
Optimized Architecture for Sparse LU Decomposition on Matrices with Random
Sparsity Patterns

Dinesh Kumar Murthy
Ingram School of Engineering

Texas State University
San Marcos, TX, USA
d_m410 @txstate.edu

Semih Aslan
Ingram School of Engineering

Texas State University
San Marcos, TX, USA

aslan@txstate.edu

Abstract — This paper investigates a method for improving the
performance of sparse Lower-Upper (LU) decomposition which
is widely used to solve sparse linear systems of equations,
appearing in many scientific and engineering application
models. However, LU decomposition is considered a
computationally expensive tool. When dealing with large sparse
matrices, numerical decomposition takes more time using
normal matrix LU implementation. The problem of interest
here is the irregular sparsity pattern which limits performance
gain. An efficient architecture for sparse LU decomposition is
proposed for both symmetric and asymmetric matrices with
random sparsity percentages and patterns. The algorithm
spends time in simultaneous localization and mapping of the
sparse matrix and then solving the linearized system. The
performance of the algorithm with matrices of varying
parameters is calculated and compared with a regular LU
decomposition algorithm. In most cases, there are performance
improvements in terms of speed, area, and power.

Keywords – Pivoting; latency; linear systems; throughput; LU
Decomposition; Field Programmable Gate Arrays (FPGAs).

I. INTRODUCTION
Numerical solutions of large linear systems are important

for scientific and engineering applications like linear
programming, circuit simulation, semiconductor device
simulations, image processing, and power system modelling.
Solving such systems of equations generally involves two
methods: the direct method including Cholesky
decomposition, LU decomposition, QR decomposition, and
iterative methods. The Cholesky decomposition is a special
form of LU decomposition which deals with symmetric
positive definite matrices. Adapting these parallel
architectures to solve large sparse linear system of equations
is a main focus of research [1].

A number of software- and hardware-based approaches
have been developed to obtain better solutions for LU
decomposition. Software implementation includes a Super
nodal approach which considers the matrix as sets of
continuous columns with the same nonzero structure, and a
Multifrontal approach organizing a large sparse matrix into a
small dense matrix [2]. Field Programmable Gate Arrays
(FPGAs) have unique advantages in solving these problems.
Depending on the characteristics of the algorithm, an

architecture is designed with reconfigurable computational
resources and memory. The consumption of energy is reduced
and is a platform for experimentation and verification. Though
there are many FPGA-based architectures for dense matrices,
only a few are proposed for sparse matrix decomposition
[3][4]. The three main direct methods for sparse LU
decomposition are left-looking, right-looking and count
algorithms. The proposed FPGA-based architecture for sparse
LU decomposition can efficiently decompose the sparse
matrix with varying sparsity patterns. The architecture first
factorizes the columns from the lower triangular part of the
matrix in parallel with the rows from the upper triangular part
of the matrix. The control structure performs pivoting
operations while factorizing the rows and columns of the
matrix.

The rest of the paper is organized as follows. Section II
introduces the theoretical background of LU decomposition,
Section III describes the architectural design with proposed
algorithm, Section IV proves the simulation of the design
using Xilinx Vivado Design suite with verification of
MATLAB results, and Section V provides FPGA mapping of
the design and discussion of performance results. This paper
concludes with a brief conclusion in Section VI.

II. BACKGROUND

A. Sparse LU Decomposition

LU decomposition or factorization is a popular matrix

decomposing method for many numerical analysis and
engineering science problems. It decomposes the matrix as a
product of the lower triangular matrix (L) whose diagonal
elements are equal to 1 and all the elements above the diagonal
are equal to 0, and an upper triangular matrix (U) whose
elements below the diagonal are equal to 0. If A is a square
matrix, LU decomposes A with proper row and/or column
orderings into two factors, which is shown in Fig. 1.

