
A Low-Overhead Framework for Inexpensive Embedded Control Systems

Ivan Cibrario Bertolotti∗, Tingting Hu§, and Gilda Ghafour Zadeh Kashani∗

∗ National Research Council of Italy – IEIIT, Torino, Italy
Email: {ivan.cibrario, gilda.kashani}@ieiit.cnr.it

§ University of Luxembourg – Faculty of Science, Technology and Communication, Luxembourg
Email: tingting.hu@uni.lu

Abstract—Embedded control systems are becoming more and
more popular, especially in relatively inexpensive consumer prod-
ucts, like home appliances and building automation controllers.
As a consequence, there is an ever increasing desire to reduce
firmware development time and cost, without hampering relia-
bility and performance. In this paper, a low-overhead firmware
development framework is proposed, which allows programmers
to develop and deploy typical real-time control software faster
than using plain C-language programming. At the same time,
experimental results confirm the framework’s efficiency and
applicability even to low-end microcontrollers.

Keywords–Embedded control systems; Logic controllers;
Firmware development frameworks.

I. INTRODUCTION AND RELATED WORK
The ever-increasing popularity of inexpensive control

systems—mainly driven by consumer products, which nowa-
days invariably include at least one embedded processor—
brings new challenges to firmware development. This market
segment is characterized by fierce competition that forces
vendors to reduce costs and shrink time to market, a fact that
strongly encourages the introduction of more abstraction in the
development process.

This often entails the adoption of new programming
techniques. For instance, [1] discusses a framework that
works according to an event-driven paradigm and UML
statecharts. Similarly, programming environments for Pro-
grammable Logic Controllers (PLCs) [2], either proprietary [3]
or open-source [4], are indeed quite powerful. Nevertheless,
they force programmers to learn dedicated languages they are
unlikely familiar with, for instance, the ones defined in [5].
Moreover, the cost of a PLC is typically much higher than the
cost of a microcontroller-based board of equivalent processing
power. In the case of [6], the framework indeed adopts a sim-
plified dialect of the C++ language. However, the programming
model consists of a single main-loop that contains the code to
be executed, and must be suitably extended to support real-
time multitasking [7].

Staying with the easiest and probably most widespread
embedded systems programming language—that is, the C lan-
guage [8]—brings the additional advantage of making readily
available a variety of sophisticated open-source firmware com-
ponents, ranging from real-time operating systems (RTOS) [9]
to filesystems [10] and TCP/IP protocol stacks [11]. Previous
proposals, like the one described in [12], succeeded to lever-
age these components and speed up firmware development,
but they still lack much needed abstraction. In the paper,
a firmware development framework is proposed, whose goal

Controller card Remote I/O cards

Processor

Local I/O
device

Local I/O
device

Bus/Network
Controller

Lo
ca

l b
us

 (
on

-c
hi

p
or

 o
ff-

ch
ip

)

Re
al

-T
im

e
Bu

s/
Ne

tw
or

k
(e

.g
. C

AN
)

Remote I/O
device

Remote I/O
device

Bridge

Internet
Services

Non Real-Time
Network

Figure 1. Hardware architecture of a typical distributed control system.

is to shield application-level firmware developers from most
low-level architectural details and abstract from Input–Output
(I/O) mechanisms through a flexible configuration system. At
the same time, programmers may still use the C language,
thus reaching a convenient trade-off between the two goals
discussed previously.

Real-time execution models have been the subject of
considerable debate since a long time [13]. Even though
other, more sophisticated models have been proposed [14],
the framework proposed in this paper sticks with a traditional
cyclic executive [15] for the real-time control part to boost
performance and reduce overheads. In order to overcome the
inflexibility of the method when considered alone [13] [14],
it has been blended with a more general task-based system,
coordinated by the underlying FREERTOS RTOS. The paper is
organized as follows. Section II describes how the framework
has been designed and discusses its architecture. Next, Sec-
tion III provides more information about its implementation,
focusing on two critical aspects. Section IV presents the
experimental evaluation, as well as the related measurement
method, and Section V concludes the paper.

