸𝑟
(𝑗)𝑚

𝑗=1

, 
(11) 
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where 𝑚 is the total number of sensors in the cluster, 𝐸𝑟
(𝑗)

 

represents the residual energy of the 𝑗 − 𝑡ℎ sensor, and 𝑥𝑗 

and 𝑦𝑗 represent the 𝑥  and 𝑦  coordinates of the 𝑗 − 𝑡ℎ 

sensor. 

The energy consumption of SUs directly impacts the 

position of the CM, as after a certain number of cycles, 

some sensors may be deactivated (considered dead) when 

their residual energy falls below the desired threshold. To 

maintain an efficient energy balance within the cluster, the 

current CH is replaced by an eligible SU that meets the 

minimum energy requirements. This process is 

continuously repeated until no qualified SUs remain to take 

on the role of CH, ensuring that sensors with available 

energy continue to actively participate in the system. The 

following pseudocode outlines the main steps of this 

dynamic CH selection process. 
 

Pseudocode: Dynamic CH Selection Algorithm 
1 If cycle = = 𝑐𝑦𝑐𝑙𝑒𝐶𝐻 

2  For the 𝑖 − 𝑡ℎ cluster in the set, up to 𝑖 =  𝑐𝑚𝑎𝑥, do: 

3   Obtain the 𝑚 SUs of cluster 𝑖 
4   Identify the live SUs among the 𝑚 SUs in cluster 𝑖 
5   Obtain the coordinates of the live SUs 

6   Obtain the residual energy of the live SUs 

7   Compute the CM weighted, based on (10) and (11)  

(new centroid) 

8   Select the new CH as the SU closest to the new 

centroid with the highest residual energy available in 

the cluster. 

9   If the CH has changed 

10    Update the CH coordinates and distances (𝑑𝐶𝐻, 

𝑑𝐹𝐶) 

11   End If 

12  End For 

13  𝑐𝑦𝑐𝑙𝑒𝐶𝐻 = 𝑐𝑦𝑐𝑙𝑒𝐶𝐻 + 1000 

14 End If 

 

In this pseudocode, cycle is the sensing cycle number, 

𝑐𝑦𝑐𝑙𝑒𝐶𝐻  represents the periodicity of the CH change 

process, which is initially set to 1000 cycles. Live SUs are 

the sensors with sufficient energy to participate in the 

sensing process. 

VII. ANALYSIS AND RESULTS 

The results presented in this section were obtained 

through computational simulations performed in 

MATLAB. Different systems were analyzed and 

compared: CSS classic, CSS with clustering, and the 

proposed system, which implements a temporary and 

permanent exclusion mechanism for underperforming SUs 

and dynamic CH selection. The comparison was carried out 

in two scenarios, considering 𝑐𝑚𝑎𝑥 = 3 and 𝑐𝑚𝑎𝑥 = 5. In 

all evaluated scenarios, the network ceases operations when 

the CHs deplete their energy and can no longer perform 

their functions. 

The test statistic for the hypotheses 𝐻0 and 𝐻1 of the 

SUs was derived using the ED, with 𝑃𝑓𝑎 = 0.1 adopted in 

all scenarios, and the corresponding 𝑃𝑑  determined from 

the sensing performance simulations. The analysis 

considered the secondary network's lifespan, designed to 

last up to 𝑛𝑆𝑒𝑛𝑠𝑖𝑛𝑔 =  5000 sensing cycles. The SUs were 

randomly distributed within a circular area with a radius of 

𝑟 = 1000 𝑚 . In all scenarios, decision fusion was 

implemented using the majority voting (MAJ) logic. The 

TABLE II presents the system parameters used in the 

simulations. 

TABLE II. SYSTEM PARAMETERS 

Parameters Values 

P𝑡𝑥𝑃𝑈 1 W 

P𝑟𝑥𝐶𝐻 -100 dBm 

P𝑟𝑥𝐹𝐶 -100 dBm 

τ𝑟𝐶𝐻, 𝜏𝑟𝑆𝑈 1 s 

𝑃𝑠 1 μW 

𝛼 [2 or 4] 

 

The signal attenuation was adjusted through the value 

of 𝛼 , set as 𝛼 = 2  in non-shadowed areas and 𝛼 = 4  in 

shadowed areas, reflecting greater signal attenuation in 

these regions. 𝑏𝑎𝑐𝑘𝑚𝑎𝑥 = 20  was defined, representing 

the number of consecutive inactivity periods of the SUs 

before their permanent deactivation.  