 𝑨 = 𝑳𝑼 (1)

 !
𝐴!! 𝐴!" 𝐴!#
𝐴"! 𝐴"" 𝐴"#
𝐴#! 𝐴#" 𝐴##

= !
1 0 0
𝐿"! 1 0
𝐿#! 𝐿#" 1

× !
𝑈!! 𝑈!" 𝑈!#
0 𝑈"" 𝑈"#
0 0 𝑈##

(2)

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

LU decomposition is a direct method that can solve large
systems of linear equations that arise from important
applications such as circuit simulation, power networks, and
structural analysis [5]. To ensure stability during LU
decomposition, pivoting operations are performed to remove
zero elements from the diagonal of matrix A. Without proper
pivoting, the decomposition may fail to materialize. A proper
permutation in rows or columns is sufficient for LU
decomposition, which is also known as Partial Pivoting. This
approach is suitable for a square matrix, and it is numerically
stable in practice.

 𝑷𝑨 = 𝑳𝑼 (3)

On	the	other	hand,	Full	Pivoting	 involves	both	row	and	
column	permutations.

 𝑷𝑨𝑸 = 𝑳𝑼 (4)

where Q is a permutation matrix which reorders the columns
of A.

The forward reduction and backward substitution
techniques are more stable compared to matrix inverses to
solve systems of linear equations because every nonsingular
matrix possesses an LU decomposition. When compared with
regular matrices, sparse matrices can benefit from algorithms
that reduce the number of operations which are required to
calculate L and U. However, the disadvantage is that sparse
methods will suffer from irregular computation patterns as
they are dependent on the nonzero structure of the matrix.

Figure 1. Example of a sparse matrix and its factors L and U

B. Related Work

There have been many architectures proposed for sparse

LU decomposition which either target domain-specific
sparsity patterns or require a pre-ordered symmetric matrix
[6]. Blocking is a useful technique for gaining higher
throughput for dense matrices. When decomposing in blocks
using a Block Sparse Row (BSR) format for solving linear
systems, it is limited to a matrix containing square blocks of
a single dimension. When decomposition is executed in
parallel, it often tries to avoid pivoting by using threshold
pivoting or static pivoting beforehand. The architecture
proposed in [7] implements a right looking algorithm and

includes a hardware mechanism for pivoting. The
performance of this is primarily I/O bandwidth limited.

Another implementation captures the static sparsity
pattern and is exploited to distribute the data flow
representation of computation for circuit simulation [8]. A
more general hardware design is proposed parallelizing a left
looking algorithm to support processing symmetric positive
definite or diagonally dominant matrices. The factor limiting
architecture efficiency is dynamically depending data
dependencies. One more algorithm proposes choosing a
pivoting strategy, where the matrix is decomposed block-
wise. FPGAs have been shown to be effective in accelerating
a wide range of matrix operations in recent years [9] [10].

The algorithm with row pivoting yields LU=PA, where
the matrix overwrites A with LU-I, and I is an identity
matrix. The first half of the algorithm will be triangular
solving, leaving behind pivoting and scaling. In the case of
sparse matrix, it will be inefficient for swapping rows. Due to
having a single unreduced row or column, full pivoting is not
easily achievable. The control system is implemented as a
Finite State Machine (FSM), which tracks the progress of the
units for synchronization. The algorithm for sparse matrix LU
decomposition is in Fig. 2.

Algorithm
A → n×n sparse matrix
P → n×n identity matrix
[n, m] = size(A)
set reset high
U = A
L = P = In*n

[Perform pivoting operation]
function pivot (A, P, i)
 P = choose pivot (Ai: end, i)
 if (P ≠ k) then
 SWAP (Ai, *, Ap, *)
 SWAP (Pi, *, Pp, *)
 end if
 return (A, P)
end function
[Interchanging rows in matrix]
If m≠ j
 U ([m, j], :) = U ([j, m], :)
 P ([m, j], :) = P ([j, m], :)
 If j<=2
 L ([m, j], 1: j-1) = L ([j, m], 1: j-1)
 end
end
[Update row and column entries]
for i = j+1 to n
 for j = 1 to n
 Li, j = Ui, j / Uj, j
 for k = j+1 to n-1
 U (i, *) = U (i, *) - L (i, j) × U (j, *)
 end
 end
end

Figure 2. Pseudo code for Sparse LU Decomposition

 A L U

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

III. SPARSE LU DECOMPOSITION ARCHITECTURE
The proposed approach for sparse LU decomposition

consists of the following operations:

1. Pivoting strategy, when A has nonzero entries which
are at fill-up locations.

2. Symbolic decomposition, which estimates the
memory requirements for L and U factors.

3. Numerical calculation, which is computed using
Gaussian elimination.

Figure 3. Proposed LU Decomposition Hardware Algorithm

To maximize performance, LU hardware is designed to
focus on maintaining a regular computation and memory
access pattern. Fig. 3 shows a block diagram of the proposed
hardware algorithm. The control and memory access handle
the operations performed for decomposing the matrix. The
design ensures the memory will have enough space to store
the values [11] [12].

