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Abstract—In modern societies, opening data is playing a crucial
role in innovations and economic growth. Public organizations
and private enterprises constantly are collecting data. To support
the growth of societies, these organizations and enterprises
intend to be more active in data opening. However, disclosure
of personal data is one of the main threats for data opening.
Data transformation techniques for Statistical Disclosure Control
(SDC) aim at removing personal data while maintaining the
utility of the data at an acceptable level. Applying SDC methods
always faces the struggle of maintaining a balance between
data utility and personal disclosure risk. In this research, we
investigate different options for a common set of transformations
for protecting microdata. We study a set of common scenarios
which target (or specify) two types of data environments (i.e.,
those with and without the original microdata sets) and two
approaches for privacy protection (i.e., those based on normative
heuristics and a formal approach). Employing ARX, we run
a series of experiments to observe the behaviours of various
measurement factors. At the end, we discuss the consequences
of choosing each of the options that can be used by policymakers
for opening privacy-sensitive microdata sets.

Keywords–Data Protection; Disclosure Scenarios; Microdata;
Statistical Disclosure Control.

I. INTRODUCTION
Often, public organizations and private enterprises collect

data about citizens and their clients or employees. These parties
collect such personal data directly as the input necessary for
provisioning their services (like the contact and demographic
information about crime-victims or patients). They may collect
personal data also indirectly as the byproduct of their service
provisioning (when, for example, a judicial or healthcare
process proceeds through a chain of actions and interventions).
Consequently, personal data are collected and processed in
various forms such as microdata, tabular data, semi-structured
data as well as unstructured data.

Governments try to improve their transparency, account-
ability and efficiency through proactively opening their public
funded data sets to the public. Hereby, they intend to support
participatory governance by citizens, to foster innovations
and economic growth for enterprises, and to enable citizens
and organizations to make informed decisions. An important
precondition for any data opening is to Open Data responsibly,
without violating the fundamental human rights such as pri-
vacy, liberty, autonomy and dignity [1]–[3]. Considering the
scope of this contribution, we focus on the privacy risks or
harms associated with such Open Data initiatives. For example,
processing personal data may lead to wrong classification of
individuals, adversely impacting their liberty, autonomy and
income. Even correctly classifying individuals may be harmful
and illegal when, for example, individuals become subject to
unjustifiable and/or unjust discrimination [4]. Further, linking

such personal data to other data sets can reveal even more
privacy-sensitive information about individuals than was ini-
tially shared [1][5].

Protecting the privacy of individuals in the open data
settings, where the shared data is observable for everybody,
including the adversaries, boils down to removing personal
data from the shared data while maintaining the utility of
the data as much as possible. This operation is called data
anonymization in a technical sense, which relates to the data
minimization, purpose limitation, and accuracy principles of
General Data Protection Regulation (GDPR) i.e., Articles 5-
1b/1c/1d. Data anonymization is not an easy task as there
have been many supposedly anonymized data sets that were
re-identified in practice [6].

A common way for data anonymization is by using SDC
methods. These SDC methods are applicable to microdata as
well as tabular data (i.e., frequency and magnitude tables).
Our scope in this contribution is limited to microdata sets
which are structured as a table of records/tuples corresponding
to individuals, and attributes corresponding to some (privacy-
sensitive) properties of those individuals. Generally, applying
SDC methods affects data privacy (or personal data disclosure
risks) and data utility inversely, i.e., when one increases the
other decreases. In practice, therefore, one should make a
trade-off among personal data disclosure risks and the utility
of opened data.

In Open Data setting, the purpose of data usage is not
predetermined. The data consumers (i.e., the public) should be
able to apply any (legitimate) analysis they are interested in.
This implies that the objective is to transform microdata such
that the risk/threat of personal disclosure becomes negligible
(i.e., practically eliminated), while the data utility remains high
as much as possible. Inspired by [7], we call such a data
publishing as privacy preserving microdata opening.

In order to apply SDC methods for protecting personal data
in Open Data settings, there is a need for gaining an insight in
the utility of data when different SDC protection methods (of
varying data protection level) are applied. The objective of this
study is to empirically investigate the impact of applying the
SDC methods on data utility when opening sensitive microdata
sets. Specifically, our research questions can be formalized
as: For a common set of data transformation options, what
are data utility and data disclosure implications? What are
the implications of these options, which policymakers should
consider when opening privacy sensitive microdata sets?

For this study, we have carried out desk research, expert
interviews, and extensive experiments with an SDC software
tool called ARX [8]. We identify a number of cases that are
relevant for data opening. The results of this study can clarify
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the difference between the identified cases and demonstrate
some of the implications of opting for each of these cases.
Legal consultants, legislators and policymakers can use the
study results when choosing their strategy for opening privacy-
sensitive microdata sets.

The remainder of this paper is organized as follows. In
Sections II and III, we provide some related work and the
background of and the motivations for data opening. In Section
IV, we present two generic approaches for applying SDC
methods and in Section V, we define the data quality and data
privacy measures used for our experiments. Subsequently, we
provide the experiment cases in Section VI. Then, in Section
VII, we present the experiments results obtained for a publicly
available data set, we reflect on the study results and lay down
the limitations of the study. Finally, we draw our conclusions
and mention some future research directions in Section VIII.

