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Abstract—Complex-valued data is ubiquitous in many scientific 

fields. However, machine learning for complex-valued input is 

still in the developmental stage. Alternatively, complex data can 

be transformed to real data in a few different ways to fit the 

traditional machine learning framework. In this research, we 

compare the performance of two such ways - combining real and 

imaginary components or stacking them - on a simple neural 

network. To compare these two methods, we create magnitude 

(combined) and rectangular (stacked) spectrograms from 

artificial time-series data. Then, we feed the raw 1D time-series 

dataset, 2D magnitude spectrogram dataset, and 3D rectangular 

spectrogram dataset to a neural network for training and 

validation. As a measure of performance, we track the accuracy 

of each dataset model. From our experimentation, we found out 

that the rectangular dataset outperforms the magnitude 

spectrogram in most cases.  

Keywords-complex-valued data; machine learning; neural 

network; real spectrogram; imaginary spectrogram. 

I.  INTRODUCTION 

Machine Learning (ML) is a computational technique of 
building models for complex systems using experiential data. 
Data is at the heart of machine learning. Therefore, the quality, 
quantity, format, and other characteristics of data have huge 
impact on the efficacy and effectiveness of the ML models. 
The quality and quantity aspect of data in ML, in a generalized 
sense or for a specific domain/application, are well 
documented in archive literature, such as [1]–[3]. In this 
paper, we focus on the performance of ML with input data in 
complex-valued format. 

Complex-valued data contains information from both real 
and imaginary axes. This kind of data is present in many 
scientific applications and areas, such as signal processing [4] 
in communication systems, Magnetic Resonance Imaging 
(MRI) [5] in biomedical imaging, seismic monitoring [6] in 
geosciences, etc. ML can be a great tool in research and 
technological development in these areas; however, ML 
algorithms typically do not handle complex numbers well [7]. 
Thus, complex data can be pre-processed for ML in these 
applications by either a) taking only the real component and 
ignoring the imaginary component or b) combining the real 
and imaginary components in some way to produce real-
valued data or c) separating the real and imaginary 
components and feeding them simultaneously to the same ML 
model. Approach a) is generally not desirable because of the 
loss of information caused by ignoring the imaginary 
component completely. Interestingly, for approaches b) and 

c), we are unable to find general guidelines in the literature 
which describe performance differences or areas of 
optimality. Hence, the objective of this paper is to make a 
comparison of these two complex-valued data pre-processing 
methods for ML with the aim of setting a general guideline 
when dealing with complex datasets in training ML models.  

There is a fourth approach as well, which uses novel 
Neural Network (NN) models like Complex-Valued Neural 
Network (CVNN) that can handle the complex dataset. In this 
approach, the complex-valued data does not need any format 
change during pre-processing. However, CVNN and the 
general use of complex numbers in “deep learning” seems to 
be an active research area, with a lot of different concepts [6]–
[12]. Interestingly, the predominant use of real-valued weights 
in neural networks seems to derive from the focus on real-
valued optimization problems. As shown in [8], the use of 
complex-valued networks (CVNN) on datasets with phase 
characteristics results in better performance. However, 
contemporary CVNN are very complicated and sensitive, and 
the added complexity might not be worth the disruption to the 
toolchain for most applications. Here, we focus on the use of 
conventional technology and tools in a way that does not 
involve a complete re-structuring of the toolset. Hence, our 
study is limited to the comparison of pre-processing methods 
of complex-valued dataset for use in real-valued NN. 

This paper is organized as follows. Section 2 describes the 
experimental setup we used to leverage two pre-processing 
methods for complex-valued data. Section 3 provides the 
result of the performance comparison between these pre-
processing methods when used in a simple NN. Section 4 
provides the conclusion of this experimentation.  

II. EXPERIMENTAL SETUP 

To be able to control, finetune and vary the different data 
parameters for our comparison, we leverage an artificial 
dataset. This artificial dataset is based on simple single-bit 
detection/classification, which is a fundamental component of 
digital communication. The general findings from the 
experiments in this dataset should be applicable beyond this 
domain as well. 

