
Comparative Performance of TCP and MQTT

Bishal Thapa
Ingram School of Engineering

Texas State University
San Marcos, TX USA

email: b_t220@txstate.edu

Bishal Sharma
Ingram School of Engineering

Texas State University
San Marcos, TX USA

email: dxa6@txstate.edu

Stan McClellan
Ingram School of Engineering

Texas State University
San Marcos, TX USA

email: stan.mcclellan@txstate.edu

Abstract— This paper compares the performance of
conventional Transmission Control Protocol (TCP) with the
popular Message Queueing Telemetry Transport (MQTT)
protocol in private and public network settings. Higher-layer
protocols, such as MQTT may be problematic for important
constraints in some Internet of Things (IoT) scenarios, whereas
a simpler "bare socket" TCP may be sufficient for certain
scenarios. This research examines the network performance of
these protocols by analyzing goodput and transmission time for
a specific scenario with data security embedded at the
application layer. Other features that may be suitable to be
used in IoT applications are also discussed, along with their
shortcomings.

Keywords-TCP/IP; MQTT; TCP Sockets.

I. INTRODUCTION

Communication between one or more devices in a
network is possible due to a specific set of protocols. The
use of appropriate protocols can improve application
performance or can impose extra burdens for processing and
transmitting overhead data in addition to application
information. Different protocols function in various layers
of the familiar Open Systems Interconnection (OSI) 7-layer
model [1]. The Transmission Control Protocol / Internet
Protocol (TCP/IP) suite is the collection of protocols used
for communication between Internet-connected devices.

The TCP transport protocol (OSI layer 4) is a
connection-oriented protocol that guarantees delivery of IP
packets. TCP segments the data packets received from the
network layer and sends them in an ordered sequence using
a specified port number [2]. Many common application
layer protocols rely on TCP for guaranteed data
transmission. TCP is typically used in well-known client-
server scenarios, and is a critical part of most Internet
communications.

MQTT is a lightweight messaging protocol (OSI layers
5-7) designed for constrained devices with low bandwidth
and high latency [3]. It is widely used in IoT applications,
where devices communicate with each other via cloud-based
servers. In MQTT, messages are organized into topics,
which describe the content of the message. Clients can
subscribe to one or more topics to receive messages, or they
can publish messages to one or more topics. The protocol is
intended to be efficient, with minimal overhead and support
for offline messaging [4]. The MQTT communication
structure depends on an intervening server or “broker” to
distribute messages via a publish/subscribe structure.

Many messaging protocols have been used in IoT
applications, including MQTT, Hypertext Transfer Protocol
(HTTP), Constrained Application Protocol (CoAP), and
Advanced Message Queuing Protocol (AMQP) [2-5].
Comparing such protocols is not straightforward due to
application requirements and constraints. For instance,
traffic reduction, protocol efficiency improvement,
communication delay reduction, and better quality of service
are some obstacles to IoT implementations [5]. These
considerations are important when choosing the correct
protocol for specific application [5]. However, the use of
additional protocol layers induces additional costs for the

overall system which may be critical in certain IoT
scenarios. This paper presents findings of a comparative
evaluation of MQTT (layers 5-7) with “naked” TCP (layer
4) using standardized payload data. The comparison is
presented in terms of header length and total time to transfer
or receive the message by the client. MQTT applications are
often built using TCP as the transport layer. Thus, this work
attempts to quantify the “penalty” or “cost” imposed by
MQTT over TCP in a relative sense. This understanding can
be very important in the implementation of efficient
transport and application protocols in resource constrained
scenarios, such as IoT.

The remainder of the paper is organized as follows:
Section II provides the overall background including the
literature review, and our approach to the experiment.
Section III presents the experimental setup, while Section
IV presents the data gathered and summarized results of
experiments. Section V presents conclusions drawn from the
experiments. Section VI discusses possible future work.

II. BACKGROUND

A. Socket

A socket is an endpoint of a two-way communication in
an IP network. It is an abstract data structure provided by
the operating system to establish communication to transfer
messages between endpoints [7]. Each endpoint is identified
by a port number and IP address. The TCP transport layer
recognizes the application that data is intended to be
transferred to by the port number bound to the socket. Thus,
the performance of data transfer via a “naked” socket
establishes a baseline for comparison of application
performance via additional, higher-layer protocols.