II. RELATED WORK
One criterion for defining our cases is whether or not the

intruder has access to the original microdata set. The issue of
whether the original microdata can be used for re-identification
of some individuals from a technically anonymized microdata
set is elaborated upon in [9] and [10]. Elliot et al. [9] discuss
the UK privacy regulations, which recognize two environ-
ments: one with the original microdata (as it is often the
case for the environment of the data controller) and the other
without it. In the first environment, the technically anonymized
microdata set is considered as personal data while in the
other it is considered as an anonymized data. This is because
the entity in possession of the original data (e.g., the data
controller) can use the original data set to re-identify some
individuals in the technically anonymized microdata set. They
also mention that an anonymized data set that is re-identifiable
for some party (like data controllers) is personal in the EU
jurisdiction. Similarly, El Emam and Malin [10] emphasize that
when data controllers are able to re-identify some individuals
with the original data set, the data set is not anonymous.

In [11], we build on this argument and further argue that,
based on an investigation of the relevant legal regimes, criminal
justice data cannot be opened when they are personal. Further,
we note that, unlike the claim in [9], the condition of not being
personal for everybody (i.e., being anonymous in a GDPR
sense) is not unanimously accepted (yet) as a precondition for
opening privacy sensitive data sets (like criminal justice system
data sets). In this contribution, we extend our previous work
[11] by defining a number of possible options for protecting
microdata sets against re-identification by parties with and
without original microdata sets. Subsequently, we investigate
the utility of the resulting microdata sets.

Further, we investigate the utility of an anonymization
method that yields a sound (i.e., formally provable) data pro-
tection mechanism according to a new definition of privacy (ε-
differential privacy). The need for formal approaches to define
privacy and realize personal data protection rigorously is at the
centre of focus in recent studies [12]–[14]. The authors argue
that past technologies for protection against personal data
disclosure rely on intuitive, heuristic understandings of privacy,
and the privacy regulations have often endorsed such heuristic
techniques implicitly or explicitly. For example, by making
an implicit assumption that re-identification may primarily (or
even solely) occur via record linkage, where a record is de-
identified by those in a publicly available data set, ”many

privacy regulations require protecting personal information that
can be linked to an individual in order to safeguard against
record linkage” [12]. Such regulations, which capture some
aspects of normative privacy, do not satisfy all expectations of
privacy protection. Therefore, these studies ask for more un-
derstanding of the gaps between technical/formal approaches
to privacy and the normative approaches to privacy so that
future privacy regulations can be improved. Inspired by these
works, we investigate the impact of applying a formal privacy
protection method (specifically, ε-differential privacy) on data
utility and compare it with a heuristic normative approach (i.e.,
k-anonymity) as often applied against record linkage attacks.

Based on the impacts of such solution directions on data
utility and on privacy risks, as presented in this contribution,
policymakers can make an informed strategy for opening their
privacy sensitive microdata sets.

III. OPENING MICRODATA
A. Motivation(s)

Governments seek to improve their transparency, account-
ability and efficiency through proactively opening their pub-
licly funded data sets to the public. Via Open Data, govern-
ments intend to support participatory governance by citizens,
to foster innovation and economic growth, and to empower
citizens and businesses for making informed decisions.

Often, public organizations and privacy enterprises possess
personal data about citizens as well as clients, employees
or partners in the form of microdata sets. Microdata records
may include (privacy-sensitive) properties of individuals (like
demographic, behavioral, health and/or business information).

In order to achieve the objectives of Open Data, namely
transparency, accountability and efficiency, public organiza-
tions strive to open their microdata sets as raw as possible.
But, microdata sets pertaining to natural persons (very often)
contain (sensitive) personal data (like demographic, behavioral,
health and/or business information). Opening such microdata
as raw as possible, therefore, can inflict (severe) privacy
breaches (i.e., personal data disclosures) with adverse impacts
on the fundamental human rights as well as on individuals’
dignity, liberty, autonomy and income [1]–[3]. Therefore, pro-
tecting the privacy of citizens and individuals is an important
precondition for (governmental) organizations in order to open
their data responsibly [11].

Further, for validation and reproduction of their results,
scientists and scholars are supposed to make their research data
available for their peers and the scientific community. These
research data are often in the form of microdata. In these cases,
the protection of personal data is also one of the preconditions
for conducting these researches and, even more importantly,
for sharing the research data with the scientific community.

B. Opening Personal (Sensitive) Data
Personal data refer to any information that relates to an

identified or identifiable natural person (so-called a data sub-
ject). One can distinguish several types of personal data in legal
domains. For example, GDPR discerns three personal data
types: Directly identifiable data, indirectly identifiable data,
and sensitive data. Directly identifiable data relate to a person
straightforwardly, for instance, someone’s name or address.
Indirectly identifiable data do not relate to a person straight-
forwardly but may influence the way a person is perceived or
treated in the society (for instance, the type of someone’s house
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or car), or may contribute to someone’s identification when
combined with other data sets. Sensitive data are related to
the fundamental rights and freedom of individuals. According
to GDPR, sensitive personal data are of two types: (a) Special
categories of personal data such as someone’s racial or ethnical
origins, political opinions, religious or philosophical beliefs,
trade union memberships, genetic data, biometric data for the
purpose of uniquely identifying a natural person, health data,
or sex-life or sexual orientation data; and (b) the personal data
related to criminal convictions and offences. If sensitive data
are (or can be) related to an identified or identifiable natural
person, they may be processed only if the data processing
complies with strict data protection measures. Bargh et al. [11]
argue that such sensitive data sets can be opened to the public
if they are without personal information, i.e., they cannot be
related to identified or identifiable natural persons.

