
A Comparison of Data Mining Techniques for
Anomaly Detection in Relational Databases

Charissa Ann Ronao, Sung-Bae Cho
Computer Science Department

Yonsei University
Seoul, South Korea

cvronao@sclab.yonsei.ac.kr, sbcho@cs.yonsei.ac.kr

Abstract—Data mining has gained a lot of attention in recent
years especially with the advent of big data. In line with this,
relational database management systems (RDBMS) have also
become the ultimate layer in preventing malicious data access.
However, despite the presence of traditional database security
mechanisms, it is apparent that database intrusions still occur.
Thus, there is an imminent need in developing a robust and
efficient intrusion detection system (IDS) especially tailored for
databases. Among the few studies that have been published
with regards to the problem at hand, most researchers have
proposed the use of data mining techniques to detect database
anomalous behavior. However, up to this date, there has been
no work aimed to objectively compare these various data
mining techniques as applied to the field of database IDS. In
this paper, we evaluate the state-of-the-art feature selection
and data mining algorithms in the context of database IDS and
provide a clear performance comparison of these techniques
under common grounds. Experiments show that principal
components analysis produces a reasonably compact and
meaningful subset of features while graphical models like
decision trees, random forest, and Bayesian networks yield a
consistently high performance in detecting anomalies in
databases.

Keywords-intrusion detection; anomaly detection; database
security; data mining; analysis.

I. INTRODUCTION
In today’s information revolution era, data has become

more and more indispensable to individuals, companies and
organizations. This paved the way to developing relational
database management systems (RDBMS), which can
organize, contain, and protect these data from malicious
threats. However, despite access controls and firewalls that
are widely incorporated in these systems, it has been found
that they are inadequate in defending against anomalous
attacks. Moreover, network-based and host-based intrusion
detection systems (IDS), although having been extensively
researched and implemented in recent years, are awfully
insufficient and unsuitable in detecting attacks specifically
targeted to databases [1]. In particular, insider threats are as
much of a concern as outsider threats, i.e., privileged users, if
corrupt, can potentially cause more damage than average
users. While many works have focused on how data can be
protected from external attacks, there have been very few
researches regarding the problem of protecting data from
insider threats [2]. Because of this, there has been a growing

awareness that a strong and effective IDS especially tailored
for databases needs to be developed.

An efficient and robust intrusion detection mechanism is
crucial in building a strong database security framework. In
line with this, a number of data mining techniques have been
proposed to perform this task [3]. Although previous works
have integrated data mining algorithms in their IDS
framework, to the best of our knowledge, none of these
works have performed an in-depth evaluation and
performance comparison of data mining algorithms in the
context of database intrusion detection. To address this, this
paper provides a clear comparison and parallel evaluation of
state-of-the-art data mining methods in the application of
database IDS. We mine SQL query logs and exploit the
presence of role-based access control (RBAC) mechanism,
which has already been adopted in various commercial
RDBMS products [4], to detect anomalies. We model normal
access behavior through these queries along with their
corresponding role annotations, and detect anomalies by
tagging queries that deviate from these normal access
behaviors.

The rest of the paper is organized as follows: Section II
describes the related work, followed by the discussion of
system architecture, feature extraction, state-of-the-art
feature selection methods, and data mining techniques in
Section III. Section IV presents our experiment results, and
finally, we draw our conclusion in Section V.

II. RELATED WORK
IDS’s are generally divided into two main categories:

signature-based and anomaly-based. Signature-based or
misuse-based systems make use of explicitly defined attack
signatures and detect intrusions by blacklisting. This kind of
system is ineffective in the face of new types of attacks,
which, in turn, makes it susceptible to evasion methods that
take advantage of the expressiveness of the SQL language
[5]. On the other hand, anomaly-based systems model
normal behavior in the form of intrusion-free logs and marks
deviations from this normal behavior as anomalies [6].
Unlike the former, these systems are clearly more robust to
unknown attacks and to malicious users who may keep on
evolving their attack strategy.

