
Reliable Document-centric Processing in a Loosely Coupled Email-based System

Magdalena Godlewska
University of Gdansk

Faculty of Mathematics, Physics and Informatics
Gdansk, Poland

Email: maggod@inf.ug.edu.pl

Abstract—Email is a simple way to exchange digital documents of
any kind. The Mobile INteractive Document architecture (MIND)
enables self-coordination and self-steering of document agent
systems based on commonly available email services. In this
paper, a mechanism for providing integrity and reliability of such
an email based agent system is proposed to cope with message
soft or hard bounces, user interrupts, and other unexpected
events. This mechanism consists of a system acting as a ”ground
control” for migrating documents and a set of protocols that
improve the implementation of document coordination patterns.
It allows for an estimation of the global state of a distributed
loosely coupled agent system and making top-down decisions in
unforeseen situations.

Keywords–multi-agent systems; collaborative work; electronic
documents; email-based systems

I. INTRODUCTION

A knowledge-based organization is a management idea,
describing an organization in which cooperating people use
knowledge resources to achieve organizational goals. People
are the key intellectual resource but only collaboration with
other workers in accordance with the organizational procedures
enables converting knowledge of individuals to knowledge of
organization [1].

Knowledge workers communicate through the exchange
of documents constituting units of information. Nowadays,
email has a dominant position in the computer mediated
communication and document exchange in the workplace [2].
Email messaging provides an easy to use simple textual form
and allows to disseminate attachments in any format to one or
multiple recipients.

The MIND architecture [3] is a proposition of a document-
centric uniform interface to provide both effective communi-
cation of content and coordination of activities performed on
documents. MIND is a solution that augments email messag-
ing with proactive documents, capable of initiating process
activities, interacting with individual workers on their personal
devices and migrating on their own between collaborators.
Thus, each MIND document is a mobile agent. Document-
agents have built-in migration policy to control their own work-
flow and services to proper processing contained information.
Section II contains a more detailed overview of the MIND
architecture.

The migration path of the document-agent contains all
information and status of the workflow process to perform it
locally on users’ devices. An email client installed on each
worker’s device participating in the process needs to be ex-
tended with functionality to activate the document-agents and
switch documents between the activity and transition phases of

the workflow. This special email client with workflow enact-
ment capability has been implemented as a Local Workflow
Engine (LWE) [4]. All LWEs participating in the process
and performing independently form together both a loosely-
coupled agent system and a distributed workflow enactment
service. Section III outlines generic functionality of LWE and
the idea of distributed workflow enactment service.

In the LWE-based MIND system, individual knowledge
workers perform activities on documents independently, using
their personal devices, and yet collaborate on achieving a
common goal. This is possible owing to the migration policy
embedded in each document. This policy defines for each
document a workflow process composed of specific document-
flow patterns that provide process wide coordination. The
document-flow patterns [4] are the result of analysis of the
coordination patterns proposed by van der Aaalst [5] under
the assumption that email is the transport layer for document
migration. The work of van der Aaalst shows that a relatively
small and well defined set of collaboration patterns con-
tains building blocks of arbitrary complex workflow processes
in real organizations. Thus, the document-flow patterns that
directly follow the collaborations patterns for the proposed
MIND architecture enable modeling and coordination of any
workflow process.

The crucial services for MIND implementation are ex-
ecutability and mobility. The former involves activating
document-agents to enable their autonomous execution, while
the latter involves transporting them between users’ devices
in accordance with the migration policy. These services have
already been implemented and described before [3][4]. In the
prototype system, mobility has been implemented based on
email as the transport layer.

In most cases, these mentioned services are sufficient to
properly perform the MIND agent system. However, in human
organizations, some situations unforeseen by the designer of
the process may occur and the reliable system should be able
to cope with them. For a distributed loosely coupled and
interactive system it is impossible to determine a global state
of all document-agents. Consequently, it is not possible to
determine where all documents are located at a specific time.
A document may be lost and it often remains beyond the
knowledge of the authors, who have edited it earlier. There
are various reasons why documents may be lost: a problem
with a transport layer, an error of a local environment or
an unexpected user behavior. The initial workflow process
definition makes it possible to search for documents in the
specified places. However, the process may be modified during
its execution. Therefore, a document may take a path that
was not originally designed and a document originator has

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

document
templates

repository

migration policy

other policies

services

hub
document

dynamic component

final
document

ground control
service

dynamic component

dynamic component

Figure 1. The MIND document lifecycle

not information about its definition.
Thus, the reliability of the MIND agent system is a service

that makes the system more useful and trustworthy than the
typical email-based communication. It allows for an estimation
of the global state of a distributed loosely coupled system,
taking into account transport layer errors, unforeseen actions
of users and process modifications.