A data set can be regarded as without personal information
in a given, so-called, data environment. When a data controller
transforms a microdata set to a protected one, and shares the
result with a partner organization, the boundary of the partner
organization defines a data environment. Within the scope of
this study (i.e., opening data to the public), two types of data
environments are interesting to investigate, namely: those with
the original microdata set and those without it. Making this
distinction is based on the fact that the original microdata set
is one of the richest knowledge bases that can be used for
linking, via re-identification or attribution [15], the records or
attributes in a protected microdata set to natural persons. This
richness can be associated with the facts that the protected
microdata set is the result of applying SDC methods to the
original microdata set and that the original microdata set itself
contains one or more identifying attributes (like names and
social security numbers). These identifying attributes together
with the other attributes in the original microdata set can
facilitate linking the records in the protected microdata set to
the corresponding identities (thus, to re-identify the records in
the protected microdata set). A typical data environment with
the original microdata set is that of the data controller.

In [11], it is shown that protecting a microdata set for a data
environment without the original microdata set delivers a trans-
formed microdata set that is anonymous in a GDPR sense (i.e.,
being anonymous for everybody in that data environment),
while protecting a microdata set for a data environment with
the original microdata set delivers a transformed microdata set
that is pseudonymized in a GDPR sense (i.e., being potentially
identifiable for a party, for example, the data controller, who
is possession of the original microdata set). Note that these
two types of data environments exists in Open Data settings in
cases where the data controller does not maintain or maintains,
respectively, a copy of the original microdata set. In Section
III-D, we elaborate further on these two data environments
types (i.e., those with the original microdata set and those
without it).

C. Protecting Microdata in Open Data Setting
In the context of Open Data, the data spread over and reach

all areas, some of which fall out of GDPR jurisdiction. As
mentioned above, GDPR requires that sensitive personal data
are processed (i.e., shared in case of Open Data) with strict
data protection measures. The data protection mechanisms that
can be applied to this setting are those that minimize data by
stripping off, ideally, all the personal data from the data to be

opened. To this end, the data minimization mechanisms can
be applied via the following processes:
• Data anonymization: This process ensures “that the

risk of somebody being identified in the data is
negligible” [9]. Data anonymization aims at hiding
the identity and/or the sensitive data of data subjects,
while retaining sensitive data for the purpose of data
analysis [16]. To achieve this, the so-called SDC
methods and tools are used.

• Data de-identification: This process aims at protecting
a microdata set against the intrinsic threats by trans-
forming direct identifiers (like names, social security
numbers and digitized unique biometrics). This trans-
formation is carried out via replacing direct identifiers
with pseudo identifiers, masking/suppressing them or
removing them.

Note that the term anonymization above is used in a
technological sense (and not in a GDPR sense). Further,
note that the term de-identification in North America means
anonymization in a technological sense. As part of strict data
protection measures, cybersecurity controls such as access
control and cryptography are not suitable for protecting data in
Open Data settings. In other words, data disclosure threats due
to cybersecurity attacks of Information System (IS) hacking
and due to decrypting encrypted personal data, while data
being in transit, storage and processing, are out of the scope
in Open Data settings.

D. Attribute Mapping
The process of applying SDC methods for data anonymiza-

tion and de-identification starts with the subprocess of dividing
the set of the attributes of a microdata set into various cate-
gories. This subprocess is called attribute mapping. To describe
attribute mapping, we start with formalizing the concept of
microdata sets. Microdata sets are structured in the form of
a table of records/tuples and attributes. Within the context
of this study, we assume that every record corresponds to
an individual and every attribute corresponds to a (privacy-
sensitive) property of the corresponding individual.

More specifically, a microdata set DSN comprises N rows
or records denoted by xn, where n : 1, . . . , N . We assume
that every record xn corresponds to one individual. Further,
every record xn comprises D attributes, denoted by ad, where
d : 1, . . . , D. Each attribute ad assumes a nominal or ordinal
value from domain Ad (or, in other words, attribute ad assume
a value that is an element of set Ad). Domain A = A1×A2×
. . .× AD denotes the super domain, over which all attributes
are defined. Every record xn is defined over A, consisting of
attribute values xnd ∈ Ad, d : 1, . . . , D.

In attribute mapping, the set of attributes {a1, a2, . . . , aD}
are normally divided into four disjoint sets called: Explicit
identifiers, quasi identifiers, sensitive attributes, and non-
sensitive attributes. Explicit Identifiers (EIDs) refer to those
attributes in DSN that structurally and on their own could
uniquely identify individuals, i.e., data subjects. Examples of
EIDs are a data subject’s name and social security number.
Quasi Identifiers (QIDs) refer to the set of attributes in DSN

that could be used to identify (some of) the data subjects in
DSN . To this end, the QIDs should also be present in some
other data sets or information sources together with the cor-
responding EIDs. The QIDs in microdata set DSN , therefore,
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capture the background knowledge that intruders have with
respect to data set DSN . Sensitive ATtributes (SATs) refer
to those attributes that capture privacy-sensitive information,
while conveying useful information for a data analysis purpose
(e.g., someone’s disease type and salary). Unlike QIDs, SATs
are known only within DSN and, therefore, they cannot be
characterized as background knowledge for intruders. Non-
sensitive ATtributes (NATs) refer to all the other attributes that
are not EIDs, QIDs or SATs.

Through attribute mapping, attributes a1, a2, . . . , aD of
microdata set DSN are divided into 4 disjoint subsets EID,
QID, SAT and NAT. Defining the EIDs is straightforward
and is based on the intrinsic aspects of microdata set DSN .
Defining NATs becomes trivial once the other three subsets are
determined. Defining QIDs and SATs is not straightforward as
it depends on subjective and contextual aspects related to the
data environment. QIDs capture the background information
already known in the so-called auxiliary information sources
(i.e., in the other data sets than DSN ) about the identities
of (some of) the data subjects in DSN . In other words, in
the other data sets one can find a combination of attributes
QIDs and one or more EIDs for (some of) the data subjects
in DSN . For illustration, the example in Figure 1 shows an
attribute mapping for original microdata set DSN , assuming
the background information available to intruders as shown by
the attributes of auxiliary data set Aaux. The last row in the
figure indicates the attributes of the transformed microdata set
DS′N due to applying SDC methods to microdata set DSN .