One of the most common way of implementing an
anomaly-based IDS is by exploiting data mining algorithms
as the detection mechanism. In the past decade, a number of
data mining techniques have been proposed for the purpose
of detecting intrusions in databases. Among these are the use

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

of data dependency and association rules [7][8][9]. Such
methods, however, require the manual assignment of
attribute weights; they also cannot be scaled easily to typical
database sizes [3]. Another technique was proposed by
Barbara et al. [10], who made use of hidden Markov models
(HMM) to capture the change in database normal behavior
over time. This too, however, is impractical to implement in
large databases with many tables and attributes.
Consequently, Ramasubramanian et al. integrated artificial
neural networks (ANN) into their proposed IDS framework
[11], while Pinzon et al. made use of support vector
machines (SVM) and multilayer perceptrons (MLP) to detect
outsider attacks [12]. These papers have focused mainly on
the structure development of the database IDS framework,
and did not sufficiently evaluate the underlying core
mechanism, which is the data mining technique.
Furthermore, Kamra et al. proposed an IDS which exploits a
naïve Bayes (NB) classifier to detect abnormal behavior [4].
The latter had based their approach on the RBAC model, a
standardized access control mechanism, building a profile for
each role, and checking the behavior of each role with
respect to the profile [14]. The main idea is to assign one or
more roles to each user, and assign privileges to roles. This
effectively minimizes the number of profiles to maintain,
which makes it scalable to a large database user population,
and is a much more efficient method compared to managing
a profile for each individual user. We adopt the same
rationale and build normal profiles through roles and SQL
query access.

We stress, however, that all mentioned works lack the
necessary evaluation step of analyzing the features they have
extracted and comparing their proposed data mining
approach to other state-of-the-art techniques. We believe that
merely applying an algorithm to the problem and showing its
satisfactory results are not enough to prove the effectiveness
and efficiency of the system—a clear comparison and
parallel evaluation must be made to know how these
algorithms perform in detecting intrusions under common
grounds, most especially, in the data mining perspective.

III. DATA MINING FOR DATABASE INTRUSION
DETECTION

We exploit the existence of the RBAC mechanism and
model normal access behavior profiles through roles. Normal
access behavior is represented by intrusion-free SQL queries,
and they are used to train a data mining algorithm to produce
normal profile models. We define an anomaly as an access
behavior that deviates from these normal profiles. Given
these profiles, clearly, we have a standard classification
problem.

A. Intrusion Detection System
Figure 1 shows the intrusion detection process. Every

time a query is issued, the profile logs are updated. During
the training phase, normal access behavior, in the form of
SQL queries grouped into profiles, are fed to the feature
extractor, feature selector, and finally, the data mining
algorithm or classifier; the classifier then produces a trained
model out of normal access behavior. During the detection

phase, each new query goes through the feature extractor and
selector, and is evaluated by the trained classifier. An alarm
is raised if the query deviates from normal profiles. We
emphasize that role profiles should be regularly updated and
classifier training periodically done, so as to be able to
update the normal profile models and minimize false alarms.

Given this setup, there are three main problems: (1) how
to extract and represent features, (2) which of these features
to use, and (3) which data mining technique to employ. We
discuss the solutions to these three problems in the following
section.

B. SQL Query Parsing and Feature Extraction
One SQL query corresponds to an entry in the database

log file, which follows the SQL language syntax. For
simplicity, we illustrate the SQL grammar with the SELECT
command:

SELECT <Projection attribute clause>
FROM <Projection relation clause>
WHERE <Selection attribute clause>
ORDER BY <ORDER BY clause>
GROUP BY <GROUP BY clause>

We parse queries in this manner, line-by-line, and extract
features accordingly in order to transform SQL log entries
into feature vectors that can be understood and processed by
data mining classifiers.

We gather proposed features from database IDS literature
and combine them to form a more complete feature set
[4][12][15]. We represent a query as a feature vector Q with
seven fields: Q(SQL-CMD[], PROJ-REL-DEC[], PROJ-
ATTR-DEC[], SEL-ATTR-DEC[], ORDBY-ATTR-DEC[],
GRPBY-ATTR-DEC[], VALUE-CTR[]), as seen in Table I.
Query mode, c, represents the query commands SIUD: if the
query command is SELECT, it is represented by integer 1; if
INSERT, integer 2; if UPDATE, integer 3; and if DELETE,
integer 4. Query length, QL, is denoted by the number of
characters in the whole query, including spaces. The number
of string values, SV, and numeric values, NV, indicate how
many times these values appear in the selection clause. The
same logic is applied with the number of JOINs, J, and
ANDs/ORs, AO.

