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Abstract—Power Line Communications (PLC) is a technology 

that uses power lines to transport communication data 

alongside the AC electric signals. Due to the highly penetrative 

pre-existing power grid infrastructure, PLC has a huge 

networking potential, especially in the implementation of smart 

grid technologies. However, PLC medium poses a major 

hindrance in the form of poor signal propagation. Traditional 

signal processing measures are not enough to demodulate these 

poor signals at the receiver end. To overcome this challenge, we 

are investigating Machine Learning (ML) as a supplement to the 

traditional digital signal processing techniques in this project. 

Our project focuses on testing and comparing various 

supervised machine learning and deep learning algorithms for 

the purpose of digital PLC bit classification.  

Keywords-power line communications; PLC; machine 

learning; ML; smart grid. 

I.  INTRODUCTION 

The use of electrical wiring and power lines for network 
communication is not new. Since the early 1920s, this 
technology has been used to automate meter reading by utility 
companies [1]. Beyond this application, the potential of Power 
Line Communications (PLC) was conceptualized as a 
universal networking solution mainly because of the pre-
existing power-grid [2]. This power grid would obviate the 
need for building other types of dedicated communication 
infrastructures like phone lines and optical fibers, thereby 
saving billions in cost [2]. However, over the years, such high 
expectations of this technology have not been realized due to 
many factors. One of the primary culprits is signal 
propagation.  

The power grid infrastructures, including the power 
cables, were not designed for communication purposes. Thus, 
communication signals face various hindrances in this 
medium, including highly variant and dynamic noise, 
radiation leakage, undesired modulation, etc., [3]. All of these 
problems aggregate to cause poor propagation of the signal. 
One approach to solving this problem is to devise ways to 
cancel out these causes and maintain a better quality of signal 
throughout its communication path. A different approach 
would be to design a better, more sensitive receiver that could 
extract information even from the poorly propagated 
communication signals. The latter approach has an advantage 
because only the receiver needs modification, while the 
former might need engineering improvements in the 
transmitter and the medium. 

Traditional communication receivers work primarily by 
implementing Digital Signal Processing (DSP) techniques, 
such as demodulation, filtering, digitization, etc., [4]. 
However, these methods alone are not sensitive enough to 
extract the information signals in PLC. Machine Learning 
(ML), which is a technique that probes data for information, 
might be a good supplement to traditional signal processing in 
creating more sensitive receivers for PLC. Therefore, in our 
study, we have designed a PLC network architecture and used 
ML with signal processing features to extract the transmitted 
information from the raw PLC signal captured at the receiver.  

The signal workflow of our project is shown in Figure 1. 
Digital information is modulated onto an analog carrier at the 
transmitter in one of several well-known approaches. This 
analog signal is injected into the power line where it combines 
with the dominant power signal plus highly variant noise. The 
output is collected with a Data Acquisition Device (DAQ) at 
the receiver, and it consists of a raw signal that resembles a 
power signal. Various features are extracted from this raw 
signal using DSP. These features, along with the 
corresponding digital labels, are arranged into a dataset. This 
dataset is then fed into ML algorithms, which creates a model. 
Lastly, we use this ML model to classify and thus, extract the 
transmitted digital information. 

The rest of the paper is organized as follows. In Section 2, 
we provide a description of the data-capture methodology, 
feature extraction process used in the raw-data, and the setup 
of the ML models. In Section 3, we present the outcomes of 
ML model optimization, performance of these models, and 
validation of the results. Finally, we summarize the paper and 
provide conclusions in Section 4. 

 

 

Figure 1. The flow of signals from digital input to ML output. 
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II. PROCEDURE 

A. Data Capture 

The experimental setup used to capture the PLC data is 
shown in Figure 2. As shown in the figure, we used a current 
source to inject a low amplitude signal with a frequency of 
1595Hz into the power line via a current-modulator and a 
stabilizing filter. This signal first passes into a single-phase lab 
wiring, then into a three-phase distribution power grid via 
transformers. Some signature of the signal gets ingrained on 
all three-phases during this transition [3]. In the substation, the 
power signal and the injected signal go through more 
transformation, primarily due to Current Transformers (CT). 
These transformed signals were then collected at the 
substation using DAQ.  The communication signal originated 
at the low voltage region (the lab) and traveled towards the 
high voltage region (substation) of the distribution grid, 
thereby making the PLC path upstream. 

