
Transformation of Class Hierarchies During Software Development in UML

Himesha Wijekoon, Vojtěch Merunka

Department of Information Engineering

Faculty of Economics and Management

Czech University of Life Sciences Prague

Prague, Czechia

email: wijekoon@pef.czu.cz, merunka@pef.czu.cz

Vojtěch Merunka

Department of Software Engineering

Faculty of Nuclear Sciences and Engineering

Czech Technical University in Prague

Prague, Czechia

email: vojtech.merunka@fjfi.cvut.cz

Abstract—This article discusses support for the Unified

Modelling Language (UML) standard in Model Driven

Architecture (MDA) style software development. There are

described some of the weaknesses of the UML standard that

software developers should know about, to take full advantage

of this otherwise very good and desirable standard.

Specifically, it is a hierarchy of object classes, which belongs to

the basic concepts of the object-oriented paradigm. This

hierarchy is considered well known, but in fact there are three

slightly different hierarchies that fortunately fit well with the

MDA philosophy. The problem is mainly that all these three

hierarchies appear in UML in the same way, as if they were

just one type of hierarchy. The article describes and explains

these differences and suggests a refinement to the UML using

stereotypes. The conclusions written in this article are a

summary of the authors' experience of software projects for

the international consulting company Deloitte and of university

education.

Keywords-UML; software development life cycle;

transformation of concepts; MDA; class hierarchies.

I. INTRODUCTION

The objective of Unified Modelling Language (UML)
has been and is to replace older methodologies by one
methodology that is a combination of the best of the older
ones. Likewise, the Model Driven Architecture (MDA)
philosophy is a synthesis of previous best experiences in the
creation of large-scale software, where there is a semantic
gap between programmers and people in the area of the
modeled problem.

The history of software engineering could be simply
described as a human struggle with complexity. The solution
is to split a complex task into a set of many smaller and
therefore simpler tasks that one can already handle.
Incidentally, this idea, which is the basis, for example, of the
programming of computers is not new. It was probably first
pronounced by a Persian scientist Muhammad ibn Musa al-
Khwarizmi in his book “The Compendious Book on
Calculation by Completion and Balancing” which became
the basis of modern mathematics and was the forerunner of
software engineering [1][2].

Authors, based on their practical experience in an
international consulting company, have experienced that the
same UML diagram is understood differently by different
development team members (e.g., problem domain experts,
IT architects, data analysts, programmers). This increases the

semantic gap between users and developers and makes
software development more complicated, expensive, and
error prone.

This paper discusses about using UML standards in the
MDA approach for software development. More precisely,
the paper discusses how different types of hierarchies can be
expressed in UML class diagrams.

This paper is organized as follows:

• The Introduction is followed by Section II on UML and
its problems.

• This is followed by Section III on the MDA approach.

• Section IV is central because it contains our own
research, which is described in a concrete example.

• Section V is a discussion and suggested solution.

• The Conclusion of this article.

II. OBJECT-ORIENTED APPROACH AND THE ORIGIN OF

UML

Before the arrival of UML, in early 1990s, we had
several competing object-oriented methodologies with
mutually different notations. These were so called first
generation object-oriented methodologies. Many software
companies used a combination of several methodologies
instead of just one methodology – mostly object models from
Object Modelling Technique (OMT) along with interaction
diagrams from the Booch method and the Use-Case
approach of the Jacobson Object-Oriented Software
Engineering (OOSE) method [3][4][5]. Most of these
methodologies have later become the foundation for UML
[6]. UML has brought along a unification of the previous
notations. The UML notation is mostly based on OMT and
has become a recognized standard. UML includes many
different elements from the original methodologies. There is,
for example, the so called “business extension” from the
original Jacobson method that has been added in version 1.x,
or the absorption of the Specification and Description
Language (SDL) methodology for supporting real-time
processes in version 2.x [7].

Obviously, the UML is not a method. UML is “only” a
modelling language [8]. That, itself should not be a problem
as it is good that since 1996, we have had a standard for
object modeling. The problem, however, is the fact that for
the “universal” language there are more methodologies (e.g.,
Rational Unified Process) and even mere knowledge of
UML is often considered a methodology [9].

23Copyright (c) IARIA, 2022. ISBN: 978-1-61208-981-2

ICDS 2022 : The Sixteenth International Conference on Digital Society

A. Is UML a Method?

Experience proves that it is not a method. UML is
definitely not a method that could be understood by a layman
in reasonable time (for instance in 15 minutes at the
beginning of a meeting with analysts), to be able to read and
understand the diagrams. This is not an unrealistic
requirement, because in the past it was possible to work like
this with entity-relational and data-flow models.
Unfortunately, in object-oriented modeling we do not have
such an elegant and simple method. Instead, we send
customers to attend long training sessions on UML, where
we make them work with Computer Aided Software
Engineering (CASE) tools.