Figure 1 shows the flow of our experiment, divided into 
three main steps. The first step is the creation of artificial time-
series data. From a randomly generated binary class digital 
information {length=10,000 bits}, analog time-series signals 
were created using Amplitude Shift Keying (ASK), 
Frequency Shift Keying (FSK), and Phase Shift Keying (PSK) 
{sampling rate=10,000; number of bits per second=100}. 
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Then, varying levels of AWGN {from SNR= -21dB to 21dB 
in increments of 3dB} were added to the clean signals to make 
our raw time-series data (Test 1). In the second step, this 1D 
raw time-series data was transformed into a 2D complex-
valued spectrogram using Short-Time Fourier Transform 
(STFT) {frame length=50, frame overlap=50%, 
window=Hanning}. Then, the complex-valued data was 
transformed into magnitude-only spectrograms (described as 
Approach ‘b’ in Section I: ‘Introduction’), as well as 
real/imaginary spectrograms. The real / imaginary 
spectrograms were stacked to make a 3D dataset as described 
in [13] (Approach ‘c’). Finally, the 1D time-series dataset, the 
2D magnitude spectrogram dataset and the 3D real-imaginary 
dataset (referred henceforth as rectangular dataset) were 
flattened and fed into a fully connected NN with one-hidden 
layer. Although our main objective was to compare the 
magnitude spectrogram and rectangular spectrogram in a NN, 
we used time-series dataset as a control input to evaluate and 
compare the complexity and performance of NN for the other 
two datasets. In all cases, the hyper-parameters of this NN, 
listed in Table I, were kept identical. For ‘Test 2’, an ideal 
power signal {60Hz, 120V RMS} was added to the noisy 
time-series signal at the end of ‘Step 1’, and steps 2 & 3 were 
repeated. The purpose of ‘Test 2’ was to simulate the presence 
of a dominant interfering signal in the raw data. The 
performance of the NN models from both tests were evaluated 
primarily using the accuracy metric. This is because accuracy 
in our experimental context characterizes the Bit Error Ratio 
(BER), which is an important metric in digital 
communication. BER is the ratio of wrongly classified bits (or 
error bits) to the total number of transmitted or evaluated bits. 
Thus, BER is the “unit complement” of accuracy, i.e., BER + 
accuracy =100%. Other performance metrics, such as 
precision and recall, were also measured (see [14] for the data 
file containing these metrics) but are not evaluated in this 
paper.   

III. RESULTS AND DISCUSSIONS 

A. Modulation Intensity 

While converting the binary information to an analog 
signal using either of the three modulation schemes (ASK, 
FSK or PSK), the differentiating parameter between bit values 
or states can impact detection. Here, we define the modulation 
intensity as the difference between these parameter values. 
For example, if the amplitude of the ‘high’ is set to ‘1’ and 
‘low’ to ‘0.4’ in ASK, the modulation intensity is 60%. In 
practice, this modulation intensity is dependent on various 
external factors, which are not the focus of this study. We 
chose the intensity parameter based on a subjective ‘inflection 
point’ in a NN model-accuracy versus ‘low values’ graph as 
shown in Figure 2. Based on these plots (see [14] for similar 
FSK and PSK figures), we set the intensity values as shown in 
Table II. Clearly, as intensity decreases, differentiation 
between bit values or states becomes more difficult, and thus, 
the NN model classification accuracy drops.  

B. Training Time Comparison 

The architecture of the NN for all signal types and datasets 
was the same. However, the size of the datasets was different 
as shown in Table III. Since the size of each sample was 
different, the training time was also bound to be different. 
Figure 3 shows the distribution of the total training time for 
each type of dataset (ASK, FSK and PSK). The time-series 
dataset had the quickest training time due to small size and 
single dimensionality. The rectangular spectrogram dataset 
was the slowest, with the training time almost twice as much 
as magnitude spectrogram dataset. Depending on the 
application, the training time of a NN or ML model can have 
vital consideration. 