Thus, Section IV identifies problems associated with dis-
tributed workflow execution. Section IV-A focuses on the
problems associated with email as the transport layer for the
MIND documents, while Section IV-B presents problems that
may occur in specific document-flow patterns. In particular, it
is interesting the canceling pattern due to the loosely-coupling
principle at operating of the MIND agent system.

Section V presents a concept of a ”ground control” service
which introduces the ability to track document-agents globally
and solve some of the problems associated with the documents
flow. The service is designed to receive signals containing
the status of the document from the LWE clients and send
control signals to LWEs that resolve situations incompatible
with the designed workflow. The proposed syntax of a noti-
fication sending to the ”ground control” service is adapted to
document-flow patterns. Further, this section outlines two pilot
implementations of the ”ground control” service – one using
the Handle System [6], and another based on an email-based
notification system.

Section VI surveys previous work related to a document-
centric processing and a reliability of workflow enactment in
distributed loosely-coupled systems.

II. THE MIND ARCHITECTURE

The MIND architecture enables the new agent-based dis-
tributed processing model. Traditionally, electronic documents
have been static objects downloaded from a server or sent by
email. MIND allows static documents to be converted into a set
of dynamic components that can migrate between collaborative
workers according to their migration policy.

The concept of the MIND document life cycle is illustrated
in Figure 1. At the beginning of the knowledge process,
some originator forms a hub document based on document
templates that includes migration policy, which specifies the
steps of the process and services that will be performed
on different parts of the document during the process. The
hub document is changing to mobile components that meet
their mission in the distributed agent system. Each component
performs its migration policy and interacts with workers of the
organization.

The MIND architecture makes possible a radical shift
from data-centric distributed systems, with hard-coded func-
tionality, to flexible document-centric ones, where specialized

hub-document
+id
+title
+security

service
+id
+name
+uri

worker
+id
+name
+email-address

part
+id
+content-type
+content

path
+id
+current-activity

transition
+id
+from
+to

activity
+id
+name

0..*

1..* 1..*
1..* 1..*

1

id

id

Figure 2. Dynamic form of the MIND architecture [4]

functionality is embedded in migrating document components
and some generic or supporting services are provided by
local devices or external servers. The essence of the MIND
architecture is that the documents have capability of self-
organization and self-steering during the process execution.

Figure 2 outlines the dynamic form of the MIND ar-
chitecture. It includes five components: hub-document is the
main component and it contains basic information about the
document, worker component contains data about workers
who participate in the process, part component defines parts
of the document, service component contains information
about services that can be performed on different parts of
the document during the process, and path component defines
migration policy of each part of the document. It specifies the
steps of the process and activities that should be performed at
each step of the process.

The service objects provide document functionality that
makes it proactive. Three types of services are possible: em-
bedded that are transferred together with the document, local,
which may be acquired by the document components from
local worker’s device, and external, called on the remote hosts
by the worker’s system at the request of arriving document.

III. DISTRIBUTED WORKFLOW ENACTMENT

A key feature of the MIND architecture is physical distri-
bution of business process activities, performed dynamically
on a system of independent personal devices. MIND docu-
ments have built-in process definition and functionality (the
respective path and embedding service components mentioned
in the previous section). This makes them agents, which are
autonomous and mobile. Especially, they are independent of
any particular platform supporting workflow enactment and
they are capable of launching individual activities onto various
workers’ devices which maintain process coordination across
the organization.

Workflow enactment service interprets the process descrip-
tion and control sequencing of activities through one or more
cooperating workflow engines [7]. Even if the workflow en-
gines are distributed, workflow enactment is centralized in
most of the implementations, because the control data must
be available for all engines. In the MIND architecture, all data
needed for workflow enactment are embedded in documents
[4]. This allows for implementation of distributed workflow
enactment service consisting of LWEs.

The idea of the distributed workflow enactment service
built on top of LWE clients and email transport layer is
illustrated in Figure 3. In the prototype system, LWE was
implemented as lightweight email client installed on personal
devices of each worker. Each LWE is independent of other
LWEs, so it can be implemented in any technology and adapted

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

LWE

LWE
LWE

email
server

email
server

email
server

LWE

Figure 3. Distributed workflow enactment service based on LWE clients and
email transport layer (LWEs are symbolized as gear wheels).

to requirements of particular devices, especially mobile devices
such as tablets and smartphones. Also, it may be implemented
as a plug-in to existing email clients.

States of the LWE correspond to the phases of a document
lifetime and the initial state is when a message with a document
is received, i.e., noticed by LWE in the worker’s mailbox. The
LWE downloads the document on the local device and activates
it, which means launching its embedded functionality. The
activated document may interact with the knowledge worker,
his/her local system and some external services. The inter-
action begins with obtaining the document path component
and determining the current activity that should be performed
in this particular step of the process. If the next activity is
intended for another worker, the document is serialized, packed
and sent as an attachment to the next worker’s email address.

LWE is capable of recognizing and executing all document-
flow patterns contained in the path component. More details
about the document-flow patterns are in Section IV-B, which
presents a discussion about their execution in a loosely-coupled
distributed system consisting of the LWE clients.