B. Some Issues of UML

Most criticism at UML is directed at its complexity and
inconsistency. It is, for example, the direction of the arrows
of different links that sometimes draws in reverse with
reality. Another criticism is the varying level of detail. For
example, terms directly related to C++ or Java and similar
programming languages have beautiful distinguishable
symbols, but concepts are also very important but not
supported in Java-like programming languages have very
little support or only optional textual stereotype. The third
and last part of the criticism speaks of complicated or even
no UML support for the decomposition and generalization of
diagrams that no longer have the elegance of the old Data
Flow Diagram (DFD). A good publication on this topic is an
article by Simons and Graham [10].

However, we know many of these things also from other
areas of science. As a typical example, let's look at the
direction of the flow of the electric current that is drawn
from the positive pole to the negative pole in electric circuit
diagrams since Michael Faraday's time, which is the opposite
of reality, as every bright student knows today.

Individuals who are not familiar with programming find
UML too difficult, and then they incorrectly interpret the
entire object-oriented approach [10][11][12]. It is possible to
pick an acceptable set of concepts out of UML for non-
programmers; nevertheless, most professional books and
training sessions are too often unnecessarily based on
programmer experience. Comprehensibility and simplicity of
UML is corrupted by the following facts:
1. UML models contain too many concepts. The concepts

are at different levels of abstraction, and sometimes they
semantically overlap (e.g., relations between use-cases);
and even their concepts sometimes differ. The same
model can therefore be interpreted differently by an
analyst and a programmer (the typical example is
associations between objects).

2. There are several ways in the UML diagrams to show
certain details in models (e.g., qualifiers and link class
objects or state diagrams that are a mix of Mealy and
Moore automata). It is up to analysts, which option they
choose.

3. Some concepts are insufficiently defined such as events
in state diagrams. One UML symbol covers several
different concepts (e.g., in sequence diagram the data
flow between objects blends with control flow).

4. Although UML is generally good from the graphics
aspect, some analysts do not like for example the same
symbol of a rectangle for instance and class (they are
differentiated only by internal description), as well as
the direction of the inheritance arrow that leads toward
the parent object in spite of the fact that in the codes of
programming languages (even in users interpretations)
inheritance is represented by opposite direction (i.e.,
from the parent object toward the descendant).

C. UML Support of Object-Oriented Approach

Although UML has the ambition to be truly versatile and
is also registered as a universal International Standards
Organization (ISO) standard [6], it is true that the largest
field of application is object-oriented analysis and
programming. UML supports many object-oriented concepts,
and there is currently no other “more” object-oriented as well
as standard modelling language. The success of UML in
practical usage is based on many successful projects where
the software has been developed in C++ or Java (i.e.,
languages that use object-oriented approach).

Practically speaking, UML is associated with object-
oriented software creation for many users, who do not even
know that UML has an overlap with other areas of software
engineering, such as relational database modelling.

III. MDA APPROACH

MDA is an Object Management Group (OMG)
specification based on fixed standards of this group [13]. The
main idea behind MDA is to separate business and
application system from the technology platform. This idea
is not new as the need to create a separate analytical and
design model has existed for quite some time. What MDA
brings are procedures and ways to transform these models.
The primary objectives of this approach are to ensure
portability, interoperability, and reusability through a
separate architecture [14].

The MDA approach advises a complex system to evolve
as a gradual transformation of three large models:
1. Computer-Independent Model (CIM): This model, also

known as the domain model, focuses exclusively on the
environment and general requirements of the system. Its
detailed structure and specific computer solution are
hidden or unspecified at this stage. This model reflects
customer's business requirements and helps to
accurately describe what is expected of the system.
Therefore, they must be independent of technical
processing and describe the system in a purely factual
and logical way. It does not require to know any details
of computer programming, but rather requires
knowledge of the real target environment.