II. FRAMEWORK DESIGN AND ARCHITECTURE

A. Main Features and Design Guidelines
In recent years, a generalized trend in the design and imple-

mentation of embedded control systems has been to shift from
a concentrated to a distributed I/O paradigm. Accordingly, as
shown in Figure 1, the framework supports local I/O devices,
reachable by the processor by means of an on-chip or off-chip

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-544-9

ICDT 2017 : The Twelfth International Conference on Digital Telecommunications

Controller Card

Control task

Communication
Module

Control
Function

[A]
Process
Image

[C]
Shared

Memory from
UI

[B]
Shared

Memory to UI

Event System

 n
…

UI task 1

Timer
Task

1 2

4

3

7

5

9

6

I/O Card nI/O Card 1

8

I/O LibrariesI/O Libraries

Virtual Bus

I/O LibrariesI/O LibrariesLocal Device
Drivers

Physical Bus (e.g. CAN)

…

I/O Libraries

I/O and Shared
Memory Config.

Framework component

User-provided component/information

Figure 2. Simplified framework architecture.

bus local to the controller card, as well as remote I/O cards
and devices, which are connected to the processor by means
of a real-time communication network.

Furthermore, the framework enables firmware program-
mers to focus on the application-level part of design and
development, such as the control algorithm. More specifically,
it allows firmware programmers to operate on abstract process
image (PI) variables, which represent the state of system inputs
and outputs, regardless of how and where they are physically
implemented. Last, but not least, even though some features of
the framework resemble the ones provided by PLCs [2], in our
case programmers shall be able to develop embedded control
code using the C language [8] directly. Therefore, the above-
mentioned PI variables are made available to programmers as
any other, ordinary C-language variable is.

An additional feature of the framework, shown in the
bottom-right part of Figure 1, is to provide access to the
Internet through a bridge card. This feature is extremely
important to implement key functionality, such as data logging,
supervision, and firmware upgrades. However, it will not be
further discussed in this paper for conciseness.

B. Framework Architecture
As it can be seen in Figure 2, the framework coordinates

two groups of tasks that together form the complete control
system and its user interface (UI). The first group of task
consists of a control task, as well as a timer task. These two
tasks implement the real-time control cycle, to be described
in more details in Secton II-C. The only user-written code in

this group is an embedded control function, which executes the
control algorithm cyclically when invoked by the framework.
A memory area, denoted as [A] in the figure, holds the
aforementioned PI variables and is accessible to control task
components only. The second group of tasks is outside the
scope of the framework. All tasks in this group are completely
user-written—except for what concerns their interface to the
first group—and they cooperate to realize the system UI.
Communication and data sharing between the two groups take
place by means of two shared memory areas, denoted as [B]
and [C] in Figure 2, one for each transfer direction (to or from
the UI tasks, respectively).

The same figure also depicts the main data flows internal to
the control system and managed by the framework, identified
by means of circled numbers. More specifically:
• The communication module and the control func-

tion, both within the control task, have read-write
access to memory [A] through data flows 1© and
2©, respectively. The role of the control function has

already been mentioned before. On the other hand, the
communication module is responsible of updating PI
variables cyclically. In order to transparently support
multiple physical implementations of those variables,
all I/O functions are mediated by appropriate I/O
libraries. For instance, the current implementation
supports Modbus CAN [16] I/O cards, as well as local
I/O devices by means of device drivers.

• Data flows 3© through 6© implement communication
with the UI tasks. Unlike memory [A], memories [B]
and [C] are protected against concurrent access by
means of mutual exclusion locks with definite time-
outs on the real-time side. The decision of having two
memory areas, each supporting a unidirectional data
flow, is useful to reduce lock contention and improve
granularity. At the same time, keeping memory [A]
totally separate from [B] and [C] also works as a
safeguard against unintentional or unauthorized access
to PI variables by non real-time tasks. Data sharing
among these areas is implemented in a controlled way
by the framework, through the control task itself, by
periodically mirroring a pre-configured subset of PI
variables to/from [B] and [C].

• As it will be better discussed in Section II-C, the
control task implements a traditional control cycle. On
the other hand, UI tasks are event driven and, spo-
radically, may need to convey expedited information
to the control task itself. This is done by generating
and sending sporadic events to it, according to flow
7© of Figure 2. As a consequence, the control task

has to react to two event sources: one cyclic, and one
sporadic. Cyclic events are generated by the timer task
and correspond to flow 8© in the figure. These two
event sources are prioritized and combined into flow
9© by a dedicated event system, which also takes into

account some peculiarities and shortcomings of the
underlying RTOS. More details about event system
implementation are given in Section III-B.