Figure 2 illustrates the performance of the analyzed 

systems in terms of 𝑃𝑑. Initially, all systems exhibit a high 

𝑃𝑑, demonstrating high detection accuracy during the first 

sensing cycles, reflecting the robustness of the network and 

the reliability of the decision-making technique employed. 

However, as the cycles progress, a gradual decrease in 𝑃𝑑 

is observed, resulting from the unavailability of some SUs, 

which negatively impacts the detection rate and 

compromises efficiency in the later stages. 

 

Figure 2. 𝑃𝑑  for the different systems, for 𝑚𝑇 = 200, 𝑛 = 60 samples 

per SU, and 𝑐𝑚𝑎𝑥 = 3. 

In the classical system, 𝑃𝑑 remains close to 1 during 

most of the cycles, due to the decision fusion technique 

applied at the FC, which considers the reports from all SUs. 

Furthermore, the greater the number of SUs reporting to the 

FC, the higher the detection accuracy. On the other hand, 

the proposed system demonstrates more consistent 

performance, with 𝑃𝑑  remaining above 0.9  for a greater 

number of detection cycles. In the clustering system, 

although it shows consistent performance in terms of 𝑃𝑑 ,the 

final cycle performance is lower compared to the classical 

system. This happens because the operation of the cluster 

depends directly on the CH, and when it can no longer 

operate, the entire cluster is deactivated. 

Although the classic system has a slightly higher 

number of cycles than the clustering system, clustering is 

essential for efficient network management, especially in 

scenarios with high SU density. In the classic system, all 

SUs send data directly to the FC, which, in dense networks, 
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generates communication overload and compromises 

system efficiency. On the other hand, the clustering system 

organizes the network into smaller groups, is fundamental 

for efficient network management, as it enhances 

scalability and facilitates the adoption of strategies that help 

to extend its lifespan.  

In the scenario with 𝑐𝑚𝑎𝑥 = 5, a similar behavior was 

observed among the analyzed systems in terms of 

𝑃𝑑 performance. However, in the proposed system, there 

was a gain in the last cycle, resulting from the reduced 

distance between SUs and their respective CHs, which 

improves communication efficiency and extends network 

operation.  

The performance in terms of 𝑃𝑓𝑎 is approximately zero 

in all analyzed scenarios, due to the criteria adopted in the 

system design. 

In Figure 3, the proposed system demonstrates the best 

performance in terms of lifespan, showing a significantly 

slower reduction in the number of live sensors compared to 

the other systems. The introduction of the backoff 

mechanism and the dynamic CH rotation promotes a more 

balanced distribution of the energy load among the sensors. 

Sensors in backoff mode conserve energy by temporarily 

withdrawing from the sensing process, while the dynamic 

CH selection in each cluster prioritizes the SU with the 

highest available energy. This mechanism substantially 

extends the network's lifespan while also increasing its 

overall efficiency. 

It is also possible to observe that the classical system 

has a longer lifespan compared to the clustering-based 

system due to the proximity of some SUs to the FC, which 

results in energy savings when reporting their decisions. 

However, the clustering system shows a slower reduction 

in the number of active sensors compared to the classical 

system, thanks to the proximity of the sensors to their 

respective CHs. Despite this, the distance between the CH 

and the FC may lead to the premature deactivation of the 

cluster, thereby reducing the lifespan of this system. 

 

Figure 3. Network life cycle of the systems analyzed with 𝑐𝑚𝑎𝑥 = 3. 

 In Figure 4, with 𝑐𝑚𝑎𝑥 = 5, the increase in the number 
of clusters reduces the distance between the sensors and 
their respective CHs, facilitating decision transmission and 
reducing energy consumption. As a result, the lifespan of 
the proposed system is more than double the defined cycles, 
while the other systems show only slight improvements or 
remain virtually unchanged. 

 

Figure 4. Network life cycle of the systems analyzed with 𝑐𝑚𝑎𝑥 = 5. 

 The increase in 𝑐𝑚𝑎𝑥  results in a longer operating time. 

VIII. CONCLUSION AND FUTURE WORK 

This article presents an algorithm that improves the 

lifespan of secondary networks by combining sensor 

exclusion with dynamic CH selection in CRNs. These 

strategies extended the network's operation without 

affecting performance 𝑃𝑑, maintaining approximately 90% 

𝑃𝑑  across multiple sensing cycles, while balancing the 

sensor load and increasing the network's lifespan. 
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