IV. PROBLEMS OF RELIABLE WORKFLOW EXECUTION

MIND and LWE clients form a distributed workflow en-
actment system in which the coordination of activities is based
on control data contained in the documents. In most cases, it
ensures that the documents arrive at a specific location at a
specific time. Nevertheless, some situations unforeseen by the
designer of the process may occur in loosely-coupled system.

First of all, the document may be lost: during the transfer
by email, due to failure of the local system, accidentally
deleted by the user. The transfer of the document may also
be delayed to miss the designed deadline. The knowledge
worker may also make a decision unforeseen by the workflow,
e.g., cancel some document flow or modify the workflow path,
which is just not possible in typical message passing via email.

Figure 4 shows the path of the document from a sender to a
recipient and indicates points where some problems may occur.
Points 2©– 4© are associated with several well known email
transport layer problems briefly described in Section IV-A,
while points 1© and 5© indicate problems with document-flow
patterns execution by LWE clients, detailed in Section IV-B.

A. Email transport layer problems
Email message is a simple textual form combined with

attachments in any format. It can be sent to one or multiple

LWE of sender
email
server

of sender

email
server

of recipient
LWE of recipient

1

2 3 4

5

Figure 4. LWE to LWE connection. The numbers indicate points, where
some problems with the transport of the document may occur.

recipients and supports asynchronous work. Email mechanisms
have a reputation of being robust and trustworthy since its
invention a few decades ago, as email messages reach their
recipients in most cases without problems. Nevertheless, there
is a list of problems associated with the delivery of messages.

The first step in the email processing model is to submit
email message by an email client (Mail User Agent – MUA)
to a sender Simple Mail Transfer Protocol (SMTP) server
(Mail Transfer Agent – MTA) [8]. Figure 4 indicates it as
point 2©. This step may fail due to the lack of network
connection, incorrect SMTP server configuration or SMTP
server failure. The message usually remains in the sender
outbox and the email client tries to send it again. Configuration
of SMTP server for LWE client does not differ from the
configuration of other email clients and does not require any
special functionality. Temporary lack of network connection is
a typical situation for mobile devices. SMTP server failure is
a rather transient situation that can be solved by resending the
email message.

In the next step, sender MTA transfers messages to the
receiver MTA mostly by SMTP protocol (point 3© in Figure
4). SMTP server should deliver the message or notify about
any problem [8]. The SMTP reply consists of a three digit
number often followed by some text for the human user. The
message may be rejected, however, in a transient or permanent
way. In transient situations, the SMTP client should try to
send the message again. In the case of permanent errors, the
SMTP client should not repeat the exact request. After a failed
attempt to send a message, the sender SMTP agent sends a
notification message to the mail user agent. This notification
message is known as a Delivery Status Notification (DSN) or
email bounce [9].

Nevertheless, receiving of email bounces does not nec-
essarily mean that the message has not been delivered and,
conversely, the lack of notice does not necessarily mean that a
message has arrived to the recipient. For instance, the receiver
SMTP server may silently drop message to protect themselves
from attacks [8]. Many SMTP servers are configured to block
messages categorized as spam based on DNS blacklists or anti-
spam filters [10].

Receiving a message by the SMTP server and placing it in
a user’s mailbox does not imply that the user will read it. Point
4© in Figure 4 indicates the problem of the recipient’s email
server – email client communication. Firstly, some messages
may be marked as spam and placed in the spam folder in
user’s mailbox. In this case, the frameworks to build mail
applications (like Java Mail [11] and IMAP – Internet Message
Access Protocol [12] used in the LWE implementation) often
enable access to the spam folder. In fact, also the email client
may have its own spam filters and other solutions to manage
received messages automatically, like the automatic responses
software (e.g., ”out of office” message) [13].

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

Next to email bounces and automatic responses there
is one more type of notifications, the Message Disposition
Notifications (MDNs) [14]. These notifications are intended
to report of the disposition of a message after it successfully
reaches a recipient’s mailbox. The MDN can be used to notify
the sender of any of several conditions that may occur after
successful delivery such as display, printing or deletion of the
message. Allow mail user agents to keep track of the message
(only) in its subsequent step of the flow. The sending of the
response depends on the functionality of recipient email client
and often on the decision of the recipient.

Message tracking is also possible through email tracking
services like ReadNotify [15] or WhoReadMe [16]. These
services add to the message some hidden information: picture,
or pieces of HyperText Markup Language (HTML) code (like
IFRAMEs). Tracking is hidden from the recipient and not too
elegant.

There is yet another reason for which the message may not
reach the mail user agent - the human action. The recipient may
accidentally or intentionally delete the message from his/her
mailbox, move it to a different folder or mark it as a spam.
Also, his/her email client or a local system may fail.

