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Abstract — This paper investigates a method for improving the 
performance of sparse Lower-Upper (LU) decomposition which 
is widely used to solve sparse linear systems of equations, 
appearing in many scientific and engineering application 
models. However, LU decomposition is considered a 
computationally expensive tool. When dealing with large sparse 
matrices, numerical decomposition takes more time using 
normal matrix LU implementation. The problem of interest 
here is the irregular sparsity pattern which limits performance 
gain. An efficient architecture for sparse LU decomposition is 
proposed for both symmetric and asymmetric matrices with 
random sparsity percentages and patterns. The algorithm 
spends time in simultaneous localization and mapping of the 
sparse matrix and then solving the linearized system. The 
performance of the algorithm with matrices of varying 
parameters is calculated and compared with a regular LU 
decomposition algorithm. In most cases, there are performance 
improvements in terms of speed, area, and power. 

Keywords – Pivoting; latency; linear systems; throughput; LU 
Decomposition; Field Programmable Gate Arrays (FPGAs). 

I.  INTRODUCTION 
Numerical solutions of large linear systems are important 

for scientific and engineering applications like linear 
programming, circuit simulation, semiconductor device 
simulations, image processing, and power system modelling. 
Solving such systems of equations generally involves two 
methods: the direct method including Cholesky 
decomposition, LU decomposition, QR decomposition, and 
iterative methods. The Cholesky decomposition is a special 
form of LU decomposition which deals with symmetric 
positive definite matrices. Adapting these parallel 
architectures to solve large sparse linear system of equations 
is a main focus of research [1].  

A number of software- and hardware-based approaches 
have been developed to obtain better solutions for LU 
decomposition. Software implementation includes a Super 
nodal approach which considers the matrix as sets of 
continuous columns with the same nonzero structure, and a 
Multifrontal approach organizing a large sparse matrix into a 
small dense matrix [2]. Field Programmable Gate Arrays 
(FPGAs) have unique advantages in solving these problems. 
Depending on the characteristics of the algorithm, an 

architecture is designed with reconfigurable computational 
resources and memory. The consumption of energy is reduced 
and is a platform for experimentation and verification. Though 
there are many FPGA-based architectures for dense matrices, 
only a few are proposed for sparse matrix decomposition 
[3][4]. The three main direct methods for sparse LU 
decomposition are left-looking, right-looking and count 
algorithms. The proposed FPGA-based architecture for sparse 
LU decomposition can efficiently decompose the sparse 
matrix with varying sparsity patterns. The architecture first 
factorizes the columns from the lower triangular part of the 
matrix in parallel with the rows from the upper triangular part 
of the matrix. The control structure performs pivoting 
operations while factorizing the rows and columns of the 
matrix.    

The rest of the paper is organized as follows. Section II 
introduces the theoretical background of LU decomposition, 
Section III describes the architectural design with proposed 
algorithm, Section IV proves the simulation of the design 
using Xilinx Vivado Design suite with verification of 
MATLAB results, and Section V provides FPGA mapping of 
the design and discussion of performance results. This paper 
concludes with a brief conclusion in Section VI.  

II. BACKGROUND 

A. Sparse LU Decomposition 
 
LU decomposition or factorization is a popular matrix 

decomposing method for many numerical analysis and 
engineering science problems. It decomposes the matrix as a 
product of the lower triangular matrix (L) whose diagonal 
elements are equal to 1 and all the elements above the diagonal 
are equal to 0, and an upper triangular matrix (U) whose 
elements below the diagonal are equal to 0. If A is a square 
matrix, LU decomposes A with proper row and/or column 
orderings into two factors, which is shown in Fig. 1. 

 𝑨 = 𝑳𝑼 (1) 
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LU decomposition is a direct method that can solve large 
systems of linear equations that arise from important 
applications such as circuit simulation, power networks, and 
structural analysis [5]. To ensure stability during LU 
decomposition, pivoting operations are performed to remove 
zero elements from the diagonal of matrix A. Without proper 
pivoting, the decomposition may fail to materialize. A proper 
permutation in rows or columns is sufficient for LU 
decomposition, which is also known as Partial Pivoting. This 
approach is suitable for a square matrix, and it is numerically 
stable in practice. 

 𝑷𝑨 = 𝑳𝑼 (3) 

On	the	other	hand,	Full	Pivoting	 involves	both	row	and	
column	permutations.  

 𝑷𝑨𝑸 = 𝑳𝑼 (4) 

where Q is a permutation matrix which reorders the columns 
of A. 