B. Raw Data 

The raw data, captured using DAQ, was a three-phase 
time-series data consisting of a power signal at around 60Hz, 
communication signal at around 1595Hz, and time-variant 
noise at all frequencies. The power signal dominated the time-
domain plot of this raw data because of its relatively high 
amplitude. Thus, the time-domain plot did not show any trace 
of our communication signal. The power signal and its 
harmonics also dominated the frequency-domain spectrum 
plot. However, a small peak was present at 1595Hz that 
showed the presence of our transmitted signal. However, the 
spectrum plot cannot show the time-varying nature of the 
signal, and thus, did not provide us information about the 
digital data that was transmitted. A spectrogram, which is a 
plot of signal energies in a time vs. frequency graph, helps 
acquire this information. Figure 3 shows the spectrogram of 
the Phase A raw data. We can see the dominant power signal 
and its harmonics at low frequencies. More significantly, there 
is a clear dotted band above 1500Hz, which is our 
communication signal. In this frequency band, the short bright 
dashes represent the 1s, and the gap between these dashes 
represents the 0s. These discrete amplitude (energy) shifts 
correspond to the data (bits) modulated and transmitted by the 
current source. 

 

 

Figure 2. Experimental setup for sending and receiving a current signal 

through power lines in a distribution power grid. 

 

Figure 3. Spectrogram of Phase A of captured raw data. 

C. Feature Extraction 

After the raw data was collected, this data needed to be 

converted to ML-ready format. First, we divided the raw data 

into numerous frames corresponding to the resolution frame 

of the labels (sample length of a single bit in the transmitted 

analog signal). Each of these frames would be a sample row 

in our final dataset. Then, from each of these frames, we 

extracted various features as described below: 

1) Amplitude Envelope 

This feature gives the change in the amplitude of the 

signal over time [5]. It effectively traces the outline of the 

signal in the time-domain. In our case, the raw signal’s 

amplitude envelope, as is, would not provide any meaningful 

information as the 60Hz power signal dominates all other 

superimposed sinusoidal signals. Therefore, we filtered the 

raw frames with band pass filters of 100Hz bandwidth 

starting from 1Hz and up to 2000Hz with no overlap (1Hz-

100Hz, 101Hz-200Hz,...,1901-2000Hz). Hence, we divided 

each frame into twenty frequency-separated signals and 

calculated each of these signals' amplitude envelope. Our 

expectation was that the amplitude envelope of one of these 

signals which contains our communication frequency 

(1595Hz in our case) would provide information about the bit 

that was transmitted in that frame. 

2) RMS (Root Mean Square) Energy 

The energy of a signal is the measure of the “strength” 

of the signal. A signal’s energy is defined as the sum of the 

square of its magnitude [6]. Thus, RMS Energy (RMSE) is 

the square root of the mean energy of a signal. Equation (1) 

[7] shows the formula for RMSE where xi is the ith sample of 

signal x and N is the total number of samples. 
 

𝑅𝑀𝑆𝐸 =  √
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑁

2 )

𝑁
 

 
(1) 

 In our case, the raw signal's energy (or each frame) 

would again be dominated by the power signal. Hence, we 

frequency separated the frames as before and calculated 

RMSE for each of the twenty bandpass filtered signals of 

each frame. Like the amplitude envelope, we were expecting 
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variations in the RMSE of 1,501-1,600Hz signals of different 

frames corresponding to the bit these frames were carrying. 

3) Spectral Centroid 

Amplitude envelope and RMSE are time-domain 

features, and thus, they were extracted from the time-series 

data. We decided to use spectral centroid to probe the 

frequency-domain of the raw data for important signal 

characteristics. The spectral centroid compares the center of 

mass of the signal’s spectrum [8]. Our raw signal’s spectrum 

had a primary peak at around 60Hz and secondary harmonic 

peaks at multiples of 60Hz because of the dominant power 

signal. Whenever the communication signal was present in 

the raw signal, there should also be a peak at 1595Hz (our 

communication frequency). We assumed that the presence 

and absence of the communication signal (corresponding to 

1 and 0, respectively) would noticeably shift the center of the 

spectrum’s mass, thereby providing a classification measure 

of the transmitted bit. Therefore, we included the spectral 

centroid of each frame as one of the features. 