2. Platform Independent Model (PIM): This model deals
with the part of the complete system specification which
does not change according to the particular type of
computer platform chosen. In fact, PIM mediates a
certain degree of independence of a particular solution
to a given problem area to suit different platforms of a
similar type. It describes the behaviour (algorithms) and
structure of the application only within those limits that

24Copyright (c) IARIA, 2022. ISBN: 978-1-61208-981-2

ICDS 2022 : The Sixteenth International Conference on Digital Society

will ensure its portability between different
technological solutions. Compared to the CIM model, it
is supplemented with information (algorithms,
principles, rules, constraints, etc.) that are essential for
solving the problem area through information
technology. The big advantage of the PIM model is its
reusability and therefore it can serve as a starting point
for various assignments when it is necessary (e.g., to
change to another programming language, the need to
reuse some legacy component or data, etc.). It's like
abstract programming in an ideal programming
environment. At this stage of development, the so-called
expansion of ideas is also taking place, as the target
environment has not yet restricted us.

3. Platform-Specific Model (PSM): The latest MDA
model, which is already platform dependent, combines
PIM with a specific technology solution. There is a so-
called consolidation where the previous ideas must be
realized in a specific target computer environment with
all the shortcomings and limitations of the version and
configuration of the technology used.

IV. THREE DIFFERENT TYPES OF CLASS HIERARCHIES IN

THE PROCESS OF SOFTWARE DEVELOPMENT

Conceptual hierarchy of classes, hierarchy of data types,
and hierarchy of inheritance do not necessarily mean the
same thing regardless all three hierarchies are drawn in the
same way in UML. We can only use UML stereotypes to
distinguish among them in detail. These hierarchies have a
strong connection with MDA ideas and can be recognized as
follows:
1. From the perspective of the user/analyst: The instances

of lower-level classes then must be elements of the same
domain that also includes the instances of the classes of
the superior class. It means that a lower-level domain is
a sub-set of a higher-level domain. This hierarchy is also
called the IS-A hierarchy or also taxonomy of classes. In
specific cases, it can differ from the hierarchy of types
because it does not deal with the behaviour of the
objects at the interface; rather it deals with the object
instances as a whole including their internal data
structure. Formally, we can define this hierarchy of a
superclass A and subclass B as

A ⊰ B = extent(A) ⊃ extent(B) (1)

This hierarchy corresponds to the CIM phase of MDA.

2. From the perspective of polymorphism: This is a view
of an application programmer who needs to know how
to use the objects in the system but does not program
them. The object in lower levels of hierarchy then must
be capable of receiving the same messages and serve in
the same or similar context, such as high-level objects.
Therefore, this hierarchy is the hierarchy of types.
Formally, we can define this hierarchy of a superclass A
and subclass B as

A ⊰ B = interface(A) ⊆ interface(B) (2)

This hierarchy corresponds to the PIM phase of MDA.

3. From the designer’s perspective: new object designer.
This is a view of a system programmer who needs to
create these objects. This hierarchy is a hierarchy of
inheritance because inheritance is a typical tool for the
development of new classes. Formally, we can define
this hierarchy of a superclass A and subclass B as

A ⊰ B = methods(A) ⊆ methods(B) (3)

This hierarchy corresponds to the PSM phase of MDA.

Figure 1. IS-A Hierarchy (Class Taxonomy)

In simple problems, it is obviously true that these three
above-mentioned hierarchies are identical. However, this is
not true in more complex problems (e.g., in the design of
system libraries that are often re-used when developing
specific systems).

A. An Example - Library of Object Collections

Figure 1 is a good example showing IS-A hierarchy,
hierarchy of types and hierarchy of inheritance which is a
part of a system library of the Smalltalk language concerning
collections of objects. A similar library can be found in each
object-oriented programming language, of course. There are
the following classes:

• Collection: This is an abstract class from which the
individual specific classes are derived. A common
quality of all these objects is the ability to contain other
objects as their own data.

• Dictionary: This is a collection where each value stored
has a different value assigned to it (therefore forming a
pair), which serves as an access key to the specific
value. Dictionaries can be really used as dictionaries for
simple translations from one language to another.
Another frequently used example of the use of object
dictionaries is a telephone book (i.e., the key is the
names of the people and the values connected with the
keys are the telephone numbers).

• Array: Simply said, an array is a dictionary where the
keys can only be natural numbers from 1 to the size of

25Copyright (c) IARIA, 2022. ISBN: 978-1-61208-981-2

ICDS 2022 : The Sixteenth International Conference on Digital Society

the array. So, the array values are also accessed as if
through keys.

• Byte Array: It is an array where the permitted scope of
values is limited to whole numbers in the interval from 0
to 255.

• String: A string of characters can be also viewed as an
array where the permitted scope of values is limited to
characters.

• Bag: This is a collection in which internal objects can be
stored inside without any accessing key.