The forward reduction and backward substitution 
techniques are more stable compared to matrix inverses to 
solve systems of linear equations because every nonsingular 
matrix possesses an LU decomposition. When compared with 
regular matrices, sparse matrices can benefit from algorithms 
that reduce the number of operations which are required to 
calculate L and U. However, the disadvantage is that sparse 
methods will suffer from irregular computation patterns as 
they are dependent on the nonzero structure of the matrix. 

   
 

 
 
 
 
 
 
 
 

Figure 1.  Example of a sparse matrix and its factors L and U 

B. Related Work  
 
There have been many architectures proposed for sparse 

LU decomposition which either target domain-specific 
sparsity patterns or require a pre-ordered symmetric matrix 
[6]. Blocking is a useful technique for gaining higher 
throughput for dense matrices. When decomposing in blocks 
using a Block Sparse Row (BSR) format for solving linear 
systems, it is limited to a matrix containing square blocks of 
a single dimension. When decomposition is executed in 
parallel, it often tries to avoid pivoting by using threshold 
pivoting or static pivoting beforehand. The architecture 
proposed in [7] implements a right looking algorithm and 

includes a hardware mechanism for pivoting. The 
performance of this is primarily I/O bandwidth limited.  

Another implementation captures the static sparsity 
pattern and is exploited to distribute the data flow 
representation of computation for circuit simulation [8]. A 
more general hardware design is proposed parallelizing a left 
looking algorithm to support processing symmetric positive 
definite or diagonally dominant matrices. The factor limiting 
architecture efficiency is dynamically depending data 
dependencies. One more algorithm proposes choosing a 
pivoting strategy, where the matrix is decomposed block-
wise. FPGAs have been shown to be effective in accelerating 
a wide range of matrix operations in recent years [9] [10]. 

The algorithm with row pivoting yields LU=PA, where 
the matrix overwrites A with LU-I, and I is an identity 
matrix. The first half of the algorithm will be triangular 
solving, leaving behind pivoting and scaling. In the case of 
sparse matrix, it will be inefficient for swapping rows. Due to 
having a single unreduced row or column, full pivoting is not 
easily achievable. The control system is implemented as a 
Finite State Machine (FSM), which tracks the progress of the 
units for synchronization. The algorithm for sparse matrix LU 
decomposition is in Fig. 2. 

 
Algorithm 
A → n×n sparse matrix 
P → n×n identity matrix  
[n, m] = size(A) 
set reset high    
U = A      
L = P = In*n 
 
[Perform pivoting operation] 
function pivot (A, P, i)     
 P = choose pivot (Ai: end, i)  
 if (P ≠ k) then     
  SWAP (Ai, *, Ap, *)  
  SWAP (Pi, *, Pp, *)  
 end if      
 return (A, P) 
end function 
[Interchanging rows in matrix] 
If m≠ j 
    U ([m, j], :) = U ([j, m], :) 
    P ([m, j], :) = P ([j, m], :) 
    If j<=2 
        L ([m, j], 1: j-1) = L ([j, m], 1: j-1) 
    end 
end 
[Update row and column entries] 
for i = j+1 to n 
    for j = 1 to n 
        Li, j = Ui, j / Uj, j     
            for k = j+1 to n-1 
     U (i, *) = U (i, *) - L (i, j) × U (j, *) 
 end  
    end  
end 
 

Figure 2.  Pseudo code for Sparse LU Decomposition  

 
 
 
 
 
 
 

                 A                                      L                                       U 
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III. SPARSE LU DECOMPOSITION ARCHITECTURE 
The proposed approach for sparse LU decomposition 

consists of the following operations: 
 

1. Pivoting strategy, when A has nonzero entries which 
are at fill-up locations. 

2. Symbolic decomposition, which estimates the 
memory requirements for L and U factors. 

3. Numerical calculation, which is computed using 
Gaussian elimination.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Proposed LU Decomposition Hardware Algorithm 

To maximize performance, LU hardware is designed to 
focus on maintaining a regular computation and memory 
access pattern. Fig. 3 shows a block diagram of the proposed 
hardware algorithm. The control and memory access handle 
the operations performed for decomposing the matrix. The 
design ensures the memory will have enough space to store 
the values [11] [12].  