D. Machine Learning 

After the dataset was formed by compiling the features 

from the raw data and labels were recorded, it was used in 

machine learning models with a 70% training split. To form 

the models with various supervised algorithms, Python Sci-

kit learn used for Logistic Regression (LR) [9], Support 

Vector Machines (SVM) [10], and Decision Tree (TREE) 

[11]. The hyperparameters for these algorithms were 

optimized using the grid search [12] method. A majority 

voting model [13] was also created from the optimized LR, 

SVM, and TREE to check if such ensemble model would 

outperform the individual models. ROC AUC scores [14], 

precision [15], recall [16], and f1 scores [17] were computed 

to evaluate and compare these various models, training, and 

testing accuracy scores. Learning curves [18] were plotted 

and evaluated to ensure the models were not overfitting or 

underfitting. Confusion matrices [19] were also plotted to 

visualize the accurate label versus the predicted label. 

Besides these basic “one neuron” ML models, multi-

neuron, multilayer Artificial Neural Network /Deep Neural 

Network (ANN/DNN) model [20] was also tested using 

python’s Tensor Flow and Keras. The various 

hyperparameters of these ANN/DNN models were optimized 

by manual trial and error method. Accuracy scores, loss and 

validation curves, and confusion matrix were generated to 

evaluate this ANN/DNN model’s performance and this 

performance was compared with the other ML models. 

ML was performed on the full dataset (with combined 

phase A, B, and C data). However, the accuracy and other 

performance metrics were low for this full dataset. Hence, the 

same ML techniques were applied for the phase A data only 

as well. The comparisons on the various metrics between 

these two datasets and other significant results are presented 

in Section 3. 

III. RESULTS AND DISCUSSIONS 

A. Grid Search 

A grid search was performed on the LR, SVM, and TREE 
algorithms to optimize the models’ hyperparameters. Tables I 
and II show the optimized parameters and their corresponding 
values for each of these algorithms. These tables also show the 
training and testing accuracy values for respective algorithms. 
Table I is for the phase A data only, while Table II is for the 
combined phase A, B, and C data (full dataset).  

As shown in Table I, all three algorithms, after grid search 
optimization, had similar performance in terms of training and 
testing accuracy for phase A data. The accuracy values were 
in the mid ninety percent, which indicates that the ML was 
successful in learning and classifying the samples into binary 
digital bits. 

On the other hand, Table II shows that the ML models 
were not as relatively successful in the same regard for the full 
dataset. This might be because the phase B and C dataset did 
not have the same amount of information on the 
communication signal as phase A, or the features that we 
extracted did not work as well for phase B and C data. As 
shown in Figure 2, the communication signal is injected into 
a single phase, and the image of this signal gets ingrained into 
the other two phases when the signal transitions through a 
distribution transformer. From our accuracy result, we can 
infer that the signal was injected directly into phase A, and the 
images were produced in phase B and C later in the PLC path.  

B. Feature Selection 

Next, to examine the most impactful features and to plot a 
2D graph with decision regions for each model, we used the 
Sequential Backward Selection (SBS) [21] method to filter 
out the two most essential features from a total of 41 (20 each 
of amplitude envelope and RMSE plus one spectral centroid). 
The results are presented in Tables III and IV.  

As shown in these tables, one of the two best features for 
every algorithm in both datasets was ‘RMSE 1501-1600’. 
This is the RMS energy feature of the samples after being 
filtered with a 1501Hz-1600Hz band pass filter. This 
frequency range is significant because our input 
communication signal is at 1595Hz. This result shows that the 
ML models can correctly identify the frequency band location 
of our communication signal. Further, the tables also show 
that RMSE was consistently the best feature in all cases. This 
is expected because the main difference between the 1s and 0s 
in our input signal is the signal strength, and RMSE is the 
measure of this signal strength. 

The tables also show the accuracy values of the models 
with just the two best features. Comparing these values to the 
values in Tables I and II, we can see that reducing the dataset 
features from 41 to 2 did not have a significant impact on the 
accuracy of the models. 