 

Figure 1.  Flow of experiment showing creation of raw time-series modulated signal, transformation to various spectrograms and the use of the three 

datasets (highlighted) in NN. The extra sub-step of addition of power signal for ‘Test 2’ is shown in green. 
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TABLE I.  HYPER-PARAMETERS OF THE NEURAL NETWORK 

Total number of samples 10,000 

Training to Test ratio 70:30 

No. of hidden layers 1 

No. of nodes in the hidden layer 64 

No. of nodes in the output layer 2 

Activation function for the 

hidden layer 

Relu 

Activation function for the 

output layer 

Softmax 

Optimizer RMSProp 

Loss function Categorical Entropy 

No. of training epochs 10 

Batch size for training 16 

 

 

Figure 2.  The NN model’s test accuracy for a range of ‘low values’ 
(compared to a high of ‘1’) for ASK signal with SNR=0dB. The plot shows 

general decrease in accuracy as ‘low-values’ get closer to the high-value, 

i.e., as modulation intensity decreases.  

TABLE II.  MODULATION INTENSITY VALUES 

 High Low 

ASK 1 V 0.7 V 
FSK 1000 Hz 950 Hz 
PSK 0° 25° 

TABLE III.  DATASET SIZE 

Dataset Size (each sample) 

Time-series (1D) 100 

Magnitude spectrogram (2D) 3 x 1024 

Rectangular spectrogram (3D) 3 x 1024 x 2 

 

 

Figure 3.  Boxplot showing the total training time distribution for the time-

series (red), magnitude spectrogram (blue) and rectangular spectrogram 

(green) NN models.  

C. Test accuracy 

1) Test 1 

a) ASK signal 

Figure 4 shows the accuracy of the NN models for the 

time-series (1D), magnitude spectrogram (2D) and 

rectangular spectrogram (3D) datasets containing ASK 

signals with SNR ranging from -21dB to 21dB. For all 

models, there is a general trend of increase in testing accuracy 

when the SNR increases. This is, again, a fairly intuitive 

behavior since higher SNR means the dataset is ‘cleaner’ and 

the NN models can better differentiate between the ‘highs’ 

and ‘lows’ of the core signal. 
The comparison between the three datasets is more 

interesting. In low SNR conditions (less than -15dB), the 
rectangular spectrogram model seems to perform slightly 
better than the magnitude spectrogram model. However, as 
the SNR increases, the performance of the magnitude 
spectrogram model improves rapidly and overtakes the 
rectangular spectrogram model after about -6dB. This can be 
explained by the type and quantity of information each dataset 
contains. Magnitude spectrogram, by definition, contains the 
magnitude or energy information of the signal, which is 
directly proportional to the signal amplitude. So, for ASK 
signals, the magnitude spectrogram more clearly represents 
modulation transitions in higher SNR conditions, thus 
simplifying the task of the NN as compared to the rectangular 
spectrogram. In contrast, the rectangular spectrogram holds 
more information about the signal, which is a boon in low 
SNR conditions but also the cause of data dilution resulting in 
lower performance compared to magnitude spectrogram in 
high SNR condition. 

b) FSK signal 

Figure 5 shows a similar NN model accuracy versus SNR 
plot as Figure 4, but for FSK signals. In contrast with the ASK 
signals of Figure 4, the comparison between the time-series, 
rectangular spectrogram and magnitude spectrogram models 
is more consistent across all SNR levels. The time-series and 
rectangular spectrogram models are evenly matched, and 
better than magnitude spectrogram models (until convergence 
occurs) in terms of accuracy.  

 

 

Figure 4.  Test accuracy of NN models trained with time domain, 
magnitude spectrogram and rectangular spectrogram datasets containing 

ASK signals (high=1, low=0.7) with SNR ranging from -21dB to 21dB. 

Time-series model had generally highest accuracy while the rectangular 
spectrogram model shows better performance than magnitude spectrogram 

model only in low SNR conditions. 
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Figure 5.  Accuracy versus SNR plot for NN models of FSK signals 

(high=1000 Hz, low=950 Hz) showing similar performance of time-series 

and rectangular spectrogram models while the magnitude spectrogram 

model performed worst across all SNR levels. 