A. Pivot Operation

In order to perform a pivoting operation, the design

includes usage of lookup tables and memory pointers to keep
track of memory mapping. It performs a pivot search for each
step of matrix elimination. Index pointers are created for each
pivot to store the row and column physical address,
accordingly. These physical addresses are then used to fetch
the values from memory. These values are sequentially
checked as they arrive for the absolute maximum values with
the index. Using a register, it is stored as a pivot element. The
minimum amount of memory utilized is proportional to the
size of the matrix. Once pivoting is complete, an update is
sent back to the lookup tables.

B. Update Pivot and Interchange Rows

The “Update Pivot and Interchange Rows” logic block

performs normalization prior to elimination for the pivot
values of row and column requested from memory. The
necessary data such as pivot index, values and column are
inferred from the previous state. This process is executed one
by one after each pivot value is fetched and read. The updated

row and column values and the normalized row and column
values are then stored in registers.

C. Update Row and Columns

The remaining computations required are performed

during this transition state. First, it indicates if the given row
or column should be updated. Second, it	 manages	 the	
addresses	of	nonzero	entries	that	are	to	be	stored. This
unit contains the necessary floating-point multiplier and
adder to perform the required arithmetic operations [13]. This
unit is operational in parallel to maximize the utilization of
all logic units. This will update the number of updated logics
that fits in FPGA chip. There are enough resources available
in the FPGA that can accommodate all of the units.

IV. IMPLEMENTATION AND VERIFICATION
Various arbitrary matrices with different sparsity patterns

are generated using MATLAB and are tested using the
hardware architecture. A parameter n is included along with
the design to decompose the size of the matrix. Fig. 4 shows
the simulated waveform from Xilinx Vivado design Suite.

Figure 4. Simulation Waveform for LU Decomposition

The simulated results are stored in an external .txt file
and are verified with the results from MATLAB for precision
loss. For L matrix, the error ranges between -0.0872 to
0.0357 and for U matrix it ranges between -0.0108 to 0.0057
as shown in Fig. 5 below.

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

Figure 5. MATLAB Calculated Errors Values

V. PERFORMANCE ANALYSIS

A comparison of LU decomposition of sparse matrix of
size 10x10 and 100x100, with a different sparsity range of
10% to 50% is shown in Fig. 6 below. The proposed LU
decomposition design was able to achieve lower latency than
the regular algorithm LU decomposition. The results are also
verified with the MATLAB LU decomposition outputs for
precision loss.

Figure 6. Latency Comparasion

A comparison of the throughput calculated from the

sparse matrix algorithm and regular algorithm is plotted in
the form of a graph and is represented in Fig. 7. As the
throughput needs to be high for better performance, we are
able to infer from the graph that high throughput was
achieved.

Figure 7. Block Diagram of the TX and RX Module

The data from Table I shows that the matrix storage format
proposed in this research was able to achieve minimum
resource utilization, as opposed to the traditional regular LU
decomposition algorithm. The proposed design was
implemented on a Xilinx Artix7 XC7A100T-1CG324C board
comprising of 15,850 logic slices and a maximum of 4,860
Kbits fast block RAM. This is achieved with optimization
through the implemented design for the LU decomposition. A
difference in about one third of the total resources utilized was
achieved, as seen in Fig. 8 and 9, respectively.

The performance of the design is based on the architecture
and its parameters. As an FPGA has enough computational
resources and the design is memory-bound, the performance
is totally dependent on memory access time.