C. Control Cycle
Figure 3 contains a more detailed view of the control

cycle implemented by the framework, along with sporadic
events handling. Individual control cycles are triggered by

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-544-9

ICDT 2017 : The Twelfth International Conference on Digital Telecommunications

Input
(I)

Output
(O)

Cyclic
Op. (C)

Sporadic
Op. (S)

Sporadic events (from UI tasks)

Cyclic events (from timer task)

Cyclic
Op. (C)

Sporadic
Op. (S)

Input
(I)

Output
(O)

Time

Cyclic event handling latency ≤ maxi(Si)

Sporadic event handling latency

Figure 3. Control cycle and sporadic event handling.

cyclic events generated by the timer task and consist of three
phases. The computation phase (C phase) is implemented
by the user-written control function. It operates on input PI
variables collected in the previous cycle and computes output
PI variables. It is followed by an output phase (O) that commits
output PI variables and by an input phase (I), which collects
input PI variables for the next cycle.

The same control function also handles sporadic events
sent by UI tasks. Since the control task is single-threaded,
two different kinds of interference are possible.

1) Any sporadic event generated while cyclic activities
are in progress is postponed until the control task
has completed them, as depicted in the left part of
Figure 3.

2) Sporadic event handling (S) runs to completion after
it starts. Therefore, as shown in the right part of the
figure, if a cyclic event arrives while sporadic event
handling is in progress, the start of the next cycle is
delayed.

No provisions are made to bound the first kind of interfer-
ence, since UI tasks are not considered hard real-time. On the
other hand, the worst case for the second kind of interference is
upper-bounded by the event system prioritization mechanism,
which always delivers cyclic rather than sporadic events when
both are available. As depicted in the right part of Figure 3,
denoting with Si the worst-case handling time for sporadic
event i, the maximum interference is bounded by maxi(Si),
regardless of the number of pending sporadic events.

As an additional safeguard against dedicating excessive
(high-priority) control task execution time to sporadic events,
the event system implementation also prevents UI tasks from
making more than a configurable number k of sporadic events
pending. The implementation is based on a simple back pres-
sure mechanism within the sporadic event generation primitive,
better detailed in Section III-B.

D. Configuration Workflow
The last part of user-written code to be discussed in

this paper and shown in the bottom-left corner of Figure 2,
is the I/O and shared memory configuration files. The I/O
configuration file contains a set of C macro invocations that
define which local and remote I/O devices are configured in the
system, as well as their relationship with PI variables. Quite
intuitively, the shared memory configuration file plays a similar
role concerning the structure of shared memories [B] and [C]
and their relationship with PI variables, through the mirroring
mechanism discussed in Section II-B.

As an example, Figure 4 shows how a simple local I/O
device is configured. The device is called instance_name
and belongs to device class sample_class. Class-related
information is retrieved from a device database, not discussed

BOARD_INSTANCE_LOCAL(
sample_class, instance_name, 0,
LOCAL_INPUT_VARIABLE(input_0,

char, push_button, no_converter, NULL)
LOCAL_OUTPUT_VARIABLE(output_0,

char, led, no_converter, NULL))

Figure 4. Sample local I/O device configuration.

here for conciseness. In this particular case, it is known
from the database that devices belonging to sample_class
implement a physical input input_0 and a physical output
output_0.

The I/O configuration file establishes that input_0 is con-
nected to a push button whose state will be accessible by means
of PI variable char push_button, without any conversion.
In fact, the configuration states to use the no_converter
conversion function, with NULL parameter. The configura-
tion contains similar information about the physical output,
which is connected to a LED accessible through PI variable
char led.

Using this approach, the control function works directly on
push_button and led, using ordinary C-language state-
ments, and the framework reflects their values to/from the
corresponding physical I/O points in a completely transparent
way. Thus, redesigning the system by moving an I/O point
from a local device to a remote I/O board, for instance,
becomes a matter of updating the I/O configuration file and
does not require any changes to the control code. On the other
hand, the firmware must be rebuilt, because configuration files
are currently parsed at compile time and the framework does
not support dynamic reconfiguration.