The higher accuracy of rectangular spectrogram 
compared to magnitude spectrogram can again be explained 
by the quality and quantity of information represented by the 
magnitude and rectangular spectrograms. The real, imaginary 
and magnitude spectrograms all contain the frequency shift 
information. By stacking the real and imaginary parts 
together, the quantity of information is doubled in rectangular 
spectrogram. However, unlike ASK, this does not dilute the 
dataset because the quality of information in relation to 
frequency is the same in all three sets. Therefore, the 3D 
rectangular spectrogram performs better than the 2D 
magnitude spectrogram over all SNR values. 

c) PSK signal 

Figure 6 shows a similar NN model accuracy versus SNR 
plot as Figures 4 and 5 but for PSK signals. As with the FSK 
models, the time-series and rectangular spectrogram model 
accuracies are evenly matched across all SNR levels. 
However, the magnitude spectrogram models were stuck at 
around 50% accuracy regardless of the SNR level. By 
definition, magnitude spectrogram completely ignores the 
phase information of the complex-valued spectrogram, and 
thus, the corresponding model can’t distinguish between the 
different phases of the PSK signals. In contrast, the 
rectangular data retains this phase information indirectly, as 
indicated by the improved rectangular spectrogram accuracy 
curve in Figure 6. 

 

 

Figure 6.  Accuracy versus SNR plot for NN models of PSK signals 

(high=0°, low=25°) showing the similar performace of time-series and 

rectangular spectrogram models. The magnitude spectrogram models’ 
accuracy was approximately 50% for all SNR levels because of its inherent 

inability to retain phase information. 

2) Test 2 
From Figure 4-6, we observe that time-series NN model 

performed better than the spectrogram models in all three 
cases. This can be attributed to the unprocessed information 
that this raw time-series signal contains. Spectrograms need 
pre-processing, and each pre-processing step results in some 
information loss. Hence, the pre-processed spectrograms 
contained less information than the unprocessed time-series 
signal. However, the information contained in the time-series 
signal can be confused in the presence of fake or interfering 
signals. In such cases, we expect the classification 
performance of the time-series NN model to suffer. To test 
this hypothesis, we conducted ‘Test 2’. 

As explained in Section II, Test 2 is similar to Test 1 
except that an ideal power signal is included to the AWGN 
added modulated signal as a strong out-of-band interferer. In 
practical terms, this power signal simulates a dominant 
interfering signal that makes the identification and 
classification of the desired signal more difficult and can 
confound the ML training process. This test case directly 
corresponds to an application scenario of a power line 
communication medium where the power signal is much 
stronger than the communication signal and affects the 
reactive channel in various other ways. 

Figure 7 shows the accuracy of the NN models for time-
series, magnitude spectrogram and rectangular spectrogram 
datasets each with ASK, FSK or PSK signals. This figure 
shows that the time-series and magnitude spectrogram NN 
models fail to produce any notable result regardless of 
modulation type. On the other hand, the rectangular 
spectrogram models are able to compensate for the dominant, 
out-of-band interfering signal and produce a good 
classification result. This figure also shows that this plot is not 
merely a far-left extension (very low SNR) of the plots in 
Figures 4, 5 and 6, at least not for rectangular spectrogram 
models, as the accuracies approach 100%. The sharp increase 
in accuracies with increasing SNR indicates that the 
rectangular spectrogram model is affected more by the less 
energetic AWGN than the highly energetic out-of-band 
interferer. 

 

 

Figure 7.  Accuracies of the time-series, magnitude spectrogram and 
rectangular spectrogram NN models for ASK, FSK and PSK signals with 

added ideal power signal. The SNR levels in the X-axis of the plot is 

discounting the power signal (i.e., this SNR=Energy of the core modulated 

signal/Energy of the AWGN). 
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IV. CONCLUSION 

In this study, we compared the performance of time-series, 
magnitude spectrogram and rectangular spectrogram datasets 
in training a simple, fully connected NN. We observed that 
time-series and rectangular spectrogram training data 
performed better than magnitude spectrogram data for FSK, 
PSK and low-SNR ASK signals. We also observed that 
rectangular spectrogram training data performs significantly 
better than other formats when there are dominant out-of-band 
interferers present. 
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