Figure 1. Flow of the IDS process.

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

TABLE I. LIST OF EXTRACTED FEATURES

Vector field Description Feature elements

SQL-CMD[]
Command

features
query mode, c

query length, QL

PROJ-REL-
DEC[]

Projection
relation
features

Number of projected relations, PR
Position of projected relations,

PRID

PROJ-ATTR-
DEC[]

Projection
attribute
features

(PA, PA[], PAID[])a

SEL-ATTR-
DEC[]

Selection
attribute
features

(SA, SA[], SAID[])a

ORDBY-
ATTR-DEC[]

ORDER BY
clause features (OA, OA[], OAID[])a

GRPBY-
ATTR-DEC[]

GROUP BY
clause features (GA, GA[], GAID[])a

VALUE-
CTR[]

Value counter
features

Number of string values, SV
Length of string values, SL

Number of numeric values, NV
Number of JOINs, J

Number of ANDs and ORs, AO
a. Convention (NA, NA[], NAID[]):

NA – number of attributes in a particular clause
NA[] – number of attributes in a particular clause counted per table

NAID[] – position of the attributes present in a particular clause, represented in decimal

In addition, the number of relations, PR, indicates how
many tables are present in a specific clause. The position of
relations, PRID, is represented by a binary string, wherein
each bit stands for a table in the database schema. If a table is
present in the query, its bit representation is 1; if it is absent,
it is represented by bit 0. Wu et al. stated that different input
encoding schemes (binary or decimal) result to different
algorithm performance results [16]. Decimal encoding was
found to be more robust to noise and decreases
computational complexity; thus, to get the final value of the
ID feature, we convert the binary string into its decimal
form. The same logic is applied to the mapping of the
positions of attributes given a specific clause. Thus, all ID
features are represented by a single decimal value.

Extending the parsing and feature extraction method to
other commands such as INSERT, UPDATE, and DELETE is
clearly straightforward. A total of 21 main features are
extracted for every query in the SQL log, with some features
(e.g., ID features) branching out to sub-features that depend
on the number of tables and attributes in the database
schema. For example, for a schema consisting of 2 relations
with 4 attributes each, the resulting number of features will
be 45.

C. Feature Selection Methods
Selecting good feature sets improves performance,

eliminates noise, and enables faster and more accurate
detection [17]. We use five feature selection methods to
evaluate the extracted features, and they are categorized into
two groups: ranking methods and filter methods.

Ranking methods output the complete feature set sorted
from highest to lowest according to a certain evaluation
measure. Since the top variables are considered to be the
most discriminant features, a certain threshold should be
determined to cut off features that are considered to have
little or no contribution to the classification process. One of

the most common evaluation measure when ranking features
is information gain (IG). It is the expected reduction in
entropy caused by partitioning a query data set according to a
certain feature. Given a query data set S with K different
roles/classes, entropy is given by:

 å
=

-=
K

k

kk

s
s

s
s

SI
1

,
||
||

log
||
||

)((1)

where s is the total number of queries in the data set and sk is
the number of queries in class k. We get the IG of feature Y
which can partition S into M subsets by,

 å
=

-=
M

m
m

m SI
s

s
SIYIG

1

),(
||
||

)()((2)

where the second term is the conditional entropy, I(S|Y), and
sm is the number of queries in subset m.

An improved variant of IG is gain ratio (GR), which
overcomes the bias of the former towards features that can
have a large number of possible values. GR applies a kind of
normalization to IG by using the information value
corresponding to M outcomes on feature Y, i.e.,

 å
=

-=
M

m

mm

s
s

s
s

YSIV
1

.
||
||

log
||
||

)|((3)

Dividing (1) by (3) gives the GR of feature Y.
Principal components analysis (PCA) is an unsupervised

ranking feature selection technique which can transform
query data set S into a new coordinate system and produce a
set of components p ∈ P wherein the top components, called
principal components (PCs), represent the greater part of the
variance of S. With this, we can easily eliminate the tailing
p’s (those that does not contain much of the variance of the
S). Scaling and standardizing is often applied before PCA to
simplify the latter’s calculation.