B. Document-flow patterns execution

In mailing systems, notification mechanisms can provide
the status of messages in their the next step of flow, but never
any further. It can be said that the email message can store
history of its own flow, inform about its next step, but does not
”know” its future flow. The MIND document has an embedded
workflow path, thus it has information about whole its flow
and about flow of other documents in the process. However,
a worker which finished his activity has no control on further
flow of document – this knowledge is built in document, which
has left his device.

In some cases, the location of the document may be
required for the proper execution of the workflow process,
especially in unexpected situations, like a lost document. LWE
temporarily stores copy of documents in the worker’s mailbox,
in case the process has to be recreated from a certain place.
Searching for a document in all places indicated by a workflow
is possible but often time-consuming and costly, and may
not take into account the modification of the path during the
process execution.

This paper proposes a ”ground control” external service for
receiving and storing notifications from LWEs about status of
documents. Each notification from LWEs contains information
about: process id, document id, current activity id, and sender
of the notification. This section presents what other informa-
tion about the document should be included in the notifications
for reliable coordination of all document-flow patterns.

Based on the work of van der Aaalst [5] and the result
of previous research [4], three categories of document-flow
patters have been identified: distributed state patterns, coupled
state patterns, and embedded state patterns.

1) Distributed state patterns: These patterns describe situ-
ations in which the next activity or activities can be determined
solely on the state of the current activity. Four patterns of this
type have been distinguished: sequencer, splitter, merger and
iterator.

a) Document sequencer: This pattern involves a knowl-
edge worker sending a document to another worker. The
document may be sent in its entirety in one message or it may
be partitioned into several messages. In this basic situation, the
following problems may occur: a sender may receive bounce
notifications from each sent message and recipient may not
receive all messages. However, a bounce notification does not
always mean that the recipient has not received the message in
a timely manner. In this pattern, the notification should contain
one of the three route-status: sent (sends from sender’s LWE
after sending the document), received (sends from recipient’s
LWE - after receiving the document) or bounced (sends from
sender’s LWE - after receiving the bounce notification). It is
possible, that some notification does not reach to the ”ground
control” service or arrives in the wrong order. Thus, in all
patterns, the received status and the subsequent sent status
are considered to more important then previous bounced and
received.

b) Document splitter: This pattern creates identical
copies of the document or partitions it into separate frag-
ments. The resulting documents are next sent to the respective
knowledge workers specified in the migration policy. These
documents, either copies or fragments, get new document IDs.
The parent document is considered to be delivered if all its
child documents have been delivered. Thus, the sent route-
status is given to each parent and child documents. The parent
document has also assigned a splitted document-status and
references to the child documents are indicated. Each arrived
child document gets the received status individually. Once all
the child documents have the received status (or the subsequent
sent status), the ”ground control” service gives automatically
the received status to the parent document. The child docu-
ments are determined by the references. The bounced status is
also assigned to each child document separately.

c) Document merger: This pattern complementing the
document splitter pattern merges all received documents in
one. Of course, this pattern may involve various document
functionality, depending on whether the preceding splitter has
been cloning or decomposing. But before merging, all the
expected documents must be delivered. The LWE client on
the basis of path component of the first received document
determines the number of expected documents that have to
be merged. Each of the arrived document gets the received
status. When all documents are collected, they are merged and
a new document gets the received route-status and constitutes
documents get the merged document-status and reference to
this new merged document. The document merger fails when at
least one child document has been not received. In exceptional
situations, decision about completing merger before receiving
all child document may be made.

d) Document iterator: This pattern enables repeated
execution of some sequence of activities controlled by a con-
dition specified in the respective document migration policy.
The route-status is assigned as in document sequencer, but
the activities can be performed several times and notification
may be received by ”ground control” service in incorrect order.
Thus, the activity id and route-status is not enough to determine
where the document resides. To solve this problem, some
basic partial ordering mechanism, like Lamport’s timestamps
[17], has been used. The path component of the document
has a timestamp attribute that is incremented by LWE. When

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

the documents are merged, the new one gets a maximum
value of all merged documents’ timestamps plus 1. Thus, each
notification contains also a timestamp value.

2) Coupled state patterns: Sometimes completion of an
activity performed by one worker may require a notification
on a state of some activity performed by another worker
somewhere in the organization. That involves the notion of
asynchronous signals, sent between different parts of the
workflow process. Three document-flow patterns of this kind
have been distinguished: deferred choice, milestone and cancel
activity.

a) Deferred choice and milestone: These patterns are
used to deal with situations when the current activity of one
worker has to be blocked until a signal notifying on some
external event has been received from another worker. Both
patterns require a proactive document to provide a worker’s
device with a semaphore and embedded functionality to handle
it. Initial value of the semaphore is closed, so if the signal
from another worker has not been received, the current activity
is blocked. Upon receiving a signal, the waiting activity is
resumed. Deferred choice is used when sending a given docu-
ment has to be postponed until the worker gets information to
whom it should be sent. Milestone just blocks some activity of
one worker by another. The problem appears, if the signal does
not arrive within the specified time and the received document
activity can not be proceed. In this case, the route-status of the
document is received but the signal-status is waiting.

b) Cancelling pattern: Implementation of this pattern
depends on what exactly should be cancelled. If a particular
activity should be cancelled, a cancellation signal is sent only
to the LWE client responsible for its performance. The decision
on canceling the activity is immediate for the receiving device
or does not make sense any more if the document has been
sent to another worker.

