
Optimization of Sparse Matrix Arithmetic Operations and Performance
Improvement using FPGA

Dinesh Kumar Murthy
Ingram School of Engineering

Texas State University
San Marcos, TX, USA
d_m410 @txstate.edu

Semih Aslan
Ingram School of Engineering

Texas State University
San Marcos, TX, USA

aslan@txstate.edu

Abstract — The increasing importance of sparse connectivity
representing real-world data has been exemplified by recent
work in the areas of graph analytics, machine language, and
high-performance computing. Sparse matrices are the critical
component in many scientific computing applications, where
increasing sparse operation efficiency can contribute
significantly to improving overall system efficiency. The main
challenge lies in efficiently handling the nonzero values by
storing them using a specific storage format and then
performing matrix operations, taking advantage of the
sparsity. This paper proposes an optimized algorithm for
performing sparse matrix operations in storage and hardware
implementation on Field-Programmable Gate Arrays
(FPGAs). The results are obtained from implementing the
sparse algorithm on hardware for matrices of different sizes.
Sparsity percentages and sparsity patterns achieved low
latency and high throughput compared with the standard
algorithm. Further, the number of resources utilized was
primarily reduced, enabling the FPGAs to focus on larger,
more interesting problems.

Keywords - Sparse matrix; latency; throughput; memory; FPGA;
hardware architecture.

I. INTRODUCTION

We live in a "big data" era where graph processing has
become increasingly important, because the amount of data
generated and collected from many real-world applications
such as sensors, social networks, portable devices. Graphs
are used to model many systems of interest to engineers and
scientists; today, useful information is being extracted. Once
entered into a computer, the data no longer looks like a
graph. Often, it is in the form of a sparsely populated matrix
with mostly zeros compared to nonzeros [1] [2]. When the
number of zeros is relatively large, efficient data structures
are required. Numerous studies have addressed finding new
algorithms for sparsely distributed matrices.

When obtaining information in a graph algorithm with a
small number of nonzero entries but millions of rows and
columns, memory would be wasted by storing redundant
zeros [3][4]. There are two ways one would take advantage
of the sparsity of a matrix: one would be to store the nonzero
elements of a matrix, and the second is to process only the
nonzero elements of a matrix [5]. However, large graphs are
hard to deal with as inputs, and outputs limit the state-of-the-
art graph processing systems. For the most part, Central
Processing Units (CPUs) and Graphics Processing Units

(GPUs) compute well on a performance scale. However,
there is a small niche where an FPGA has been an attractive
platform that can handle the same computation task for
acceleration and achieve high performance with low power
computation for many applications. Specifically, due to the
memory access pattern of graph problems, it is still
challenging to develop high throughput and energy-efficient
FPGA design [6].

This paper's primary goal is to develop an efficient
algorithm for various sparse matrix arithmetic operations like
addition, subtraction, multiplication, element by element
multiplication, and square root. By utilizing the sparse matrix
storage method, storage requirements should be reduced
when compared to a standard matrix operation algorithm.
The main goal is to improve efficiency in terms of latency
and throughput [7][8]. The performance analysis is
calculated based on the design that minimizes gate count,
area, and reducing the number of multipliers and adders. The
architectural design is scalable, simple to implement, and
capable of handling matrices of various sizes. This paper is
organized as follows. In Section II, the basics of matrix
operations are discussed. In Section III, the proposed
algorithm and system design are explained. FPGA
simulation and mapping are discussed in Sections IV and V,
respectively. Sections VI and VII show the detailed
performance analysis and the results. This paper concludes in
Section VIII.

II. MATRIX OPERATION

The design performs sparse matrix addition operations of
two sparse matrices where only the nonzero values are
stored, and the required operation is performed. It is
performed by using two algorithms:

 A symbolic algorithm, which determines the
structure of the resulting matrix.

 A numerical algorithm, which determines the
values of nonzero elements using the knowledge of
their positions.

 ��,� = ���,�� + ���,�� 

Each nonzero (nz) element of matrices A and B needs
one floating-point operation, so the total number of floating-
point operations to be performed is the number of nz

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

elements. When the computation is completed, the number
of nz output operations is written on the external memory.