TABLE I. RESOURCES UTILIZED FOR PROPOSED ALGORITHM

Device Utilization Summary

 Proposed Sparse
Algorithm

Regular
Algorithm

Slice Logic
Utilization Available Used

Slice
Registers 126,800 3,420 10,863

Slice LUTs 63,400 11,211 16,807

Memory 19,000 8 64

Occupied
Slices 15,850 3,504 5,455

IOBs 210 40 40

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

Figure 8. FPGA Design Utilization

Figure 9. Design Power Requirements

VI. CONCLUSION
Numerous engineering and machine learning applications

rely largely on solving linear equations using LU
decomposition, due to rapid developments in the field of
mathematics and computation. Compared with a CPU and
GPU, the FPGA does not have an instruction set. Instead, it
possesses a number of reconfigurable logic blocks which
could perform any digital logic function. In this paper, a
computational implementation of the LU decomposition is
proposed using an optimized algorithm. The proposed
architecture can achieve further improvement by increasing
the overall design clock.

REFERENCES

[1] M. Wielgosz, G. Mazur, M. Makowski, E. Jamro, P. Russek,
and K. Wiatr “Analysis of the Basic Implementation Aspects
of Hardware-Accelerated Density Functional Calculations,”
OJS Computing and Informatics, vol. 29, no. February, pp.
989–1000, 2010.

[2] A.Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S.
Muthukrishnan, “One Trillion Edges : Graph Processing at
Facebook-Scale," , Proceedings of the VLDB Endownment,
vol. 8, no. 12, pp. 1804-1815, 2015.

[3] A. Pinar and M. T. Heath, “Improving Performance of Sparse
Matrix-Vector Multiplication,” Proceedings of the 1999
ACM/IEEE Conference on Supercomputing, January 1999
Pages 30–39 doi:10.1145/331532.331562.

[4] T. Mattson et al., "Standards for graph algorithm primitives,"
IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2013, pp. 1-2, doi:
10.1109/HPEC.2013.6670338.

[5] S. Jain, N. Kumar, J. Singh, and M. Tiwari, “FPGA
Implementation of Latency, Computational time
Improvements in Matrix Multiplication,” International Journal
of Computer Applications, 2014, vol.86, no.8,
doi:10.5120/15007-3261.

[6] S. Aslan and J. Saniie, "Matrix Operations Design Tool for
FPGA and VLSI Systems," 2016, Circuits and Systems, vol. 7,
no.2, pp. 43–50, doi: 10.4236/cs.2016.72005.

[7] P. Greisen, M. Runo, P. Guillet, S. Heinzle, A. Smolic, H.
Kaeslin, and M. Gross, “Evaluation and FPGA Implementation
of Sparse Linear Solvers for Video Processing Applications”,
in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 23, no. 8, pp. 1402-1407, Aug. 2013, doi:
10.1109/TCSVT.2013.2244797.

[8] W. Liu and B. Vinter, “An Efficient GPU General Sparse
Matrix-Matrix Multiplication for Irregular Data”, 2014 IEEE
28th International Parallel and Distributed Processing
Symposium, Phoenix, AZ, USA, 2014, pp. 370-381, doi:
10.1109/IPDPS.2014.47.

[9] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and
C. Nwankpa, “Sparse LU Decomposition using FPGA”,
International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA), pp. 1-12, 2008.

[10] G. Wu, X. Xie, Y. Dou, J. Sun, D. Wu, Y. Li, and A. S.
Matrix, “Parallelizing Sparse LU Decomposition on FPGAs”,
2012 International Conference on Field-Programmable
Technology, Seoul, Korea (South), 2012, pp. 352-359, doi:
10.1109/FPT.2012.6412160.

[11] L. Polok and P. Smrz, “Pivoting Strategy for Fast LU
Decomposition of Sparse Block Matrices”, HPC'17:
Proceedings of the 25th High Performance Computing
Symposium April 2017, no. 14, Pages 1–12.

[12] X. Wang and S. G. Ziavras, “Parallel LU Factorization of
Sparse Matrices on FPGA-Based Configurable Computing
Engines,” Wiley Concurrency Computat.: Pract. Exper.,, vol.
16, no. April, pp. 319-343, 2004.

[13] Siddhartha and N. Kapre, "Breaking Sequential Dependencies
in FPGA-Based Sparse LU Factorization," 2014 IEEE 22nd
Annual International Symposium on Field-Programmable
Custom Computing Machines, Boston, MA, USA, 2014, pp.
60-63, doi: 10.1109/FCCM.2014.26.

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