B. MQTT

MQTT is a many-to-many messaging protocol capable
of transferring messages between multiple producers and
consumers [8]. MQTT is described as an efficient, bi-
directional, scalable, reliable, and security enabled IoT
messaging protocol which can be “scaled down” effectively
and implemented on microcontrollers. MQTT may use TCP
to establish communication between an end-device and the
intervening server, or “broker” [4].

Figure 1. MQTT Publish/Subscribe Model

MQTT uses a Publish/Subscribe construct to achieve
one-to-many message distribution [4]. In this structure, end-
devices (clients) talk to a central authority (broker). Figure 1

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-034-6

ICDT 2023 : The Eighteenth International Conference on Digital Telecommunications

presents the Publish/Subscribe architecture used by MQTT.
Essential components of this architecture include:

Publisher (sender): The publisher is a client which
sends data (messages) to the broker. Many publishers can
connect to the same broker. The publisher may provide data
as a part of a ‘topic’, to which other clients (subscribers)
may subscribe in order to retrieve related messages.

Broker: The broker is the interface for the publisher and
subscriber to exchange message data. The broker forwards
messages to clients (subscribers) based on the topic for
which the message was published, and the client is
subscribed [3].

Subscriber (receiver): A client must subscribe to
certain ‘topic’ to receive messages for that topic from the
broker. If the topic specified in the SUBSCRIBE message
from the subscriber matches the topic in the PUBLISH
message from the publisher, then the broker forwards the
message to the subscriber [5]. Subscribers can subscribe to
several topics, and each topic’s published messages are
forwarded [8].

MQTT systems can deliver messages using three
different Quality of Service (QoS) classifications [5]:

QoS 0 (At most once): The message is delivered at most
once. There is no guaranteed delivery of packets and no
extra methods for quality checks [5]. As a result, messages
can be lost and connection reliability is dependent on the
transport layer (e.g., TCP) [3].

QoS 1 (At least once): The message is delivered at least
once [5]. Each message is sent multiple times, and may
overlap, until acknowledged by the recipient [3].

QoS 2 (Exactly once): The message is delivered exactly
once, which avoids overlapping of identical messages that
may occur in QoS 1 [3].

Several studies have examined the viability of MQTT
protocol in IoT and how it compares with other IoT
communication protocols. A brief exploration of MQTT and
CoAP outlining their architecture and message transmission
mechanism is presented in [9]. An extensive comparison of
MQTT and CoAP concluded that the MQTT protocol is less
bandwidth efficient [10].

The comparison of the different IoT messaging protocols
is not straightforward. As a result, various authors have
examined the effectiveness of certain protocols under
different network circumstances. For example, common
messaging protocols for IoT have been compared with
message overhead classified as higher for MQTT than
CoAP but lesser than AMQP and HTTP. Similar conclusions
are presented for bandwidth, latency, power consumption
and resource requirements [11].

The performance of MQTT and CoAP have been studied
under different network conditions, concluding that MQTT
messages suffered lower delays for lower packet loss and
higher delays for higher packet loss [12]. Additionally, the
overhead for MQTT was higher for different message sizes
when compared to CoAP [11]. MQTT has been compared
with CoAP and Open Platform Communications Unified
Architecture (OPC UA) over different cellular networks,
reaching similar conclusions [3]. Additionally, the
transmission time of CoAP increases every 1024 bytes
leading to higher transmission time than MQTT for high
payload sizes [3]. A higher payload for MQTT was expected
as CoAP used UDP for its transport layer, whereas MQTT
used TCP. However, for larger messages, the overhead can
become higher for CoAP due to inefficiencies of User
Datagram Protocol (UDP) vs. TCP for connection
management [12]. Sockets have been used to send text-
based data (e.g., JavaScript Object Notation) in an attempt
to establish communication between Android mobile
applications and IoT embedded systems [13], and some
work has compared connection-oriented and connectionless
transports [6].

Previous research may be helpful in understanding
protocol differences. However, these outcomes didn’t
provide an explicit understanding of the overhead incurred
by different network configurations for a range of payload
sizes. Although seemingly pedestrian, this level of
understanding is critical in the efficient implementation of
an IoT application, which may be severely resource-
constrained.

Thus, the present paper provides a comparative
evaluation of MQTT and socket communications. To
accomplish this comparison, two distinct experimental
environments are used: LAN (controlled) and Internet
(uncontrolled). Overhead for a range of message payloads is
compared statistically in each environment, using TCP
sockets to provide a baseline for comparison with MQTT.
Further, a unique application payload is used to
compartmentalize data communications, provide intrinsic
security, and regularize payload structure.