Figure 1. An illustration of attribute mapping for a data environment without
the original microdata set.

Some legal frameworks specify specific attributes as SATs.
For example, the UK’s Data Protection Act (DPA) considers
racial or ethnic origin, political opinions, religious beliefs,
trade union membership, physical or mental health or condi-
tion, sexual life, and some aspects of criminal proceedings as
sensitive personal data [9]. Further, the situational context and
personal preferences (of data subjects) influence an attribute in
being considered as a SAT. In some situations, the attributes
related to one’s income, wealth, credit record and financial
deals can be considered as SATs. Attribute religion might be
considered as a SAT in some countries and NAT in others.

In environments where the original microdata set DSN

acts as an auxiliary information source (like that of the data
controller, as also mentioned in Section III-B), all the other

Figure 2. An illustration of attribute mapping for a data environment with
the original microdata set.

attributes in DSN with exception of the EIDs act as QIDs. In
other words, QIDs, SATs and NATs shown in Figure 1 can
act as the extended set of QIDs, given the original and the
protected microdata sets, as shown in Figure 2. This extended
set of QIDs can facilitate linking the records in the protected
microdata set DS′N to the EIDs in the original microdata set
DSN .

IV. GUIDING PRINCIPLES FOR PERSONAL DATA
PROTECTION

A. Normative Approaches
Often, legal regimes and definitions of privacy are based on

the normative and intuitive assumptions “about how pieces of
information interact” [12]. According to the normative notions
of privacy with respect to data minimization (i.e., data protec-
tion via the de-identification and anonymization processes), a
given microdata set DSN is considered as personal data if it
can reveal personal information when it is combined with any
other auxiliary data set Aaux that is available to (legitimate
and illegitimate) data recipients (i.e., the intruders). Data set
Aaux encompasses the background information available to
intruders. We note that such auxiliary data sets are growing
rapidly in the current Big Data era.

B. Towards Formal Approaches
Dwork et al. [17] showed that it is impossible to enforce

the stringent definition of privacy protection as proposed by
the current normative definitions, when the intruder has an
arbitrary amount of background knowledge. To protect privacy
in those microdata sets that are used for statistical computation
(and also for Open Data purposes), one should deal with the
shortcomings of the heuristic data protection approaches that
partially capture the normative notions of privacy. There is
currently a trend to move from the current normative heuristics
of privacy to the formal privacy protection approaches. For
example, some legal scholars advocate to base legal privacy
regimes, which are mostly based on the normative and intuitive
assumptions about how pieces of information interact, on
formal privacy models [12]. Formal privacy models, which
are based on mathematically and rigorously proven techniques
such as differential privacy [17], are inherently not subject to
interpretation in different contexts, particularly in regard to
other data sets. In other words, formal concepts do not rely on
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intuitive assumptions about how pieces of information interact,
but rather on the properties of a data set itself which can be
examined by scientific and mathematical principles.

A pioneering work that provides a formal definition of pri-
vacy is [17] that introduces the ε–differential privacy technique.
According to this definition, the presence or absence of the
(personal) data of an individual in a data set must not have
an observable impact on the output of an analysis/computation
over that data set. In other words, it requires “the output distri-
bution of a privacy preserving analysis to remain stable under
any possible change to a single individual’s information” [12].
The technique of ε–differential privacy is already deployed
in some Information Systems (ISs) currently by, for example,
Google, Apple, Uber, and the U.S. Census Bureau. Apple uses
the technique in iOS10 for increasing its security and privacy,
Google uses it for protecting urban mobility data to ensure
that individual users and journeys cannot be identified, and
the U.S. Census Bureau wants to apply it to 2020 US census
data for safeguarding the information it gathers from the US
citizens [12].

One should note that the ε–differential privacy technique
guarantees privacy protection in the sense defined in the
beginning of the previous paragraph. Whether this definition
of privacy is comprehensive and adequate is not established.
Although the formal approaches and definitions of privacy and
privacy protection have not been introduced to legislation and
regulations yet, there is a growing trend to do so in academia
due to being independent of environmental conditions that are
highly dynamic in the era of big and Open Data. Therefore, we
shall examine the impact of such approaches and compare it
with those of traditional normative approaches in Section VII
for a specific formal technique (i.e., an ε–differential method
implemented in SDC tool ARX, see Subsection VI-E).

V. DATA UTILITY AND RISK MEASURES
In our study, we define five data protection cases as possible

scenarios applicable to Open Data settings and observe the
data utility per each case. In this section, first, we describe the
data utility and data disclosure measures used in the study. In
Section VI, we present details of these cases.

To illustrate the notation adopted from this point on, Figure
3 summarizes these notations per each data transformation
stage when applying SDC methods. From the original micro-
data set DSN , the EIDs are removed or suppressed to obtain
microdata set DS′N . The QIDs of the result are generalized
to get microdata set DS′′N . Finally, in order to achieve k-
anonymity, some records of DS′′N are suppressed to yield
microdata set DS′′N ′ . Note that N and N ′ denote the number
of the records in the corresponding data sets, where N ′ ≤ N ,
i.e., the the number of records may decrease in last step in
Figure 3.

Figure 3. The notation convention used from this point on.

A. General-Purpose Data Utility Measures
Data utility measures are indicators for assessing the use-

fulness of the data transformations that are applied to the

microdata by using SDC methods. There are two categories of
data utility measures, the so-called special-purpose measures
and general-purpose measures, which depend on whether or
not the usage of data is already known, respectively [16].
In this paper, we consider the latter one, as the purpose
of data usage is not determined beforehand in Open Data
settings (see also the research objective part in Section I). In
the following, we explain three general purpose data utility
measures of Average Equivalence Class Size, Non-Uniform
Entropy, and Granularity from literature in a way that they are
provided/realized within ARX tool.