A. Pivot Operation 
 
In order to perform a pivoting operation, the design 

includes usage of lookup tables and memory pointers to keep 
track of memory mapping. It performs a pivot search for each 
step of matrix elimination. Index pointers are created for each 
pivot to store the row and column physical address, 
accordingly. These physical addresses are then used to fetch 
the values from memory. These values are sequentially 
checked as they arrive for the absolute maximum values with 
the index. Using a register, it is stored as a pivot element. The 
minimum amount of memory utilized is proportional to the 
size of the matrix. Once pivoting is complete, an update is 
sent back to the lookup tables.  

B. Update Pivot and Interchange Rows 
 
The “Update Pivot and Interchange Rows” logic block 

performs normalization prior to elimination for the pivot 
values of row and column requested from memory. The 
necessary data such as pivot index, values and column are 
inferred from the previous state. This process is executed one 
by one after each pivot value is fetched and read. The updated 

row and column values and the normalized row and column 
values are then stored in registers. 

C. Update Row and Columns 
 
The remaining computations required are performed 

during this transition state. First, it indicates if the given row 
or column should be updated. Second, it	 manages	 the	
addresses	of	nonzero	entries	that	are	to	be	stored. This 
unit contains the necessary floating-point multiplier and 
adder to perform the required arithmetic operations [13]. This 
unit is operational in parallel to maximize the utilization of 
all logic units. This will update the number of updated logics 
that fits in FPGA chip. There are enough resources available 
in the FPGA that can accommodate all of the units.  

IV. IMPLEMENTATION AND VERIFICATION 
Various arbitrary matrices with different sparsity patterns 

are generated using MATLAB and are tested using the 
hardware architecture. A parameter n is included along with 
the design to decompose the size of the matrix. Fig. 4 shows 
the simulated waveform from Xilinx Vivado design Suite. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Simulation Waveform for LU Decomposition 

The simulated results are stored in an external .txt file 
and are verified with the results from MATLAB for precision 
loss. For L matrix, the error ranges between -0.0872 to 
0.0357 and for U matrix it ranges between -0.0108 to 0.0057 
as shown in Fig. 5 below.  
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Figure 5.  MATLAB Calculated Errors Values 

V. PERFORMANCE ANALYSIS 

A comparison of LU decomposition of sparse matrix of 
size 10x10 and 100x100, with a different sparsity range of 
10% to 50% is shown in Fig. 6 below. The proposed LU 
decomposition design was able to achieve lower latency than 
the regular algorithm LU decomposition. The results are also 
verified with the MATLAB LU decomposition outputs for 
precision loss. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Latency Comparasion 

 
A comparison of the throughput calculated from the 

sparse matrix algorithm and regular algorithm is plotted in 
the form of a graph and is represented in Fig. 7. As the 
throughput needs to be high for better performance, we are 
able to infer from the graph that high throughput was 
achieved. 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Block Diagram of the TX and RX Module 

The data from Table I shows that the matrix storage format 
proposed in this research was able to achieve minimum 
resource utilization, as opposed to the traditional regular LU 
decomposition algorithm. The proposed design was 
implemented on a Xilinx Artix7 XC7A100T-1CG324C board 
comprising of 15,850 logic slices and a maximum of 4,860 
Kbits fast block RAM. This is achieved with optimization 
through the implemented design for the LU decomposition. A 
difference in about one third of the total resources utilized was 
achieved, as seen in Fig. 8 and 9, respectively. 

The performance of the design is based on the architecture 
and its parameters. As an FPGA has enough computational 
resources and the design is memory-bound, the performance 
is totally dependent on memory access time.  
 

TABLE I.  RESOURCES UTILIZED FOR PROPOSED ALGORITHM 

 
 

Device Utilization Summary 

 Proposed Sparse 
Algorithm 

Regular 
Algorithm 

Slice Logic 
Utilization Available Used 

Slice 
Registers 126,800 3,420 10,863 

Slice LUTs 63,400 11,211 16,807 

Memory 19,000 8 64 

Occupied 
Slices 15,850 3,504 5,455 

IOBs 210 40 40 
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Figure 8.  FPGA Design Utilization  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Design Power Requirements 

VI. CONCLUSION 
Numerous engineering and machine learning applications 

rely largely on solving linear equations using LU 
decomposition, due to rapid developments in the field of 
mathematics and computation. Compared with a CPU and 
GPU, the FPGA does not have an instruction set. Instead, it 
possesses a number of reconfigurable logic blocks which 
could perform any digital logic function. In this paper, a 
computational implementation of the LU decomposition is 
proposed using an optimized algorithm. The proposed 
architecture can achieve further improvement by increasing 
the overall design clock.  
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