C. Intelligent Cipher Transfer Object (ICTO)

ICTO is a security technology that includes mechanisms
for participant authentication and authorization for access of
data, which is protected by cloaking patterns. A portable
dynamic rule set, which includes executable code for
managing access to the protected set of participants and the
protected data, is included within the ICTO. For a given
user, the ICTO may provide access to some participants
while preventing access to other participants based on this
set of access constraints. The ICTO concept extends the
conventional Authentication, Authorization, and Accounting
(AAA) and Role-Based Access Control (RBAC) concepts
by cloaking data at the point of generation with specific
user-defined rule sets for access. The owner of data is in
command to configure how or when protected data can be
accessed by another party [14].

The ICTO technology is independent of what security
measures are followed at the channel. Once user data has
been encapsulated by a secure ICTO object, the data remains
secure even in the absence of any security measures on the
communication channel. As a result, the use of ICTO in IoT
communications may be of particular interest. In such cases,
a clear understanding of the efficiency of messaging
protocols is critical. In an IoT environment, for instance,
assuming a secure ICTO object has been generated, we then
need an efficient data exchange protocol to reliably transmit
the object from one device to another. Thus, the results of
the present research may be useful in establishing an
efficient framework for the exchange of ICTO objects.

III. EXPERIMENTAL SETUP

A. TCP socket

A wireless TCP socket connection was established
between two PCs similar in hardware and software where
one was configured as the client that sends user data of
given size and the other was configured as server that
receives data sent from the client. Sending and receiving
machines used Intel i5 2.4 GHz processors with Debian
Linux kernels with 8 Gigabytes of memory. Python scripts
were used to set up the client, server, and the packet logger
programs. To trace/analyze packets being exchanged
between client and server, the Python library “pcapy” was
used. Pcapy is based on tcpdump [13]. The data recorded
with the Python program was validated with the well-known
Wireshark application-layer packet analyzer.

The machine running the client program was configured
to send user data to the server and the machine running the
server was configured to receive data sent by the client.
Python scripts to record every packet that is seen on the
network interface were run on both client and server
machines during the experiments.

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-034-6

ICDT 2023 : The Eighteenth International Conference on Digital Telecommunications

Figure 2. Experimental Setup for TCP socket communication

Experiments were performed for two different
configurations of user data: file and byte sequence. In the
“file” experiments, user data to be sent by the client is in a
pre-existing file. In the “byte” experiments, the user data to
be sent by the client is sequence of dynamically generated
bytes. This procedure was repeated for two different
network environments: Internet (uncontrolled) and Local
Area Network (LAN) – a controlled network environment.
Figure 2 illustrates the configuration in both environments.

B. MQTT

For setting up MQTT experiments, three PCs with
similar hardware and software configurations were used.
Since MQTT utilizes a broker to transmit information
between multiple clients, the first PC was used as a sending
client, the second as the receiving client, and the third as the
MQTT broker, all on the wireless interface.

Python scripts were used to run the sending and
receiving clients as well as the packet logger. The packet
logger program executed on both the sending and receiving
machines during each experiment. Other procedures were
similar to the setup discussed in Section III.A regarding user
data configurations (file and byte) and network
environments (Internet and LAN). Figure 3 illustrates the
configuration in both environments.

Figure 3. Experimental Setup for MQTT communication

With the experimental configurations detailed in
Sections III.A and III.B, at least 150 iterations were
completed for each configuration to obtain a statistically
valid collection of network performance metrics. Metrics of
interest included: total transmit time, total header size,
header to payload ratio, and similar valuable measurements.
For each experiment, total header size is calculated by
summing the header lengths of TCP segment header of each
IP packet exchanged between sender and receiver. User
payload sizes of 1 byte, 10 bytes, 100 Kbytes, 500 Kbytes,
and 1000 Kbytes were used. Figure 3 illustrates
experimental setups on different network environments.

IV. EXPERIMENTAL RESULTS

The results of the experiments are divided into two
sections: private network (LAN) and public network
(Internet). Subsequent plots consist of dependent variables
describing network performance metrics (e.g., total transfer
time and cumulative header size) versus the independent
variable (payload size). Each point in the plot represents the
mean of at least 150 iterations of each experiment. The
shaded regions surrounding the mean represent the
boundaries of a 95% confidence interval with unknown
population standard deviation (e.g., via the t-distribution).

A. Private Network (LAN)

Plots generated from experimental data in a controlled
environment (LAN) are presented comparing the relative
performance of TCP with MQTT for payloads of byte
sequences as well as files/objects.