• Set: This is a special type of a bag where, in addition,
the same value can occur only once. If the set already
contains a specific value, another input of the same
value is ignored unlike the above-mentioned bag, which
allows multiple occurrences of the same value. The
objects which are elements of the set are functionally
corresponding with mathematical concept of sets.
Therefore, they have this name.

This description of the classes from Figure 1 follows the
IS-A hierarchy (or class taxonomy) as we know it from
natural sciences. But we may define a slightly different
perspective as it is presented at Figure 2, but equally
important as first one from Figure 1. If we concentrate on
behaviour of objects, we obtain a bit different hierarchy that
is defined by the scope of permissible messages. Or we can
also declare this hierarchy as a hierarchy of object interfaces.
It is the hierarchy of types corresponding with the PIM phase
of MDA. This supertype-subtype hierarchy has following
differences from previous IS-A hierarchy:

• Because Dictionaries can receive the same messages as
Sets, they can be therefore viewed as sub-types of Sets.
The same applies also for Bags.

• Arrays and String are interpreted as almost independent
classes because each of them supports very specific
operations (messages) with very little common
intersection.

Figure 2. Hierarchy of Types (Supertype - Subtype Hierarchy)

This second hierarchy is not the last one. We can create
yet one more hierarchy to match the PSM phase of MDA.
See Figure 3. This hierarchy of inheritance is very important
for the programming when programmers have to create their
objects in some programming languages. Again, we will
have some differences from previous hierarchies:

• Strings can be implemented as a special kind of
ByteArrays (e.g., inherited subclass), because separate
character elements are typically encoded into bytes of
tuples of bytes.

Figure 3. Hierarchy of Inheritance

• Implementation of Arrays and ByteArrays has nothing
in common and therefore it makes no sense to inherit
anything together. Arrays are implemented using
pointers which point to the internal objects that make
their elements, but ByteArrays are contiguous sections
of computer memory, where their elements are stored
directly in these bytes. Although these two classes have
much in common and can receive the same messages in
terms of external behaviour (that is, they have
polymorphism), the code of their methods cannot be
shared and it is necessary to program each method
separately, although they seem very similar.

V. DISCUSSION - UML SUPPORT FOR SOFTWARE

DEVELOPMENT PHASES

In Section IV, we have just explained the need for
different class hierarchies. The problem remains to be
resolved is, how to express them in the UML class diagrams.
Fortunately, the UML standard includes an extension
mechanism that allows new concepts to be introduced in a
standard way. They are so-called stereotypes. All we have to
do is select some graphic element, and we can give it a
different interpretation by typing the text in double angle
brackets « ». The result is in Figure 4.

Figure 4. UML Extension Proposal

Of course, if each UML class diagram clearly indicates
what phase of the model it is (CIM, PIM, or PSM in the style
of MDA, for example), then this stereotype is unnecessary.

A. The Need of MDA Way of Thinking

During system development it is necessary to gradually
transform the system model into a condition that is necessary
for physical implementation of the system in program form
in the specific programming language.

According to our experience, initial objects cannot be
viewed only as initial simplification of the same future
software objects, as the common error of the analysts in

26Copyright (c) IARIA, 2022. ISBN: 978-1-61208-981-2

ICDS 2022 : The Sixteenth International Conference on Digital Society

UML [15]. The initial business model is simpler, but at the
same time it contains concepts which are not directly
supported by current programming languages.

In the work on major projects, IS analysts face problems
when not all system requirements are known at the start of
the project and the customer expects that discovery and
refinement thereof will be part of the project. These
problems are even more complicated because the function of
the major systems built has impact on the very organizational
and management structure of a company or organization
where the system is implemented (e.g., new, or modified job
positions, management changes, new positions, new
departments, etc.). Therefore, it is desirable to also address
the change of these related structures during the work on
information systems.

VI. CONCLUSION

In this paper, we demonstrated the need of precise
interpretation of modelling concepts on an example of
gradually transforming object class hierarchy. This approach
is a practical realization of MDA ideas in UML.

Underestimation of the model differences in the
individual phases of development of an information system
happens, when the analysis using UML is viewed by
programmers as the sole graphical representation of the
future software code. Analytical models are then used not to
specify the problem formulation with the potential users of
the system who are also stressed by the complexity of the
models that are presented to them. In our practical
experience, many projects in UML suffer from this problem.
In response to that, there are two “remedial” approaches used
in practice: Extreme Programming [16] and Domain Specific
Methodologies [15]. But it is as if also the baby itself had
been spilled with dirty water from the bath.