1) Average Equivalence Class Size: The Average Equiva-
lence Class Size (AECS) measure [18] is given by:

AECS =
|DS′′N ′ |
k ×NEC

=
N ′

k ×NEC
,

where NEC is the number of the ECs of DS′′N ′ . The AECS
≥ 1 and it is a measure of information loss. The higher the
value of AECS, the higher is the amount of information loss. If
the size of all ECs of microdata set DS′′N ′ is k, then the AECS
measure value is one, i.e., its minimum and best value for a
given k. The optimization objective of data anonymization here
is to reduce the AECS value to 1 (i.e., to find a partitioning
that approaches the best case). Apparently, the AECS does not
consider the impact of record suppression.

ARX provides the AECS as an information loss measure,
which is a bit differently than the definition given above
(namely, normalizing without the value of k and with the value
of N ), as:

AECSARX =
1

N
× N ′

NEC
.

2) Non-Uniform Entropy Measure: Gionis and Tassa [19]
define three measures of information loss, based on infor-
mation theory entropy rate. They call these measures as the
entropy measure, the monotone entropy measure, and the non-
uniform entropy measure. These measures are calculated based
on the distribution of values in the original microdata set DSN ,
given the distribution of values in the transformed microdata
set DS′′N ′ . For example, let attribute a be a QID, which takes
values from set {v1, v2, . . . , vI} in the original microdata set
DSN . In the transformed microdata set DS′′N ′ , the values of
attribute a are generalized to values {v1,2, v3,4, . . . , vI−1,I},
i.e., values v1 and v2 in DSN are generalized to value v1,2
in microdata set D′′N ′ , and so on. Let a′′ denote the attribute
in DS′′N ′ that corresponds to attribute a in DSN , noting that
the values of a′′ are from {v1,2, v3,4, . . . , vI−1,I}. Then, for
example, given that a = v1 and a′′ = v1,2, the information
loss due to generalization for this outcome is proportional to

− log2
# of v1
# of v1,2

= − log2
# of v1

# of v1 +# of v2
.

Let am, where m : 1, . . . ,M , denote a QID in microdata
set DSN and a′′m denote the corresponding QID in microdata
set DS′′N ′ . We use Am = {vm} and A′′m = {v′′m} to denote
the sets of values of QID am and a′′m, respectively. The non-
uniform entropy measure is defined in Relation (6) in [19] as
(with slight adaptation, using our own notation defined above):
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E =

M∑
m=1

∑
vm∈Am,
v′′
m∈A

′′
m

− log2 Pr(am = vm|a′′m = v′′m)

This non-uniform entropy measure is monotonic with re-
spect to generalization. Monotonicity of a measure here means
that the measure increases monotonically with increasing de-
grees of generalization. In other words, if the value v1 is
generalized to value v1,2 at level 1 and then to value v1,4 at
level 2, then the corresponding values of the measure increase
when moving from level 1 to level 2. ARX provides a non-
uniform entropy-based utility model, which is simply 1− E.

3) Granularity: Granularity is an information loss measure
defined in [20], which is realized in ARX tool [21][8]. The
measure expresses the degree to which the values of an
attribute in the transformed microdata set cover the original
domain of the attribute.

The information loss for every QID attribute am, which
is generalized (or suppressed) from domain Am in original
microdata set DSN to the domain A′′m in the transformed
microdata set DS′′N ′ , is computed as the average loss for
every (i.e., per record) value of that attribute, denoted by
xnm ∈ Am, n : 1, . . . , N . The loss for every value of the QID
attribute is calculated based on the generalization taxonomy
tree T of that attribute.

For a categorical QID am, let Mm denote the total number
of leaf nodes in the taxonomy tree Tm of QID attribute am.
Assume that the value of the QID attribute am is generalized
to node Pm, at which the sub-tree possesses Mp,m leaf nodes.
The loss of information when the value of the QID am for the
n-th record (i.e., value xnm) is generalized from a leaf node of
tree Tm in the original microdata set to the sub-tree node Pm

is calculated by:

Information loss for attribute value xnm =
Mp,m − 1

Mm − 1
.

When the value of the QID attribute am is suppressed, the
worst-case information loss occurs, i.e., the generalized node
is the root of the taxonomy tree. This worst case leads to
information loss Mm−1

Mm−1 = 1 for that suppressed value of the
QID attribute.

For numerical QIDs, the information loss can be defined
similarly. Consider the value of such a numerical QID attribute
am for the n-th record (i.e., value xnm) is generalized to an
interval i defined by the lower and upper end points Lm,i and
Um,i, respectively. Further, assume that the lower and upper
bounds of that QID attribute am in original data set are Lm

and Um, respectively. Then, the information loss for this value
of the QID attribute am is given by:

Information loss for xnm = (Um,i − Lm,i)/(Um − Lm).

Indeed, the granularity measure for every value of a QID
attribute quantifies the loss when a leaf node value cannot
be disambiguated from another leaf node value due to the
generalization (i.e., when both belong to the same sub-tree
of the generalization node P ).

The information loss for the QID attribute am is computed
by averaging the loss for every (i..e., per record) value of that

attribute.

Information loss for am =
1

N

N∑
n=1

Information loss for xnm.