Figure 4 presents the cumulative header size required for
varying sizes of user data (transferred as a file or as a
sequence of bytes) for both sending and receiving agents of
TCP and MQTT in a private network (LAN) setting.

As expected, MQTT requires greater header size for
transmitting a user payload of given size as compared to
TCP. Surprisingly, with increasing payload size, header
overhead for MQTT increases dramatically. In contrast, for
the TCP baseline, header overhead remains constant and at
least one order of magnitude smaller than MQTT.

This result indicates that TCP is substantially more
efficient than MQTT for resource-constrained environments.
The convenience and apparent simplicity of using MQTT
for a publish/subscribe scenario comes with a “penalty” of
vastly more non-payload data transfer.

Figure 4. Cumulative Header Size vs Payload Size in LAN

This result indicates that TCP is substantially more
efficient than MQTT for resource-constrained environments.
The convenience and apparent simplicity of using MQTT
for a publish/subscribe scenario comes with a “penalty” of
vastly more non-payload data transfer.

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-034-6

ICDT 2023 : The Eighteenth International Conference on Digital Telecommunications

Figure 5 presents the total transmission time for varying
sizes of user data (transferred as a file or as a sequence of
bytes). This data is presented for both sending and receiving
agents of TCP and MQTT in a private network (LAN)
environment. Although the difference between transfer
times for a given payload size is relatively small, it is
present and observable.

Figure 5. Total Time (ms) vs Payload Size in LAN

From Figure 5, it is clear that the time required for data
exchange for most MQTT configurations is substantially
higher (by a factor of 2 or more) than those for TCP. A
significant difference in the cumulative header size for
MQTT and TCP (observed in Figure 4) may be an intuitive
reason for the observed time difference.

B. Public Network (Internet)

Plots generated from experimental data in a public
network (uncontrolled) are presented comparing the relative
performance of TCP with MQTT for payloads of byte
sequences as well as files/objects.

Figure 6 presents the cumulative header size required for
varying sizes of user data (transferred as a file or as a
sequence of bytes). This data is presented for both sending
and receiving agents of TCP and MQTT in a public network
(Internet) environment.

Figure 6. Cumulative Header Size vs Payload Size in Internet

As expected, and as clearly displayed in Figure 6, the
header overhead for MQTT is significantly greater than
TCP. However, unlike the rising trend of total header size
with increasing payload size observed in Figure 4, header

overhead for MQTT seems to be steady with increasing
payload size in the Internet environment, but is still an order
of magnitude greater than TCP.

Figure 7 presents the total transmission time for varying
sizes of user data (transferred as a file or as a sequence of
bytes). This data is presented for both sending and receiving
agents of TCP and MQTT in a public network (Internet)
environment. Wide confidence intervals may be due to the
dynamic/unpredictable nature of routing, packet loss, and
other factors present in Internet traffic.

Figure 7. Total Time (ms) vs Payload Size in Internet

Regardless, a clear comparison between MQTT and TCP
is evident from Figure 7 in that total transmission time for
TCP is typically faster by a factor of 2 or more. This is
consistent with the observations and conclusions derived
from Figure 5, which performed the same experiment in the
LAN (controlled) environment.

V.CONCLUSION

From the results presented in Section IV, we find that for
normal data transfer, either as a file or a series of bytes, TCP
to performs better in total transmit time and payload to
header ratio (goodput). This is unsurprising, because MQTT
leverages TCP as the transport layer. However, the overall
inefficiency of MQTT is surprising, providing transmission
delay of at least a factor of 2 (and typically much greater),
and an overhead inefficiency of an order of magnitude,
regardless of network environment. Thus, for the purpose of
transmitting information, TCP sockets are substantially
more efficient. The presence of a broker to moderate
communication between publishers and subscribers in
MQTT may provide application flexibility, but the resulting
operational inefficiencies are concerning.

As in any application, additional aspects of each
alternative must be considered. For instance, MQTT can
operate in various QoS modes and therefore certain
performance parameters like reliability and transfer time
may be bounded. Additionally, the message queueing
feature of MQTT enables relatively passive IoT devices to
transmit/fetch data from the broker regardless of operating
concurrency between the publisher and subscriber. However,
MQTT typically provides minimal security through basic
authentication (e.g., username, password).