III. IMPLEMENTATION HIGHLIGHTS
This section complements Section II by highlighting two

important implementation aspects and providing more details
about them.

A. Input-Output Abstraction
One of the main framework design goals is the com-

plete separation of the user-written control function from
I/O-related details. Figure 5 outlines the multi-stage process
that the framework implements to reach this goal. More
specifically, the figure represents how the framework handles
the push_button input PI variable, declared as shown in
Figure 4. Output variables are handled in a similar way.

During the I phase of the control cycle (see Figure 3)
the communication module scans the PI table, depicted at
the bottom left of Figure 5. For each variable, the framework
locates and invokes the appropriate device driver input method
(which is responsible of retrieving the value of the variable
from the device it resides on) and converter function (to
convert the variable from its device-specific representation into
a format suitable for the control function). This is done by
following appropriate pointers rooted at the PI table.

As a result, in our example the current state of the push
button is reflected into variable char push_button. The
user-written control function can then use this variable during
the C phase of the control cycle. No explicit synchronization
mechanisms are needed because the I and C phases are
executed sequentially within the control task. The framework

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-544-9

ICDT 2017 : The Twelfth International Conference on Digital Telecommunications

char push_button (RW)

Converter function (RO)

Control function

PI
 ta

bl
e

(R
O

) PI var. state (RW)

Board descriptor (RO) Device driver (RO) Input method (RO)I/O reg. descriptor (RO)

Physical
Push Button

PI var. descriptor (RO)

Used as a normal variable

Framework
update

Configuration-
based data

Figure 5. I/O abstraction process and related data structures.

also associates and optionally makes available to the user
additional per-variable state information, which summarizes
the outcome of the operations just mentioned.

It is important to remark that the framework defines all
data structures shown in Figure 5 automatically, starting from
configuration items like the one shown in Figure 4. With the
exception of PI variables themselves (like push_button)
and their state information, all these data structures are com-
pletely hidden from the user. Furthermore, by means of a
careful data structure design and layout, it was possible to
share information as much as possible and store most data in
read-only Flash memory.

As an example, board descriptions and device driver data
structures are known to be immutable and are shared among all
boards belonging to the same class. This is convenient to min-
imize memory consumption and, even more, save read-write
memory that is often scarce in low-cost embedded systems.
Referring back to Figure 5, the only read-write structures—to
be stored in RAM—are the dark-gray-colored ones.

B. Event System
The event system consists of a FREERTOS message queue

Q and a counting semaphore R. Figure 6 portrays a more
detailed view of its implementation. For consistency, labels on
event flows have been kept the same as in Figure 2. Instead,
labels on semaphore primitives are enclosed in gray circles and
summarize the primitive itself (P corresponds to take and V
corresponds to give, when using FREERTOS’s nomenclature).

The main event system design goal is to support generation
and buffering of up to N events, of which N − 1 are sporadic
and one is cyclic. As remarked in Section II-C, in order to
bound control cycle jitter due to interference with sporadic
event handling, the cyclic event must be given higher priority
than the others. This goal is accomplished by means of two
distinct mechanisms:

1) Although FREERTOS does not implement fully pri-
oritized message queues, it does provide a primitive
to send a message to the front of a queue rather than
the back. The event system makes use of this feature
when sending a cyclic event to Q. Sporadic events
are sent to the back, and hence, handled in a FIFO
fashion.

2) By itself, prioritizing operations on Q is insufficient
to grant cyclic events expedited handling, if Q is

8

R

7

Cyclic event source
(timer task)

Sporadic event
sources (UI tasks)

Message queue, N elements

Semaphore, 0 ≤ v(R) < N
P

Event sink
(control task) 9

V
(only for sporadic events)

Q

(send to front)

(send to back)
(receive)

Figure 6. Detailed view of event system implementation.

completely full when a cyclic event occurs. In this
case any send operation—regardless of whether it
is directed to the front or to the back—blocks the
caller and FREERTOS does not offer any built-in
mechanism to address this issue. Therefore, R is used
as a rate control semaphore to bound the number of
pending sporadic events to N −1, and hence, reserve
one element of Q for cyclic events at any time.