More problematic situation is to cancel the document,
because it requires the designation of its location. It is possible
to search for a document in all places indicated by the
workflow, but the ”ground control” service can significantly
reduce this set of places. If the route-status of document is
received, the cancellation signal is sent only to the sender of
that notification. After a successful cancellation, LWE sends
the cancelled route-status.

If instead the cancelled route-status, the ”ground control”
service receives the sent status, it can start chasing the doc-
ument. This situation is shown in Figure 5. To increase the
chance of success, a cancellation signal is sent to, say, three
subsequent activities for each possible path of the document
flow. The three cases are possible for each activity: an activity
was finished, an activity is currently being preformed or
waiting for a document. Figure 5a) shows successful cancel-
lation, i.e., the ”ground control” service received a cancelled
notification from all possible paths of the document. Figure
5b) shows cancellation potentially successful but not yet
completed. While Figure 5c) shows the failed cancellation -
the cancelling process should be continued for the subsequent
activities on this particular path.

It is worth mentioning that the rate of the document flow
is measured in minutes or hours, even days, rather than sec-
onds. For example, the Intel’s Email Service Level Agreement
defines the acceptable time frame for replying to emails to 24

sent

sent

cancelled

cancelled

A
Ba) sent

sent sent

waiting waiting

sent

sent

waiting

cancelled

A
Bb) sent

sent sent

waiting waiting

?

sent

sent

sent

cancelled

A
Bc) sent

sent sent

waiting waiting

Figure 5. Cancellation of the document

hours [18]. Thus, chasing the document will not be so much
demanding as it might appear to be.

3) Embedded state patterns: Performing an activity by
some worker may require a subprocess delegated to someone
else, with activities not specified originally in the migration
policy of the arriving document. States of such a subprocess
are embedded in the state of the current activity enabling that.

a) Internal subprocess: If the current worker is autho-
rized to extend the original migration policy of a document
with new activities, they constitute an internal subprocess.
Neither the structure of the internal subflow nor identity of
added workers have to be known earlier to the workflow
designer. The notification from the subflow activities are the
same like from other activities, but the ”ground control”
service has only the structure of the designed workflow. Thus,
for reliable coordination of subflow, its structure and identity
of added workers must be sent to the ”ground control” service.
If the ”ground control” does not have the current data of
the subprocesses, tracing a document, and in particular, the
cancellation may not be possible.

b) External subprocess: The performed activity may
call some external subprocess, which structure are unknown
for both, workflow designer and the performer of the current
activity. The external subprocess is often performed outside of
the organization, thus, it is not traced by the ”ground control”
service. Only the lack of received notification at the end of the
subprocess within the specified time may indicate troubles.

The document-flow patterns analysis allowed for formulat-
ing the syntax of notifications. The route-status type should be
one of the: sent, received, bounced, cancelled and finished, the
optional document-status can be one of the: splitted or merged.
The signal-status can be waiting or just indefinite. Each
notification contains also timestamp value. LWE performed
a first activity adds to the notification a migration path and
information about workers. If it notices a modification of the
path component by adding a subprocess, it also sends definition
of subprocess and information about new workers to provide
the most recent data of the process. Table I summarizes the
problems associated with the reliable execution of presented
patterns.

V. GROUND CONTROL SERVICE

This is an external service intended for a central docu-
ment tracing to ensure the reliability of distributed workflow

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

TABLE I. RELIABILITY OF PATTERNS EXECUTION

PATTERN PROBLEMS TO SOLVE
Sequencer Check whether the document has reached the recipient.

Route-status: sent, received, bounced.
Splitter Check whether all constituents of the splitted document have

reached the recipients.
Route-status: sent, received, bounced.
Document-status: splitted (for splitted document + references to
constituents).

Merger Check whether all documents that should be merged into one
have reached the recipient.
Route-status: sent, received, bounced.
Document-status: merged (for merged documents + references to
new document).

Iterator Check whether the document has reached the recipient as many
times as it has been established in the loop.
Route-status: sent, received, bounced.
Timestamp to determine the order of the activities.

Deffered choice
Milestone

Check whether both the document and the signal have reached
the recipient.
Route-status: sent, received, bounced.
Signal-status: waiting (or indefinite).

Cancelling Check whether the document has been cancelled.
Route-status: cancelled (when it succeeded).

Internal
subprocess

Track a subprocess added during the workflow process execution.
Attach subprocess sources to the notification.