III. SYSTEM DESIGN

A. Storage Format

The proposed architectural algorithm performs sparse
matrix addition in which the number of rows and number of
columns of two matrices is equal. A parallel implementation
of the addition with enough fast memory algorithm, is
proposed. Consider a matrix addition of A+B, where A has a
density s1 percentage with size n×n (a square matrix is
considered), and matrix B has a density s2 percentage with
size n×n. Density sx percentage is defined as the number of
nonzero elements to the total number of elements in the
matrix n2. The matrix addition performs the operation row-
wise and column-wise throughout the matrix only for the
nonzero elements present, leaving behind the zeros. When an
addition operation must be performed on both input matrices,
the number of rows and columns are first compared to
determine if they are equal, i.e., both the matrices should be
of the same size. An additional operation cannot be
performed if the matrices are of different sizes. Then, the
matrix elements are checked row-wise and column-wise
from top-to-bottom order for nonzero elements, as shown in
Fig. 1. Two separate counters, A_count and B_count, are
used to increment the row and column for both the A and B
input matrices. This keeps incrementing from n to n+1 for
the size of the matrix. The algorithm for the sparse matrix
addition A+B is presented in Fig. 2.

The most important part of this algorithm is the index
comparison, which is represented as A_index for matrix A
and B_index for matrix B. After first storing the nonzero
elements, the row value of matrix A is compared with the
row value of matrix B for each operation. If the index of
A_sr is equal to the index of B_sr, then the next step of
comparing the column value of both matrices is performed.
If the index of A_sc is equal to the index of B_sc, then a
matrix addition operation is performed. The VAL array of the
respective row and column, i.e., A_sv and B_sv, are added to
each other as a sum. The assumption is made that the
nonzero element is located anywhere in the matrix and is
highly sparse. Finally, the nonzero element of input matrix A
that does not match the row and column of matrix B is given
directly as the sum in the output matrix.

Figure 1. Representing row and column access of matrices

B. Design Algorithm

A → n×n sparse matrix
B → n×n sparse matrix
for i → 0 to MAT_SIZE do

if (A[i]≠ 0) then
Indexing row and column = i + 1
A_sv [i] =A [i]
A_index = A_count + 1

end
if (B[i] ≠ 0) then

Index2rc = i + 1
B_index = B_count + 1
B_sv [i] = B [i]

end
if((A_sr[A_index]==B_sr[B_index])&&
(A_sc[A_index] ==B_sc[B_index])) do

Row <= A_sr [A_index]
Col <= A_sc [A_index]
Sum <= A_sv [A_index] + B_sv [B_index]

end
if (A_sv [A_index] ≠0) then

Row <= A_sr [A_index]
Col <= A_sc [A_index]
Sum <= A_sv [A_index]

end
if (B_sv [B_index] ≠ 0) then

Row <= B_sr[B_index]
Col <= B_sc[B_index]
Sum <= B_sv[B_index]

end
end

Figure 2. Algorithm for Sparse Matrix Addition Operation

C. Memory Control

Memory control plays a crucial part in architectural
design. The memory control block oversees real enable sign
and assigning a memory access address, so accurate data is
acquired by the algorithm logic through all stages. The
operation is performed at the row level, so throughput is not
affected by the latency of data reading while performing the
arithmetic operation.

As shown in Fig. 3, the memory control module is
designed as a finite state machine. At the beginning of the
finite state machine, reset is set to Idle, which resets all the
registers to predefined values. After this state, the matrix
values are inferred for writing data to the Block RAMs
(BRAMs), which triggers the memory control transition
from the Idle State to the Read and Write state.

Once the elements are written, it calculates the nonzero
values by checking row-wise and column-wise throughout
the array by increasing the pointer locations by one. With the
nonzero elements located successfully, separate arrays are
created for matrix storage format in the order of ROW, COL,
and VAL. As the name indicates, the row and column values
are stored starting from 0 to the maximum, and the
respective integer values are written accordingly. Once the
sparse matrix storage format is generated, the arithmetic
design algorithm checks the ROW and COL arrays and
performs addition if both are equal. Otherwise, the design

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

sends the values directly to the output, since addition is not
required there. When the system performs all arithmetic
operations, the finite state goes back to Idle State. By
operating this way, only the nonzero elements undergo
additional processes, and in the final state, the output is sent
back.

Figure 3. State transition diagram of the memory control

For example, if there are two matrices A and B with ten
nonzeros each, as shown in Fig. 4. The state machine will
read the values and write the nonzero values in the storage
format illustrated above. The necessary arithmetic operation
is then performed from the Idle state, staying in hold for the
state until it receives an end signal from the controller.

Figure 4. Operational example for the addition of sparse matrices

IV. SIMULATION

Random matrices of various sizes are generated using
MATLAB with variation in sparsity pattern and sparsity

percentage. Additionally, two parameters, MAT_SIZE (size
of the matrix n×n) and ELEMENT_SIZE (number of bits of
the integer) are included with the design, which is passed to
the input as known information.