To implement rate control, R is used according to the
following protocol:
• the initial value of R is N − 1;
• before sending a sporadic event to Q, the event system

performs a P on R, blocking if necessary;
• after receiving a sporadic event from Q, the event

system performs a V on R.
As a side effect, neglecting transients in between

semaphore and queue operations, the current value of R,
denoted as v(R) in Figure 6, is always 0 ≤ v(R) < N and
represents how many elements of Q are available to sporadic
events.

IV. EXPERIMENTAL EVALUATION
This part of the paper reports on the performance of the

proposed framework and estimates its overhead. The experi-
mental setup conforms to the architecture portrayed in Figure 1
and consists of a controller card, based upon the LPC2468
microcontroller [17], connected to a remote I/O card through
a Modbus-CAN [16] bus. A local I/O device configured as
shown in Figure 4 is also part of the setup. Footprint infor-
mation has been derived from link-time information, while
execution performance has been assessed by instrumenting the
framework code with timestamping points.

The resolution of the standard FREERTOS time services
is limited by the tick timer frequency, which is set to 1 kHz by
default and cannot be increased significantly without incurring
unacceptable overhead. For this reason, a separate 32-bit
hardware counter was used for timestamping, as in [18]. It
runs at the same clock speed as the CPU, that is, 72 MHz,
thus reaching a resolution of about 14 ns.

Since counter registers are readily accessible to the CPU,
timestamping is performed in less than 10 machine instruc-
tions, which include storing the timestamp into fast static
RAM. The timestamping execution time S was estimated
by taking two timestamps consecutively and calculating their
difference. Over 2000 samples, the average execution time
was found to be µS = 0.48µs with negligible variance
σ2
S < 2.13 · 10−4.

This estimate might be marginally optimistic, since the
compiler might be able to optimize timestamping operations

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-544-9

ICDT 2017 : The Twelfth International Conference on Digital Telecommunications

-5

 0

 5

 10

 0 500 1000 1500 2000

J
it
te

r
J

i (
µ

s
)

Sample #

Best-case activation: µJ=0, σ
2
J=0.23

-5

 0

 5

 10

 0 500 1000 1500 2000

J
it
te

r
J

i (
µ

s
)

Framework-driven activation: µJ=0, σ
2
J=1.65

Figure 7. Experimental time traces for control function activation.

better than in other cases, if they are very close to each other.
Nevertheless, it confirms that timestamping is not invasive
when considering time intervals of tens of microseconds at
least. The maximum time interval that can be measured with-
out wraparounds is around 59 s and static RAM capacity is
sufficient to hold up to about 4000 timestamps.

A. Execution Performance and Overhead
Execution performance evaluation revolved around the fol-

lowing two aspects, both related to framework overhead.
1) The ability of the framework to execute the C phase

of the control cycle with an accurate period and
acceptable jitter.

2) The delay introduced by the main framework activi-
ties, as a function of the number of PI variables and
the kind of board being used.

For what concerns the first aspect, best-case performance
is attained when the C phase is triggered directly by the
underlying RTOS timing mechanism, vTaskDelayUntil
for FREERTOS, without interposing any other software layer.
Any difference between this term of reference and the actual
framework-controlled C phase activation performance is due
to the overhead of the framework itself—more specifically, its
even system. Denoting by c0, c1, . . . the sequence of nominal
C phase activation times, equally spaced by the nominal cycle
period P = ci− ci−1 ∀i > 0, the jitter Ji affecting the i-th C
phase can be determined by measuring the sequence of actual
C phase activation times c′0, c

′
1, . . . and calculating the actual

cycle period P ′i of the i-th C phase as:

P ′i = c′i − c′i−1 ∀i > 0. (1)

Then, Ji is given by the difference between the actual and
nominal period of the i-th C phase, that is:

Ji = P ′i − P ∀i > 0, (2)

where positive values of Ji denote a late activation and neg-
ative values denote an early activation. The mean value of Ji
over all i (denoted by µJ) is expected to be zero and any non-
zero value indicates a systematic error of the actual periods
versus the nominal ones. The variance of Ji (denoted by σ2

J)
represents the jitter magnitude. Experimental results for best-
case activation over 2000 samples are shown at the bottom of

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6 7 8 9 10

D
e

la
y
 (

µ
s
)

Number of PI variables

Control function activation

Local I/O delay

Modbus delay (aggregated)

Modbus delay (unaggregated)

Figure 8. Delays introduced by main framework activities.