A 2D plot of labels with decision regions was produced 
using the two best features for each model. Figure 4 shows 
such a 2D plot of the Phase A training and testing set with 
SVM decision regions. 
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TABLE I.  GRID SEARCH RESULTS FOR PHASE A DATA 

Classifiers Optimized parameters Training 

accuracy 
Testing 

accurac

y 

Logistic 

Regression 

C=1.0, solver=lbfgs 
94.06 93.99 

SVM C=1000, gamma=0.001 94.45 95.19 

Decision 

Tree 

Max_depth=1, 

Min_samples_split=1.0 94.19 95.19 

TABLE II.  GRID SEARCH RESULTS FOR FULL DATASET 

Classifiers Optimized parameters Training 

accuracy 

Testing 

accuracy 

Logistic 

Regression 

C=1.0, solver=lbfgs 
77.27 76.73 

SVM C=10, gamma=0.1 77.15 75.52 

Decision 

Tree 

Max_depth=5,     

Min_samples_split=7 73.84 72.22 

TABLE III.  FEATURE SELECTION RESULTS FOR PHASE A DATA 

Classifiers Two best features Training 

accuracy 

Testing 

accuracy 

Logistic 

Regression 

RMSE 201-300 and 

RMSE 1501-1600  

93.29 94.58 

SVM RMSE 1301-1400 and 
RMSE 1501-1600  

95.53 96.78 

Decision 

Tree 

RMSE 1-100 and RMSE 

1501-1600  

95.7 95.19 

TABLE IV.  FEATURE SELECTION RESULTS FOR FULL DATASET 

Classifiers Two best features Training 

accuracy 

Testing 

accuracy 

Logistic 

Regression 

RMSE 501-600 and 

RMSE 1501-1600  

73.43 72.21 

SVM RMSE 701-800 and 

RMSE 1501-1600  

76.6 74.92 

Decision 

Tree 

RMSE 501-600 and 

RMSE 1501-1600  

78.86 74.51 

 

 
Figure 4. 2D feature plot showing labels and decision boundary of the 

SVM model for phase A data. 

C. Learning Curve 

To check if the ML models were overfitting or 

underfitting, we produced learning curves for each model. 

Overfitting is caused by high variance when models train 

with the noise and the appropriate data and produce a 

disproportionate result in the training and testing set [20]. In 

learning curves, overfitting can be implied if the training and 

validation accuracy curves do not converge and are far apart. 

On the other hand, underfitting is caused by high bias when 

the models do not consider all relevant data with appropriate 

weight. Underfitting can be implied in learning curves if the 

training and validation accuracy is consistently low [20]. 

Figure 5 shows the learning curve of the LR model for the 

phase A dataset. This shows that the model was not overfitted 

or underfitted. The two other models for the phase A dataset 

also had similar learning curves showing no overfitting or 

underfitting. 

D. Ensemble model 

After the LR, SVM, and TREE models were optimized, 

they were assembled into one classifier by soft (with 

probabilities) majority voting. The results of the individual 

classifier along with the ensemble model for phase A dataset 

and full dataset are shown in Table V. As shown in this table, 

both the phase A and full dataset had a slight decrease in the 

accuracy of their corresponding majority voting model 

compared to the best individual model. 

E. Confusion Matrix 

For all the models, including the ANN/DNN, confusion 

matrices were produced. The confusion matrix of the decision 

tree model for the phase A dataset is shown in Figure 6. It 

shows the number of True Positive (TP) on the top left 

quadrant, False Negative (FN) on the top right, False Positive 

(FP) on the bottom left, and True Negative (TN) on the 

bottom right. From these values, other metrics, including 

accuracy, can be calculated. In Figure 6, Precision = 

[TP/(TP+FP)], Recall =[TP/(TP+FN)] and F1 score 

=[2*(Precision*Recall)/ (Precision + Recall] [22] are 

calculated and shown on the plot title.  

 
Figure 5. Learning curve for logistic regression model of phase A dataset. 
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As shown in this figure, the decision tree model correctly 

classified most of the labels (shown in blue quadrants) while 

it wrongly classified eight samples of each of the two labels 

(shown in white quadrants). SVM was the best model for the 

phase A dataset, while for the full dataset, LR was the best. 