The granularity measure is the total information loss due
to generalizations and suppressions for all QID attributes. It
is computed by summing up the information loss of each
QID as defined above (assuming that the QID attributes are
equally important for identification potentially) and normal-
izing the outcome. Similar to non-uniform entropy, ARX
supports an utility model based on granularity calculated as
1 − 1

M

∑M
1 l(am), where l(am) ∈ [0, 1] is the information

loss for am.

B. Data Disclosure Risk Measures
In the following, we explain three general purpose data dis-

closure risk measures of Prosecutor Record at Risk, Journalist
Average Risk and Marketeer Success Rate. Note that these risk
measures capture those risks associated with the external risks
factors, as the background knowledge of intruders is modelled
by the QIDs. Therefore, these data disclosure risk measures
are applicable to Cases III, IV and V (to be mentioned in the
following section). The risks associated with EIDs (i.e., the
internal risks factors) and SATs (i.e., the risks associated with
attribute linkage and table linkage attacks [16] are not captured
by the risks measures studied in the following.

Typical measures for quantifying disclosure risks turn
around the concepts of sample uniqueness and population
uniqueness. With respect to the set of QIDs, let us assume
that microdata set DSN is a sample of a larger population
microdata set denoted by PL (i.e., N ≤ L). Alternatively
said, all data records in sample microdata set DSN are also in
population microdata set PL, where microdata sets DSN and
PL have QIDs in common. Note that for re-identification of
(some of) the records, it is necessary that data set PL includes
the combination of attributes EIDs and QIDs. To this end,
the EIDs can actually be present in PL or can potentially
be present in PL in the sense that the intruder can somehow
deduce the corresponding EIDs in the future via, for example,
interrogation (e.g., asking neighbours), testing (e.g., testing
someone’s DNA), searching digital media (via search engines
like Google and Bing), and so on. Population microdata set PL

can be seen as background information, which does not contain
attributes SATs and NATs of DSN (as, otherwise, these SATs
and NATs should have been considered as QIDs).

Let us further assume that the QIDs in microdata sets DSN

and PL are generalized in the same way, resulting in microdata
sets DS′′N ′ and P ′′L′ with the same ECs (i.e., the same patterns
of the values for the generalized QIDs). For a given EC, the
EC size in DS′′N ′ is smaller than or equal to the EC size in
P ′′L′ . The uniqueness of a data record (i.e., an individual) in
microdata sets DS′′N ′ and P ′′L′ with respect to QIDs can be
defined as follows. Assume that the data record belongs to
an EC, which has |ECS | and |ECP | records in microdata
sets DS′′N ′ and P ′′L′ , respectively. The sample uniqueness and
population uniqueness of the record are defined by |ECS | = 1
and |ECP | = 1, respectively.

We note that population uniqueness results in sample
uniqueness (i.e., if |ECP | = 1, then |ECS | = 1); and
sample uniqueness does not necessarily result in population
uniqueness (i.e., if |ECS | = 1, then |ECP | ≥ 1). One should
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also note that while a data controller can easily validate sample
uniqueness by investigating the (to be) released microdata set,
the data controller cannot easily validate population uniqueness
because population microdata sets are generally inaccessible to
data controllers.

It is important to determine/know which of population
uniqueness and sample uniqueness is more relevant for es-
timating data disclosure risks.
• If the intruder knows that an individual’s record is in

the sample microdata set, as in the case of prosecutor
attacker (e.g., the background knowledge that a nosy
neighbor has [22][23]), then it is important to inves-
tigate sample uniqueness.

• If the intruder is uncertain whether an individual’s
record is in the sample microdata set, as in the cases
of journalist and marketer attackers [22][23], then it
is important to investigate population uniqueness. The
rationale here is that the (likelihood of a) risk might
be not high if a record, which appears alone in an EC
in the sample microdata set, shares the same EC with
multiple records in the population microdata set.

To further explain these points, let us reconsider a proba-
bility model from [24]. Assume a data record belongs to an
EC, which has |ECS | and |ECP | records in microdata sets
DS′′N ′ and P ′′L′ , respectively. For a prosecutor attacker, the
probability of correctly linking the individual with a record
from the sample microdata set is

Pr(correct linkage|being in DS′′N ′) = 1/|ECS |.

In this case, sample uniqueness, captured by ECS above,
is important. This measure corresponds to the measure of
Prosecutor Record at Risk in ARX, where the maximum
prosecutor risk is 1

the smallest |ECS | .
For a journalist attacker with moderate motivation (i.e., the

one who stops after looking at the population microdata set
without posing further questions or doing further field investi-
gation), the probability of correctly linking the individual with
a record from the sample microdata set is

Pr(correct linkage, being in DS′′N ′ | being in P ′′L′) =

Pr(correct linkage | being in DS′′N ′ , being in P ′′L′) ×
Pr(being in DS′′N ′ | being in P ′′L′) =

Pr(correct linkage | being in DS′′N ′) ×
Pr(being in DS′′N ′ | being in P ′′L′) =

1

|ECS |
× |ECS |
|ECP |

=
1

|ECP |
.

This measure corresponds to the measure of Journalist Average
Risk in ARX, which is the average of this vale for all ECs.

In both journalist and marketeer attacker cases, the pop-
ulation uniqueness, captured by |ECP | above, is important.
Assuming that |ECS | ≤ |ECP |, the worst-case scenario is the
prosecutor attacker, i.e., the sample uniqueness. If we are sure
that the attacker is unsure about the victim being in the sample
data set, then population uniqueness is important.

VI. EXPERIMENTS
In this section, we describe 5 data protection cases that are

applicable to Open Data settings. (Note that here we do not

claim that these cases represent all possible cases.) From Case
I to Case V, we tighten our assumptions on the background
information that is available to intruders step-wise and observe
the data utility and data disclosure behaviors, based on a
number of measures defined in literature. Cases I-IV are based
on the normative heuristics, while Case V is based on the
formal ε–differential privacy model as implemented in ARX.