External
subprocess

This pattern is not tracked by the ”ground control” service.

ground
contol
service

distributed
worklow
enactment
service

notification
receiver

notification
database

tracing
application

signal
sender

LWELWE LWE

Figure 6. The Ground control service architecture

execution. The workflow enactment remains distributed and
may be still performed without it, however. The intention of
the ”ground control” service is to collect notifications from
LWEs in order to determine the approximate global state of
the distributed document flow and to make top-down decisions
in some unforeseen cases. The document policy component
decides whether the notification has to be sent or not.

Figure 6 presents the concept of this service. It constitutes
a notification receiver, i.e., a service receiving notifications
from the LWEs via the particular transport layer. Then, the
notifications are parsed and placed in the database. The notifi-
cation database has some functionality, e.g., trigger that gives
automatically the received status to the splitted document, after
all its child documents have also got this status.

A tracing application visualizes the workflow process and
marks the currently executing activities, designated on the
basis of the notifications. It is also an interface for some users
allows for monitoring the process and/or makes some top-down
decisions. Some decisions may require sending the notification
signal to the particular LWE. Signals are generated by the
tracing application and transfered by the signal sender service.

A. Implementation
Two possible implementations of transferring and storing

notifications were taken into account. The former uses the Han-
dle System, while the latter uses an email-based notification
system.

Figure 7. A handle for the MIND document

1) Handle System [6]: is a solution for assigning, man-
aging, storing and resolving persistent identifiers for digital
objects on the Internet. It includes a set of protocols enabling
a distributed computer system to store identifiers of digital
resources and resolve those identifiers into the information nec-
essary to locate and access the resources. This information can
be changed to reflect the current state of the identified resource
without changing the identifier. The most popular system based
on Handle System is DOI (Digital Object Identifier) [19] used
for persistent citations in scholarly materials, research datasets
or European Union official publications.

The Handle System defines a hierarchical service model.
The top level consists of a single handle service, known as
the Global Handle Registry. The lower level consists of all
other handle services, known as Local Handle Services. The
Handle System provides the Java-based Handle Server and a
set of tools needed for the Local Handle Service installation.
The Global Handle Registry is used to manage any handle
namespace and provides the service used to manage naming
authorities. The Local Handle Service and its responsible set
of local handle namespaces must be registered with the Global
Handle Registry and gets a unique prefix.

The Handle System provides unique persistent identifiers
called handles for digital objects, such as the MIND document.
The handle is a character string that consists of two parts:
its naming authority and a local name separated by the
ASCII (American Standard Code for Information Interchange)
character ”/”. Each handle may have a set of values assigned
to it. A handle value may be thought as a record that consists
of a group of data fields. Every handle value must have a data
type. The Handle System predefines a set of data types and
allows for defining another.

Thus, the ”ground control” service can use the Handle Sys-
tem to create an unique handle for each migrating document
(see Figure 7). Each handle has a set of values corresponding
to the syntax of the LWE notifications. The LWE modifies it
at each change of document status.

Nevertheless, this solution has some disadvantages. Mod-
ifications of handles occur frequently, and each time they
require a connection with Global Handle Registry. Besides,
the Local Handle Service administration requires additional
skills and needs control of other than email transport layer. The
Handle System indicates the current location of the document.
However, extraction of the list of all the documents in given
process requires additional functionality. The Handle System
tracks each document separately.

2) Email-based notification system: The ”ground control”
service has been also implemented as the email-based notifica-

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

Figure 8. GUI of the email based ”ground control” service

tion system on basis of email transport layer. Email is intended
for frequent passing of messages so that it can easily receive
multiple notifications and does not require any additional users
skills in the installation, configuration and operation. It does
not require unlocking new ports for the transport layer, which
affects the security of the organization.

The LWE notifications are sent to one or more email
addresses. The notification receiver services run on some
organizational server check dedicated mailboxes frequently,
parse attached LWE notifications and insert new records to
a database.

There are three main tables in the database: Notifications,
Documents, and WorkflowProcesses. Each new notification
is inserted into the Notifications table. The new notification
is distinguished by the address of the mailbox and email’s
Unique Identifier (UID - a unique number referencing an email
in a mailbox). Only those notifications are inserted to the
Documents table, which have higher value of logical timestamp
than the already registered. The last record for each document
ID refers to the current state of this document.

When a notification for a new process appears or process
was modified, a new record is inserted to the Workflow-
Processes table. This table stores workflow process IDs, the
migration path files and workers data files.

Thus, the WorkflowProcesses table stores structure of the
process, while the Documents table stores the states of doc-
uments flow. The tracing application selects only the most
recent records from Documents and WorkflowProcesses tables
and constructs a current workflow process structure with its
approximate global state.