As a result, in the context of IoT, a choice between the
use of TCP or MQTT for ICTO object transport becomes
clearer. Although MQTT’s message queueing capability
may be useful, the lack of security for data in-flight and at-

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-034-6

ICDT 2023 : The Eighteenth International Conference on Digital Telecommunications

rest (e.g., on the broker) may be a critical consideration. As
a result, the direct use of TCP could be preferable because
of the substantial improvement in efficiency. However,
ICTO technology offers security regardless of the security
imposed by network protocols.

VI. FUTURE WORK

In the future, we intend to further assess MQTT in terms
of network performance by comparing it to other popular
protocols like CoAP. Further, we aim to experiment more
thoroughly with MQTT by altering the QoS parameters
between experiments, introducing multiple subscribers and
publishers, and stress testing the message queuing feature.
From the findings, we intend to further explore favorable
communication protocols to transport ICTO objects.

REFERENCES

[1] P. Gralla, “How the Internet Works,” Que Publishing, 1998.
[2] B. A. Forouzan, “TCP/IP Protocol Suite,” Guide books.

https://dl.acm.org/doi/abs/10.5555/572565 (accessed Mar. 12,
2023).

[3] L. Durkop, B. Czybik, and J. Jasperneite, “Performance
evaluation of M2M protocols over cellular networks in a lab
environment,” in 2015 18th International Conference on
Intelligence in Next Generation Networks, 2015, pp. 70–75,
doi: 10.1109/ICIN.2015.7073809.

[4] “MQTT - The Standard for IoT Messaging.” https://mqtt.org/
(accessed Mar. 16, 2023).

[5] Y. Sueda, M. Sato, and K. Hasuike, “Evaluation of Message
Protocols for IoT,” in 2019 IEEE International Conference on
Big Data, Cloud Computing, Data Science & Engineering
(BCD), May 2019, pp. 172–175. doi:
10.1109/BCD.2019.8884975.

[6] M. Xue and C. Zhu, “The Socket Programming and Software
Design for Communication Based on Client/Server,” in 2009
Pacific-Asia Conference on Circuits, Communications and

Systems, May 2009, pp. 775–777. doi:
10.1109/PACCS.2009.89.

[7] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-
Hatmi, “Internet of Things: Survey and open issues of MQTT
protocol,” in 2017 International Conference on Engineering &
MIS (ICEMIS), May 2017, pp. 1–6. doi:
10.1109/ICEMIS.2017.8273112.

[8] “MQTT Version 5.0.” OASIS. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
(accessed Mar. 10, 2023).

[9] D. B. Ansari, A. Rehman, and R. Ali. "Internet of things (iot)
protocols: a brief exploration of MQTT and COAP."
International Journal of Computer Applications 179.27
(2018): 9-14.

[10] V. Seoane, C. Garcia-Rubio, F. Almenares, and C. Campo,
“Performance evaluation of CoAP and MQTT with security
support for IoT environments,” Computer Networks, vol. 197,
p. 108338, 2021.

[11] N. Naik, “Choice of effective messaging protocols for IoT
systems: MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE
International Systems Engineering Symposium (ISSE), Oct.
2017, pp. 1–7. doi: 10.1109/SysEng.2017.8088251.

[12] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,
“Performance evaluation of MQTT and CoAP via a common
middleware,” in 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), Apr. 2014, pp. 1–6. doi:
10.1109/ISSNIP.2014.6827678.

[13] N. Nikolov and O. Nakov, “Research of Communication
Between IoT Cloud Structure, Android Application and IoT
Device Using TCP Sockets,” in 2019 X National Conference
with International Participation (ELECTRONICA), May
2019, pp. 1–4. doi: 10.1109/ELECTRONICA.2019.8825568.

[14] G. S. Smith, M. L. Smith-Weed, D. M. Fischer, and E.M.
Ridenour, “System and methods for using cipher objects to
protect data,” (US US20220004649A1) USPTO, 2017.

[15] “tcpdump(1) man page | TCPDUMP & LIBPCAP.”
https://www.tcpdump.org/manpages/tcpdump.1.html
(accessed Mar. 10, 2023).

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-034-6

ICDT 2023 : The Eighteenth International Conference on Digital Telecommunications

	I.	 Introduction
	II.	 Background
	A.	 Socket
	B.	 MQTT
	C.	 Intelligent Cipher Transfer Object (ICTO)

	III.	 Experimental Setup
	A.	 TCP socket
	B.	 MQTT

	IV.	 Experimental Results
	A.	 Private Network (LAN)
	B.	 Public Network (Internet)

	V.	 Conclusion
	VI.	 Future Work
	References