Figure 7. They manifest the absence of systematic timing errors
(µJ = 0) and exhibit an activation jitter maxi |Ji| < 1µs with
σ2
J = 0.23. The top part of the same figure also shows the

activation jitter with the interposition of the framework event
system depicted in Figure 6 between the cyclic event source
and the control task. The experimental results confirm that the
jitter increases to a maxi |Ji| < 3µs with σ2

J = 1.65, but it is
still negligible with respect to the minimum cycle period the
framework and the underlying RTOS support, that is, 1 ms. At
the same time, observing that it is still µJ = 0 rules out any
systematic timing errors the framework might introduce.

Regarding the second aspect under evaluation, Figure 8
depicts the two most important sources of overhead within
the framework. Both have been evaluated experimentally and
affect the minimum attainable cycle time. Namely:

1) the delay introduced by the event system shown in
Figure 6 when activating the control function;

2) the total time needed by the O and I phases depicted
in Figure 3.

The second delay has been measured as a function of the
number of configured PI variables, also taking into account
the kind of board they reside on (local versus remote) and
the possibility of aggregating multiple variable updates into a
single bus transaction (for remote Modbus boards only). On the
other hand, the first delay has been measured only once (and
is shown near the bottom left corner of the figure) because it
is independent from all those factors. In each plot, the symbol
is placed on the mean delay calculated over 2000 samples
and whiskers extend to the minimum and maximum measured
delay. Only input PI variables have been considered in the
experiments, because outputs cause analogous delays.

The results presented in Figure 8 show that the control
function activation delay is below 200µs and is negligible
with respect to other delay sources, especially when remote
boards are involved. As expected, I/O delays are approxi-
mately linear with respect to the number of PI variables. For
remote boards, experimental data also confirm that Modbus
transactions dominate the delay. On the other hand, I/O delays
for local boards provide a reasonable estimate of framework
overhead in this area. This is because, in the experimental
setup local I/O transactions introduce a negligible amount of
delay by themselves and all the rest can be attributed to the

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-544-9

ICDT 2017 : The Twelfth International Conference on Digital Telecommunications

TABLE I. MEMORY FOOTPRINT DIVIDED BY CATEGORY

Module Text and RO data (B) RW Data (B) BSS (B)
Framework 9938 0 424
Framework Utilities 5044 0 0
Main program 2159 0 228
Local I/O library 260 0 0
Modbus I/O library 26877 0 798
RTOS 16154 8 33052
C runtime library modules 30092 1284 94482

Total 90524 1292 128984

I/O abstraction performed by the framework (see Figure 5).
It should also be noted that aggregation brings a significant
performance improvement because it trades extra Modbus
transactions for a more complex local data processing, at a
fraction of the cost. Last, but not least, data are in good
agreement with respect to [16]. Any marginal performance
improvement in the present case can easily be justified by
considering that a faster Modbus slave has been used.

B. Memory Footprint
The same firmware considered in Section IV-A was also

evaluated to determine another kind of overhead, that is, its
memory footprint. The evaluation was performed statically (on
the firmware object code), by means of the size toolchain
command, leading to the results listed in Table I. The rows
of the table correspond to different parts of the firmware,
while columns divide footprint into three standard categories:
text and read-only (RO) data, read-write (RW) initialized data,
and read-write uninitialized data (BSS). These categories are
important from the practical point of view because, depending
on the target system, they may correspond to different kinds
of memory. For instance, text and RO data can conveniently
be stored in Flash memory (if available on the target) rather
than RAM.

The memory footprint of framework components is given
in the first three row of the table. More specifically, we
considered:
• the real-time part of the framework itself, described in

Sections II and III, which also allocates storage for PI
variables, as well as their descriptors and states;

• additional framework utilities, consisting of functions
to dump framework data structures in human-readable
format and other debugging aids;

• the main program, which allocates the main con-
figuration and board state data structures, besides
implementing an exemplar control function.

The rows that follow pertain to other firmware components
that are used by the framework, but would be required even
without it, namely, the I/O libraries, operating system and
C runtime library modules. The results shown in Table I
confirm that the framework footprint is acceptable and does not
significantly impact overall memory requirements with respect
to other major components. Indeed, the total footprint of core
components is only 17141 B + 652 B (Text and RO data +
BSS), which is lower than the footprint of the Modbus I/O
library alone, for instance.