F. ROC AUC Curve 

The Receiver Operating Characteristics (ROC) curve is a 

graph of model probabilities of False Positive Rate (FPR) 

versus True Positive Rate (TPR). FPR is the ratio of the 

number of False Positives (FP) to the total number of 

negatives (FP+TN), while TPR is the ratio of True Positive 

(TP) to the total number of positives (TP+FN) [23]. ROC 

curve shows a model’s performance at all classification 

thresholds, and the Area Under this Curve (AUC) provides a 

metric for this performance measure [23]. Figure 7 shows the 

ROC curve and ROC AUC scores of LR, SVM, TREE, and 

Majority voting models for the phase A dataset. Please note 

that the straight diagonal line in the middle of the plot is a 

hypothetical model which cannot distinguish between the 

two classes and is equivalent to “guessing” the classification. 

Therefore, its AUC is 0.5. This diagonal line represents a 

threshold, and if a model falls below this threshold, it is 

performing worse than guesswork. As seen in Figure 7, our 

LR, SVM, TREE and Majority voting models’ respective 

curves are close to AUC of 1. The performance of these 

models in this metric is very similar. 

G. ANN/DNN model and its Loss Curve 

After testing the three basic ML algorithms, we created 

an ANN/DNN model with the phase A dataset. The number 

of hidden layers in this model, number of nodes in each layer, 

activation functions for each layer, optimizer, and 

hyperparameters for the model were all tuned and optimized 

by trial and error. The results of this optimization are shown 

in Table VI. 

With these parameters, the ANN/DNN model was trained 

with phase A data, and it produced a final training accuracy 

of 98.19% and testing accuracy of 94.29%. These accuracy 

values are slightly better than the corresponding accuracy 

values of LR, SVM, TREE, or Majority voting models. 

Figure 8 shows the training versus test (validation) curve of 

this ANN model. As shown in this figure, the model’s loss 

decreased and stabilized as the model trained for more 

epochs. 

TABLE V.  ACCURACY VALUES FOR INDIVIDUAL AND ENSEMBLE 

MODEL IN PHASE A AND FULL DATASET 

Classifiers Phase A Dataset 

Accuracy 

Full Dataset 

Accuracy 

Logistic Regression 0.94 0.77 

SVM 0.93 0.76 

Decision Tree 0.92 0.74 

Majority Voting 0.93 0.76 

 
Figure 6. Confusion matrix of the decision tree model for phase A 

dataset. 

 
Figure 7. ROC AUC curve of LR, SVM, TREE and majority voting 

model. 

TABLE VI.  ANN/DNN OPTIMIZED HYPERPARAMETER VALUES 

Number of hidden layers 2 

Number of nodes in each hidden 

layer 

50, 50 

Activation function for each 

layer 

tanh, tanh, sigmoid (for output 

layer) 

Optimizer Adam 

Optimizer parameters Learning rate of 0.01 and beta 
decay (beta_1) of 1e-5 
 

Number of epochs 100 

Validation ratio 0.01 

 

 
Figure 8. Training and testing (validation) loss curve for the ANN model. 
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IV. CONCLUSION 

This research study extracted time-domain (amplitude 
envelope and RMS energy) and frequency-domain (spectral 
centroid) feature from raw PLC data to generate an ML-ready 
dataset. Then, we used the dataset in three supervised machine 
learning algorithms: logistic regression, support vector 
machine, and decision tree, to generate classification models. 
We optimized these models using the grid search method, 
investigated impactful features in each model using sequential 
backward analysis, checked for model’s overfitting and 
underfitting using learning curves, and used accuracy, ROC 
AUC scores, precision, recall, and f1 score metrics to evaluate 
and compare the performance of the models. Using these 
performance metrics, we found out that all three models (and 
an ensemble model made by majority voting of the three) 
performed similarly, with SVM being slightly better than the 
rest because of its non-linear classification.  

Then, we used an artificial neural network/deep neural 
network model with two hidden layers to perform the same 
classification task on the PLC dataset. This ANN model 
performed slightly better than the aforementioned basic ML 
models. 

We also observed that all the models performed 
significantly better with the standalone phase A dataset than 
the full dataset containing data from all three phases. This is 
most likely because the input signal was initially transmitted 
through the phase A power line, and the phases B and C only 
got images of this signal along the PLC path. Hence, the 
deteriorated signal data in phases B and C diluted the full 
dataset and caused the model to be less accurate. In future 
works, the signal reception from the secondary phases can be 
improved, for example, by using a Rake receiver. This could 
result in a better performance from the full dataset.  
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