A. Case I
As the baseline, we consider a microdata with personal in-

formation, including identifying attributes. For our experiment,
we choose the publicly available Adult data set. It is an excerpt
of 32,561 records from the 1994 US census database. The data
set is often used in similar studies, like [22][24][25]. As part of
data preparation, we consider attribute “hhid” of the Adult data
set as an EID, discard attribute “fnlwgt” as it does not convey
much information for our purpose, and discard education level
in numbers because it is another form of attribute education
in categories. This baseline case is subject to personal data
disclosures due to intrinsic aspects.

B. Case II: Basic Protection Against Intrinsic Risks
In this case, the EID of the microdata set (e.g., the ”hhid”

in the case of the Adult data set) is removed, but the other
attributes are unchanged. In the past, many practitioners used
to characterize this case as anonymized data. Often, the set
of explicit identifiers is removed (i.e., filtered), replaced with
an unrecognizable value (i.e., masked/suppressed), or replaced
with a unique and unrecognizable value (i.e., pseudonymized
in a technical sense). Removal, suppression or pseudonymiza-
tion of EIDs is considered as the first step of applying SDC
methods. This first step eliminates the intrinsic risks of per-
sonal data disclosures in a microdata set, but is still vulnerable
to personal data disclosures due to extrinsic factors [6].

C. Case III: Protection Against Data Linkage by Externs
In this case, a microdata set is without EIDs, but with gen-

eralized QIDs (and/or suppressed records), and with untrans-
formed SATs and NATs. The set of the QIDs chosen for Case
III is {age, workclass, occupation, race, sex, native-country},
for which the k-anonymity is applied. In our experiments we
do not modify SATs (by applying, for example, l-diversity
or t-closeness) to contain the complexity of this presentation.
Normally, the values of QIDs are transformed by, for example,
generalization (e.g., exact ages are changed to age intervals),
suppression (e.g., the gender attribute values are replaced with
a specific character), or perturbation (e.g., random values are
added to the body weight attribute values). Still, this case is
subject to extrinsic risks, like record linkage by those who have
access to the original microdata set (like data controllers).

A disadvantage of operating according to Case III is that,
as the background information increases due to Big Data, the
set of QIDs available to intruders expands. Bargh et al. [11]
argue that data anonymity in the GDPR sense can be achieved
if the data disclosure risks are contained within an acceptably
negligible level, considering, among others, available technolo-
gies, other data sources, and the costs of re-identification at the
time of data anonymization. Data disclosure risks may increase
over time due to availability of other data sets and changing
environment conditions. Thus, the currently anonymous data
may become personal data in the future. This implies that
an applied privacy protection mechanism, which results in an
anonymous data set currently, may not do so in the future.
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D. Case IV: Protection Against All Parties
In this case, a microdata set, which is without EIDs, is

protected by considering all other attributes as QIDs. Thus,
aligning with the previous case, the microdata set is protected
by applying k-anonymity to all attributes that are considered as
QIDs. To this end, the QIDs are generalized and some records
are suppressed. There are no guarantees that data disclosure
risks will not take place, as this case is still subject to some
extrinsic risks [7][26].

E. Formal Protection with ε-Differential Privacy
In this case, the original microdata set DSN is stripped

off from EIDs, and the result is protected by applying a
method that conforms to ε-differential privacy definition. For
this method, there is a formal guarantee that data disclosure
risks will not take place, provided that the definition of ε-
differential privacy is adopted. Note that this definition of
privacy is other than that considered for Cases III and IV.
Further, this Case V is subject to some extrinsic risks [7][26].

The tool ARX offers a method for applying ε-differential
privacy to microdata sets as proposed in [26]. According to this
method, first the records of DSN are presampled and subse-
quently k-anonymity is applied to all remaining records, while
considering all attributes as QIDs, to result in ε-differential
privacy, as described in [27]. The k-anonymity is applied to
the sampled records by generalizing the values of QIDs and
suppressing those records that belong to the ECs with less than
k records. To this end, the overall privacy budget ε is split up
into two parts: (a) εanon (denoted by εa here), used by the
anonymization operator, and (b) εsearch (denoted by εs here),
used by the search strategy. The method proposed in [27],
i.e., the SafePub method, satisfies (ε = εa + εs, δ)–differential
privacy, where we should specify:
• δ, which is recommended to be 1

N < δ < 10−4 (where
N is the size of the input data set). We chose δ = 1

N
(based on the recommendation in Section 7.2 in [27]);

• Parameter Steps, which is the number of iterations
performed by the search strategy. We chose Steps =
300 (based on the recommendation in Section 8.4 in
[27]).

• In order to choose ε = εa + εs and, consequently εa
and εs, we chose εs = 0.1 according to the recommen-
dation in Sections 8.4, 8.5 and 8.6 in [27]. Note that
the values of Steps and εs are related. Consequently,
the value of εa can be varied between 0.1 and 2, as
done in Fig 15 in [27]. In turn, ε = εa + 0.1 varies
accordingly.

The relation of SafePub to k-anonymity is described in [26].

VII. RESULTS AND DISCUSSIONS
In order to run our experiments, we have used ARX’s

API and implemented a layer to specify and execute a series
of experiments. We have used this layer to collect all the
statistical measurement results for Cases I-V, see Section VI,
over a range of parameters. In this section, the results of
our experiments from Cases III-V are presented. The main
privacy model in our experiments is k-anonymity. To derive
the results based on the formal approach (i.e., Case V), our
program explores a set of values for ε and δ and extracts the
corresponding k’s. The set of extracted k’s is used to perform
the experiments using k-anonymity model for the cases III-IV.