Figure 5. Waveform showing storage of sparse matrices

As shown in Fig. 5, the nonzero elements of the input
matrices are stored to BRAMs in the format specified as
two-dimensional arrays. The memory controller then reads
the BRAMs to perform the required arithmetic operation.

Figure 6. Waveform showing results of arithmetic operation (sum)

Fig. 6 shows the results of the addition operation in a
simulation waveform. The algorithm is tested with multiple
test values by varying the sparsity percentage and the golden
result vectors generated using MATLAB.

V. FPGA MAPPING

Using Xilinx ISE Design Suite, the designed algorithm is
implemented on the target device Xilinx Artix7 XC7A100T-
1CG324C board, comprising of 15,850 logic slices and a
maximum of 4,860 Kbits fast BRAM [9] [10]. The hardware
implementation is split into two major top modules. The first
module is designed to implement the sparse matrix
arithmetic operations, and the second module is to
implement a Universal Asynchronous Receiver Transmitter
(UART) communication and data exchange between the PC
and FPGA. Each of the top modules is subdivided into
smaller modules to carry out specific operations with the
other modules through internal signals as shown in Fig. 7.

Figure 7. Block Diagram of the TX and RX Module

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

The transmitter module is used to transfer data over the
UART device. It serializes a byte of data and transmits over
a Transmit Data (TxD) line. The serialized data has 9600
Baud Rate, 8 data bits (least significant bit first), 1 Stop bit,
and no parity. The receiver module double-registers the
incoming data. This module makes sure all the bits are sent
out. These modules expect the clock generated to be 100
MHz. The Phase-Locked Loop (PLL) is a control system that
produces an output signal whose phase is related to an input
signal. Keeping the input and output phases in lock steps, the
input and output frequencies can be kept the same. These are
widely used for synchronization purposes. For our hardware
design, which operates at 20 MHz, the phase-locked loop is
used to compensate for the required 100 MHz clock
frequency. This IP core is generated using the design tool.

VI. PERFORMANCE ANALYSIS

The following metrics were calculated to show the
algorithm's efficiency, such as latency, throughput, and
resources utilized. Latency is the amount of time it takes to
complete an operation, the time between reading the first
element of the input matrix and writing the first element of
the output matrix. Throughput is the number of such
operations executed per unit of time.

The latency for matrix addition operation was
significantly reduced, and high throughput was achieved
using the proposed algorithm compared with the standard
matrix algorithm. Table II illustrates the comparison of
different test values with matrix sizes ranging from 10x10 to
100x100 with sparsity ranging from 1% to 10% for both
proposed sparse and standard matrix algorithms for different
operations.

Figure 8. Latency for Sparse Matrix Addition

The comparison of latency calculated is plotted as a
graph, which is shown in Fig. 8. The difference between the
standard algorithm and the sparse algorithm is shown. Fig. 9.
shows the difference in throughput between the two methods
and shows that the proposed algorithm achieved high
throughput.

After experimentation with different test values, there are
improvements in latency and throughput for smaller matrices
with high sparsity percentage and larger matrices with low
sparsity percentage. Once the mapping of matrices is
implemented on the FPGA platform, the resources utilized
are shown in Table I.

Figure 9. Latency for Sparse Matrix Addition

VII. RESULTS AND DISCUSSION

In most cases, it is evident that latency and throughput
are directly dependent on the number of nonzero elements
present in the matrix. The efficiency of the design can be
further improved by increasing the frequency of the overall
design clock. The maximum speedup of the design for any
matrix depends on the number of rows and columns being
processed. One primary purpose of this paper is to reduce the
storage space used in an FPGA when implemented. This is
also accomplished when the design is implemented in an
Artix 7 FPGA board. The amount of resources utilized for
the proposed sparse algorithm is less than the standard
algorithm. The comparison is tabulated in Table I. The
design uses only 3 percent of the total FPGA resources.
Further, pipelining can be implemented to increase the
computational speed of the system. For arithmetic operations
performed on large matrices or memory-based algorithms
and for small matrices, a pipelined algorithm will be quite
efficient.

VIII. CONCLUSION

Today's applications require higher computational
throughput and a distributed memory approach for real-time
applications. This research is primarily focused on designing
an optimized architecture for sparse matrix operations,
allowing for more efficiency than standard operations. The
functionality of the design is verified by different sets of test
cases under a specific size. The system contains a memory
control which fetches the data from memory and passes it on
for various arithmetic operations. Research improvement in
this area is needed to increase logic resources by a
comparable increase in I/O bandwidth and on-chip memory

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

capacity, especially when the matrix sparsity is unstructured
and randomly distributed.