The objective of this article is not to suggest that UML is
a bad tool. On the contrary, UML is a good and rich tool.
The fact that it is not perfect in all areas is not anything
horrible. UML is the first successful attempt to introduce a
reasonable object-oriented standard, and it is good to use it.
We only wanted to point out some of the problems that relate
to the use of the UML. We see a danger that results in the
fact that the UML is taught and used incorrectly. The
problems discussed can be summarized as follows:
1. UML is not a method. It is “only” a standardized tool for

recording. UML needs some method, otherwise it
doesn't help.

2. UML is complicated. People who are not familiar with
programming have difficulty learning it. It is not easy to
explain UML to laymen and non-programmers in just a
few minutes at the first meeting.

3. Analysis in UML must not be a graphical representation
of the future program code.

4. UML itself does not accurately emphasize which
concepts are to be used in the analysis phase and which
concepts to be used in the design and implementation
phase. Unfortunately, many books on UML look at
modelling through the eyes of implementation and are
written in a language for programmers and particularly

programmers in C++ or Java or a similar programming
language.

The thoughts described in this article are a synthesis of
our own experiences from object-oriented modelling at the
international consulting company Deloitte, from own
research activities and from teaching the development of
information systems at the universities.

REFERENCES

[1] H. Zemanek, “Al-Khorezmi His background, his personality
his work and his influence,” Ershov A.P., Knuth D.E. (eds)
Algorithms in Modern Mathematics and Computer Science.
Lecture Notes in Computer Science, vol. 122. Springer,
Berlin, Heidelberg, 1981.

[2] D.E. Knuth, “Algorithms in modern mathematics and
computer science,” Ershov A.P., Knuth D.E. (eds)
Algorithms in Modern Mathematics and Computer Science.
Lecture Notes in Computer Science, vol. 122. Springer,
Berlin, Heidelberg, 1981.

[3] J. Rumbaugh, “Object-Oriented Modeling and Design,”
Prentice-Hall International, 1991.

[4] G. Booch, “Object-Oriented Analysis and Design with
Applications (2nd ed.). Redwood City: Benjamin Cummings.
ISBN 0-8053-5340-2, 1993.

[5] I. Jacobson, M. Christerson, and G. Övergaard, “Object
Oriented Software Engineering: A Use Case Driven
Approach,” Addison-Wesley, 1992.

[6] Object Management Group (OMG). OMG Unified Modeling
Language (OMG UML) Version 2.5.1. [Online]. Available
from: https://www.omg.org/spec/UML/2.5.1/PDF,
2022.05.17.

[7] R. Reed, “Notes on SDL-2000 for the new millennium.
Computer Networks,” 35. No. 6, pp. 709-720, 2001.

[8] J. Hunt, “The Unified Process for Practitioners: Object-
oriented Design, UML and Java,” vol. 12, Springer Science &
Business Media, 2000.

[9] Object Management Group (OMG). Introduction To OMG's
Unified Modeling Language (UML). [Online]. Available
from: https://www.uml.org/what-is-uml.htm, 2022.05.17.

[10] A.J. Simons and I. Graham, “30 Things that Go Wrong in
Object Modelling with UML 1.3,” Kilov, H., Rumpe, B.,
Simmonds, I. (eds) Behavioral Specifications of Businesses
and Systems, The Springer International Series in Engineering
and Computer Science, vol. 523, pp. 237-257, Springer,
Boston, MA. 1999.

[11] S.W.Ambler. Toward executable UML. [Online]. Available
from: https://drdobbs.com/toward-executable-
uml/184414808?queryText=scott%2Bambler%2BUML%2Be
xecutable, 2022.05.17.

[12] D. Thomas, “UML - Unified or Universal Modeling
Language?”, Journal of Object Technology, vol. 2, no. 1, pp.
7-12, 2003.

[13] Object Management Group (OMG). MDA - The Architecture
of Choice for a Changing World. [Online]. Available from:
https://www.omg.org/mda/, 2022.05.17.

[14] A. Noureen, A. Amjad, and F. Azam, “Model Driven
Architecture - Issues, Challenges and Future Directions,”
Journal of Software. vol. 11, no. 9, pp. 924-933, 2016.

[15] S. Kelly and J.P. Tolvanen, “Domain-Specific Modeling.
Enabling Full Code Generation,” John Wiley & Sons, 2008.

27Copyright (c) IARIA, 2022. ISBN: 978-1-61208-981-2

ICDS 2022 : The Sixteenth International Conference on Digital Society