Figure 4. All cases Privacy derived from Journalist Average Risks

The results are visualized in two categories: (1) The
behaviour of the risk measures and the utility measures per
different values of k (see Figure 5), and (2) The behaviour of
data utility versus privacy (see Figure 6). For each category
there is a set of graphs that represent the results of our
anonymization experiments. All our experiments are performed
with the maximum suppression limit and minimum generaliza-
tion factor as provided in ARX [8]. To present the results in
Figure 5 and Figure 6, Cases I and II are omitted as these
two cases either had the maximum or the minimum values.
Having visualized these two cases would have suppressed the
behaviors of Cases III-V. As an example, see Figure 4 where
cases I and II show the minimum privacy.

In Figure 5a, the privacy measure of output data is pre-
sented. Increasing the value of k yields higher privacy (in this
case, lower journalist average risks) which is validated also in
Figure 5b and Figure 5c; i.e., the number of records at risk
and the highest risk are decreasing. As expected, comparing
case III with the other cases, both Figure 5a and Figure 5b
justify that even with lower k’s, ε-differential privacy (Case
V) outperforms by a big margin. However, the higher privacy
performance in Case V has a drawback of losing quality as
depicted in Figure 5d and reaffirmed by Figures 5e and 5f.

The second category of the results, as shown in Figure
6, presents the combined behaviour of a data utility/quality
measure versus a data privacy measure in three graphs. As we
see from these graphs and as expected, when privacy increases
the utility of the data decreases. Interestingly, we can see that
Case V operates near the best privacy area, with the lowest
data quality. This has to do with the presampling inherent to
the ε-differential privacy method used, which results in lower
disclosure risks and lower data utility values. Comparing the
performances of Cases III and IV, we observe that the former
behaves closer to the higher values of the data risk and data
utility measures. This has to do with having a fewer number
of attributes acting as QIDs and being generalized.

For Open Data purposes and from the perspective of
protecting privacy, Case V operates better than Case IV, and
Case IV operates better than Case III. This performance comes
with the cost of having lower data utility, respectively. One
should also note that the privacy property that is realized in
Cases III and IV differ from that realized in Case V. While
the former is based on a normative property (i.e., to prevent
record linkage when the transformed microdata is linked with
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(a) Privacy derived from Journalist Average Risk (b) Prosecutor Records At Risk (c) Prosecutor Highest Risk

(d) Quality derived from Average Class Size (e) Non Uniform Entropy (f) Granularity

Figure 5. Risks and Utility Measurements for K ∈ [5, 68]

(a) Quality: derived from AverageClassSize per
Privacy: derived from JournalistAvgRisks

(b) Quality: Granularity per Privacy: derived from
JournalistAvgRisks

(c) NonUniformEntroy per Privacy: derived from
JournalistAvgRisk

Figure 6. Quality per Privacy Measurements

other microdata sets), the latter is based on a formal definition
of privacy (i.e., the definition of ε-differential privacy that
guarantees the presence or absence of the (personal) data
of an individual in a data set does not have an observable
impact on the output of an analysis/computation over that data
set). Whether this definition of privacy is comprehensive and
adequate, specially in Open Data settings, is not established
scientifically and/or adopted within privacy regimes and data
protection regulations.

SDC-based anonymization does not provide a full guar-
antee against personal data disclosures, nevertheless, applying
it is necessary for realizing compliance to the principle that
personal data should be processed fairly (see Article 5(1-a)
of GDPR). This fairness asks for putting sufficient efforts

to protect personal data in a given context. Therefore, we
argue that choosing all attributes as QIDs in Case IV or
some attributes as QIDs in Case III is the least amount of
data anonymization efforts needed to protect personal data
according to the normative property of privacy discussed
above. But the question remains if this will be sufficient,
and will be seen as such, for instance, in the light of the
GDPR fairness principle. In the environments where the formal
definition of ε-differential privacy prevails, then applying the
formal model as in Case V can (or even must) be considered.
Note that in this work we kept our presentation simple and
did not apply complementary data protection methods like l-
diversity and t-closeness. In a practical setting, one should
consider applying these techniques to contain disclosure risks
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at an acceptable level based on, among others, the principle of
fair processing of data.

VIII. CONCLUSION
In this contribution, we analyzed the consequences of two

cases in Open Data settings, namely having access to and hav-
ing no access to original microdata sets, in terms of data utility.
To this end, we applied SDC technologies in a number of
steps to minimize privacy risks while maintaining data utility.
Opting for Case III, where the opened data might potentially
be re-identifiable for parties with the original microdata sets
(like the data controller), can yield higher data quality than
that in Case IV where the microdata is protected against such
parties. On the other hand, opting for Case IV is an attempt
to make the transformed microdata anonymous for everybody
(e.g., the data controller). For Open Data purposes and from
the perspective of protecting privacy, Case V operates better
than the other cases. This performance of Case V comes with
the cost of having lower data utility relatively to the other
cases. We noted that the formal definition of privacy behind
Case V is not established widely within privacy regimes and
data protection regulations.

In this study, we clarified the difference among a num-
ber of solution directions for protecting personal data when
publishing microdata sets to the public according to their
implications on disclosure risks and utility of data. Based
on the results of this contribution, we believe, legal experts,
legislators and policymakers can make an informed choice
among these options or foresee new solution directions based
the here adopted approach.

In the future, we intend to apply the experiments to more
real-world data sets. Also, we will explore how to embed the
desires of data consumers and data publishers who would like
to publish data effectively, while preserving the privacy of data
subjects as much as possible. Further, we aim at extending the
tool in the direction of having improved data utility and being
user friendly for data controllers.
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