For the sake of completeness, it is worth to remark that
the RTOS BSS footprint includes the memory pool from
which memory for task stacks and all other objects managed
by the operating systems is drawn (32 KB). Similarly, the C
runtime library BSS includes the library heap (64 KB), which

satisfies all dynamic memory allocation requests made by the
application code and the library itself, as well as the other
stacks required by the processor, except task stacks (28 KB).

V. CONCLUSION
This paper presented the design of a firmware devel-

opment framework whose aim is to speed up application
development and deployment with respect to plain C-language
programming. The framework has been implemented and its
performance experimentally evaluated with satisfactory results,
regarding both execution time overhead and memory footprint.

Foreseen future work includes testing the framework in
the context of a real-world embedded application, as well
as further extending its remote communication capabilities to
Ethernet-based networks and protocols.

REFERENCES
[1] M. Samek, Practical UML Statecharts in C/C++, 2nd ed. Newnes,

Oct. 2008.
[2] W. Bolton, Programmable Logic Controllers, 6th ed. Newnes, Mar.

2015.
[3] CODESYS, Industrial IEC 61131-3 PLC programming, available on-

line, at https://www.codesys.com [retrieved: Mar. 2017].
[4] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,

and A. Martel, “Framework for distributed industrial automation and
control (4DIAC),” in Proc. 6th IEEE International Conference on
Industrial Informatics (INDIN), Jul. 2008, pp. 283–288.

[5] IEC 61131-3, Programmable controllers — Part 3: Programming lan-
guages, 3rd ed., International Electrotechnical Commission, Feb. 2013.

[6] Arduino AG, Arduino IDE, available online, at https://www.arduino.cc
[retrieved: Mar., 2017].

[7] P. Buonocunto, A. Biondi, and P. Lorefice, “Real-time multitasking in
Arduino,” in Proc. 9th IEEE International Symposium on Industrial
Embedded Systems (SIES), June 2014, pp. 1–4.

[8] ISO/IEC 9899, Programming Languages — C, 3rd ed., International
Organization for Standardization and International Electrotechnical
Commission, Dec. 2011.

[9] R. Barry, Using the FreeRTOS Real Time Kernel – Standard Edition,
1st ed. Raleigh, North Carolina: Lulu Press, 2010.

[10] ChaN, FatFs Generic FAT File System Module, available online, at
http://elm-chan.org/fsw/ff/00index e.html [retrieved: Mar. 2017].

[11] A. Dunkels, lwIP – A Lightweight TCP/IP stack, available online, at
http://savannah.nongnu.org/projects/lwip/ [retrieved: Mar. 2017].

[12] I. Cibrario Bertolotti and T. Hu, “Modular design of an open-source, net-
worked embedded system,” Computer Standards & Interfaces, vol. 37,
Jan. 2015, pp. 41–52.

[13] C. D. Locke, “Software architecture for hard real-time applications:
cyclic executives vs. fixed priority executives,” Real-Time Systems,
vol. 4, no. 1, 1992, pp. 37–53.

[14] M. Caccamo, T. Baker, A. Burns, G. Buttazzo, and L. Sha, “Real-time
scheduling for embedded systems,” in Handbook of Networked and
Embedded Control Systems, D. Hristu-Varsakelis and W. S. Levine,
Eds. Birkhäuser Boston, 2005, pp. 173–195.

[15] T. P. Baker and A. Shaw, “The cyclic executive model and Ada,” in
Proc. IEEE Real-Time Systems Symposium (RTSS), Dec. 1988, pp.
120–129.

[16] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Design,
verification, and performance of a MODBUS-CAN adaptation layer,”
in Proc. 10th IEEE International Workshop on Factory Communication
Systems (WFCS), May 2014, pp. 1–10.

[17] LPC2468 Product data sheet, rev. 4, NXP B.V., Oct. 2008, available
online, at http://www.nxp.com/ [retrieved: Mar. 2017].

[18] I. Cibrario Bertolotti and T. Hu, “Real-time performance of an open-
source protocol stack for low-cost, embedded systems,” in Proc. 16th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2011, pp. 1–8.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-544-9

ICDT 2017 : The Twelfth International Conference on Digital Telecommunications