In contrast to the LWE, which has been implemented
in Java, the ”ground control” service has been implemented
based on PHP (Personal Home Page) and Postgresql database
[20]. PHP technology has been chosen in order to test it for
email messaging and XML (Extensible Markup Language)
manipulating. PHP provides classes to access mailbox, e.g.,
by IMAP protocol and functions to XML manipulation. PiBX
(XML-Data-Binding framework for PHP) is similar to JAXB
(Java Architecture for XML Binding), but it is in the alpha-
state at the moment. PHP technology has been good enough
for the rapid implementation of the ”ground control” service,
but many other technologies could be used for this purpose.
In fact, the syntax of notifications is essential for the ”ground
control” service, since implementation does not require any
new or advanced technology.

Figure 8 shows information about one MIND document
selected from the database. An interface allows the user to
view all documents related to the process and to view a history
of document flow.

During the experiments, emails were received from the
dedicated mailbox every minute (for this purpose, the ”Cron”
software was used). So emails often appear in mailbox in
the different order than they were sent. First sent notification
provides a workflow process resources (process definitions,
data about workers) to the ”ground control” service. However,
sometimes this notification is received later then subsequent
notifications. In such a situation, only worflow process ID
is inserted to the WorkflowProcesses table and the table is
updated at a later time.

Emails with notifications generally were delivered to the
inbox without any problems. However, the service does not
require to deliver all notifications. However, there was a
problem during testing that emails have been received from
mailbox and deleted, but the service crashed while writing data
to the database. To prevent such situations, emails are stored
in the inbox for a month.

VI. RELATED WORK

The presented proposal combines existing technologies and
new idea to extract some new functionality in the topics of
the distributed electronic document and collaborative environ-
ments.

The first significant step in the document-based process-
ing was the Multivalent Document architecture MVD [21]
that introduced active functionality to manipulate a document
content with dynamically loaded objects called behaviors.
The concept of behaviors is similar to the MIND embedded
services, howerer MIND expands this concept with local and
external services, which can also affect a document behavior,
but are not components of the document. This gives documents
more flexibility on opening, suiting them better to exploit
local resources of visiting devices and to easily add a new
functionality.

The Placeless Documents [22] implements document func-
tionality with active properties that cannot only manipulate a
document content but also manage of a document structure
and workflow. The Placeless Documents are reactive, i.e.,
they respond to external events, while MIND documents are
proactive – they initiate their own behavior.

The concept of a proactive document, capable of traveling
between computers under its own control has been introduces
with a document-agent platform MobiDoc [23]. This platform
was, however, closely related to the particular technology,
and thus lacked forward compatibility. On the other hand,
solutions proposed by MIND found document-agent mobility
on stable email messaging standards. Owing to proactive
MIND attachments, any email system could be almost like
an agent platform with all the benefits of multi-agent systems,
but without a need to implement a full-size agent platform
that would have to be updated regularly and require additional
skills from administrators to run it.

Workflows have been also implemented by WADE (Work-
flow and Agents Development Environment) [24] agent plat-
form based on JADE (Java Agent DEvelopment framework)
[25]. WADE agents embed a micro-workflow engine, capable

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

of executing workflows and compiled before launching the
workflow. Performing of activities may be delegated by one
agent to another and in principle is not related to agent
mobility. This solution follows the classic central workflow en-
actment philosophy, and differs from it only in decentralization
of a global process state into local process states controlled by
micro-workflow engines running inside agents. In the MIND
architecture, workflow as a XML Process Definition Language
(XPDL) file is a part of the whole document and it contains its
internal state. LWEs run outside of agents as local workflow
engines. Workflow, in the form of plain XPDL, may be also
modified during the process execution. Moreover, a document-
agent is the only communication interface, making MIND
based platforms technologically independent and truly loosely
coupled distributed systems.

The reliability of distributed workflows processing is as-
sociated with the assurance that the object would not be lost
and would arrive to the designated location. It requires some
tracking service that in distributed loosely-coupled systems
may only estimate the real states of migrating objects. The
JADE platform provides some control remote agents (Agent
Management System – AMS, Remote Monitoring Agent –
RMA) that receives messages from JADE agents, while the
”ground control” service has a similar task - it receives
messages from the MIND documents to tracking their states.
Contrary to JADE control agents, the ”ground control” is an ex-
ternal, technologically independent service that communicates
with the MIND documents through notifications. Document
determines whether the notification has to be sent or not. A
syntax of the notifications includes also all document-flow
patterns.

VII. CONCLUSION

Reliable workflow execution of distributed mobile doc-
ument must be able to handle unforeseen situation when
migrating documents fail to reach their destination or get
stuck in some worker’s device. The ”ground control” service,
proposed in this paper, is a track and trace service that enables
observation of the current document location and stores the
history of migration. It allows for checking if the document
has reached the recipient LWE or is processed too long on the
current device, i.e., if passed the appointed deadline and sent
notification has not received, it may indicate that the document
got stuck in some place. The service does not ”tighten” the
idea of loosely-coupled distributed system, because it can still
execute without this service and the MIND document may
decide in which steps the notifications should be sent and in
which should not.