TABLE I. DESIGN RESOURCE UTILIZATION SUMMARY

REFERENCES

[1] X. Lin and J. Xu, "Special Issue on Graph Processing:
Technique and Applications," Data Sci. Eng., vol. 2, no.1, p.
1, 2017.

[2] A.Ching, S. Edunov, M. Kabiljo, D. Logothetis,and ,S.
Muthukrishnan, “One Trillion Edges : Graph Processing at
Facebook-Scale," , Proceedings of the VLDB Endownment,
vol. 8, no. 12, pp. 1804-1815, 2015.

[3] M. Ryan, "FPGA Hardware Accelerators - Case Study on
Design Methodologies and Trade-Offs", 2013. Thesis.
Rochester Institute of Technology. Accessed from
http://scholarworks.rit.edu/theses/959.

[4] T. Mattson et al., "Standards for graph algorithm primitives,"
IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, USA, 2013, pp. 1-2, doi:
10.1109/HPEC.2013.6670338.

[5] S. Jain, N. Kumar, J. Singh, and M. Tiwari, “FPGA
Implementation of Latency, Computational time
Improvements in Matrix Multiplication,” International Journal
of Computer Applications, 2014, vol.86, no.8,
doi:10.5120/15007-3261.

[6] S. Aslan and J. Saniie, "Matrix Operations Design Tool for
FPGA and VLSI Systems," 2016, Circuits and Systems, vol.
7, no.2, pp. 43–50, doi: 10.4236/cs.2016.72005.

[7] P. Grigoras, P. Burovskiy, E. Hung and W. Luk,
"Accelerating SpMV on FPGAs by Compressing Nonzero
Values," 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines,
Vancouver, BC, Canada, 2015, pp. 64-67, doi:
10.1109/FCCM.2015.30.

[8] L. Zhuo and V. Prasanna, “Sparse Matrix-Vector
multiplication on FPGAs,” In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-
programmable gate arrays (FPGA '05). ACM, New York,
NY, USA, 63-74.

[9] B. Hamraz, N. Caldwell, and P. Clarkson "A Matrix-
Calculation-Based Algorithm for Numerical Change
Analysis”, IEEE Transaction on Engineering Management,
Vol.60, No.1 February 2013.

[10] Nexys 4 DDR board – Reference Manual.

TABLE II. LATENCY AND THROUGHPUT CALCULATION

Slice Logic utilization

Number of Slice Registers
4,799 out of

126,800
3%

Number of Slice Look-up Tables
(LUTs)

6,702 out of 63,400 10%

Slice Logic Distribution

Number of occupied Slices 2,413 out of 15,850 15%

Input/Output (IO) Utilization

Number of bonded IO Blocks 3 out of 210 1%

Specific Feature Utilization

Number of Block RAM/FIFO 2 out of 270 1%

Matrix Size
(n*n)

Number of
nonzero (nnz)

Sparsity

Sparse Algorithm Standard Algorithm

Latency (ns) Throughput Latency (ns) Throughput

Matrix Addition

1010 10 0.1 1137.169 879376.7681 4298.0515 232663.5688

20x20 32 0.08 8550.567 116951.3086 18688.1835 53509.74855

40x40 96 0.06 57464.964 17401.90771 93787.3685 10662.41666

60x60 144 0.04 123981.857 8065.696257 214929.95 4652.678698

100x100 100 0.01 22427.802 44587.51687 588369.806 1699.61135

Matrix Subtraction

1010 9 0.09 911.1375 1097529.187 3205.4335 311970.2842

20x20 28 0.07 6156.6615 162425.6913 19199.5965 52084.42792

40x40 80 0.05 43638.191 22915.70702 38884.05 25717.4857

60x60 108 0.03 84721.1265 11803.43134 214411.526 4663.928375

100x100 100 0.01 70001.865 14285.33368 589749.829 1695.634235

Matrix Multiplication (Element-by-Element)

1010 10 0.1 1107.282 903112.3056 3205.4335 311970.2842

20x20 36 0.09 9780.263 105482.3057 19199.5965 52084.42792

40x40 80 0.05 42519.648 23518.53901 38884.05 25717.4857

60x60 72 0.02 32073.866 31178.03136 214411.526 4663.9283

100x100 100 0.01 5152.62 18364.9265 589749.82 1695.6342

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-835-8

ICDT 2021 : The Sixteenth International Conference on Digital Telecommunications