Next to reliability, there is also a security issue, which
answers the question: what to do if lost document will get to
an unauthorized person? The LWE may require authentication
of the worker before unpacking and activating document
components. The LWE also verifies if the performer assigned
to the current activity is the same person as the recipient of the
document. The interesting idea has been proposed in [26] by
the MENAID (Methods and Tools for Next Generation Docu-
ment Engineering) project [27]. It introduces a security by the
face recognition algorithm built in the MIND documents.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Center, Poland, under grant DEC1-2011/01/B/ST6/06500.

REFERENCES
[1] G. D. Bhatt, “Organizing knowledge in the knowledge development

cycle,” Journal of Knowledge Management, vol. 4, 2000, pp. 15–26.
[2] L. A. Dabbish and R. E. Kraut, “Email overload at work: an analysis of

factors associated with email strain,” in Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work, ser.
CSCW’06. New York, USA: ACM, 2006, pp. 431–440.

[3] M. Godlewska, “Agent system for managing distributed mobile inter-
active documents in knowledge-based organizations,” in Transactions
on Computational Collective Intelligence VI, ser. LNCS 7190, N. T.
Nguyen, Ed. Berlin: Springer-Verlag, 2012, pp. 121–145.

[4] M. Godlewska and B. Wiszniewski, “Smart email - almost an agent
platform,” in Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering, ser. LNEE, S. Tarek
and E. Khaled, Eds. Berlin: Springer-Verlag, 2015, pp. 581–589.

[5] N. Russell, A. Hofstede, W. Aalst, and N. Mulyar, “Workflow control-
flow patterns: A revised view,” 2006, BPM Center Report BPM-06-22.

[6] Corporation for National Research Initiatives, “Handle.net (version 7.0):
Technical manual,” 2010.

[7] WfMC. Workflow Management Coalition, “Terminology and glossary,”
WfMC, Winchester, UK, Tech. Rep. WFMC-TC-1011, Issue 3.0, 1999.

[8] J. Klensin, “Simple Mail Transfer Protocol,” RFC 5321, IETF, 2008.
[9] K. Moore, “Simple Mail Transfer Protocol (SMTP) Service Extension

for Delivery Status Notifications (DSNs),” RFC 3461, 2003.
[10] C. Lewis, “Overview of Best Email DNS-Based List (DNSBL) Opera-

tional Practices,” RFC 6471, 2012.
[11] “Java Mail,” URL: http://www.oracle.com/ [retrieved: Dec., 2014].
[12] M. Crispin, “Internet message access protocol - version 4rev1,” RFC

3501, 2003.
[13] K. Moore, “Recommendations for Automatic Responses to Electronic

Mail,” RFC 3834, IETF, 2004.
[14] T. Hansen and G. Vaudreuil, “Message Disposition Notification,” RFC

3798, IETF, 2004.
[15] “Readnotify,” URL: http://www.readnotify.com [retrieved: Dec., 2014].
[16] “Whoreadme,” URL: http://www.whoreadme.com [retrieved: Dec.,

2014].
[17] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Sys-

tems: Concepts and Design, 5th ed. USA: Addison-Wesley Publishing
Company, 2011.

[18] J. Spira and C. Burke, “Intel’s war on information overload: A case
study,” 2009.

[19] International DOI Foundation, “DOI Handbook,” 2013.
[20] The PostgreSQL Global Development Group, “PostgreSQL 9.4.0 Doc-

umentation,” 2014.
[21] T. A. Phelps and R. Wilensky, “Multivalent documents: A new model

for digital documents,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-98-999, 1998.

[22] P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen,
M. Salisbury, D. B. Terry, and J. Thornton, “Extending document
management systems with user-specific active properties,” ACM Trans.
Inf. Syst., vol. 18, no. 2, 2000, pp. 140–170.

[23] I. Satoh, “Mobile agent-based compound documents,” in Proceedings
of the 2001 ACM Symposium on Document engineering, ser. DocEng
’01. New York, USA: ACM, 2001, pp. 76–84.

[24] Telecom Italia, “Workflows and Agents Development Environment,”
2014, URL: http://jade.tilab.com/wade [retrieved: Dec., 2014].

[25] Telecom Italia, “Java Agent Development Framework,” 2014, URL:
http://jade.tilab.com [retrieved: Dec., 2014].

[26] J. Siciarek, M. Smiatacz, and B. Wiszniewski, “For your eyes only –
biometric protection of pdf documents,” in EEE’13 - The 2013 Inter-
national Conference on e-Learning, e-Business, Enterprise Information
Systems, and e-Government, Las Vegas, USA, 2013, pp. 212–217.

[27] MeNaID, “http://menaid.org.pl/,” 2012-2014, National Science Center,
Poland, grant DEC1-2011/01/B/ST6/06500.

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