In contrast, filter methods automatically output a set of
chosen features based on a certain evaluation measure. One
of these methods, best first search (BFS), is a combination of
forward selection and backward elimination which can
greedily search through the query feature space. In the case
when performance starts to drop, it can backtrack previous
feature subsets (those with good enough performance) and
start again from there. However, for a high dimensional
query data set S (which depends on how big the database
schema is), BFS can be computationally expensive.

Genetic algorithm (GA) is another filter method based on
the principle of natural selection, which randomly creates a
population N of possible feature subsets n (any combination
of fields from Q) and evaluates each one by a certain
measure (e.g. correlation). GA runs for several generations,
each time creating a new N by performing crossover and
mutation. This method has been proven to be very effective
in practice [11].

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

D. Data Mining Algorithms
We consider the following state-of-the-art classifiers

which have been successfully applied in the intrusion
detection domain, namely: naïve Bayes, K-nearest neighbors,
artificial neural networks and multilayer perceptrons, support
vector machines, Bayesian networks, J48 decision trees, and
random forest [4][11][12][13][19][20][21].

Naïve Bayes (NB) is a simple classifier with strong
feature independence assumptions. Given a new query q ∈ Q
with a set of features Y = {y1,…,yd}, and k roles/classes, we
compute the posterior probability of class membership, i.e.,
the probability that Y belongs to role rk, by,

 .)|()()|(
1

Õ
=

µ
d

i
kikk ryprpYrp (4)

Using (4), we can classify q into a role rk that achieves the
highest posterior probability.

Another method based on Bayes theorem is Bayesian
network (BN), a probabilistic graphical model represented
by a directed acyclic graph, wherein nodes signify the query
features and edges represent the dependencies among them.
A BN is learned by obtaining the log-likelihood, which is the
probability of the data given the network, i.e.,

 åå=
e d

iiyiqpQL),,|(log)|(log qpQ (5)

where e is the number of queries in Q, qyi is a feature
instance of qe, πi is the set of parent nodes of node yi, and θi ∈ Θ is p(yi| πi).

Artificial neural network (ANN) is a computational
model based on the concept of human biological neurons.
Weights between the so-called neurons, or nodes, are learned
based on the query feature inputs; learning is done with the
use of gradient descent and backpropagation algorithm.
Multilayer perceptron (MLP) is a feedforward variant of
ANN.

Support vector machines (SVM) are based on the concept
of maximum margin hyperplanes that define a decision
boundary between two classes/roles. They benefit from high
dimensional feature spaces; high dimensionality means that
there are more possible configurations that can be done in the
feature space, which can produce more accurate results.

J48 decision trees are one of the most common
techniques in data mining that have been successfully used in
various fields. It makes use of tree-like graph decisions,
selecting query features for every node based on (2).
Although prone to overfitting and feature bias, it can achieve
high performance with very little effort.

Accordingly, random forest (RF) is an ensemble model
based on decision trees. It exploits bagging and random
feature selection to create numerous simple trees to vote for
the most popular class/role, and is considered to be better in
performance and speed than plain decision trees.

Lastly, K-nearest neighbors (KNN) is an unsupervised
classifier that groups new queries based on a distance

function. Given a new query q, KNN will find the K nearest
query data points with respect to q, the most popular class of
the nearest neighbors being the inferred role of q.

IV. EXPERIMENTS

A. Benchmark Database
We have adopted the TPC-E benchmark database schema

structure and its transactions for all our experiments. TPC-E
is a database that simulates the online transaction processing
(OLTP) workload of a brokerage firm [18]. Customers,
brokers, and the market initiate read/write and read-only
transactions against the database, which consists of 33 tables,
an overall count of 191 attributes, and 11 standard
transactions.

B. Synthetic Data Set Generation
We treat one TPC-E transaction as one role, and we set

privileges of a role based on which tables and attributes the
transactions are authorized to access, with the corresponding
number of times they appear in the transaction. We
emphasize, however, that depending on the context, one role
may contain several transactions at once.

We employed the transaction database footprint and
pseudo-code found in [18]. Each role has a set of specific
tables T (and its corresponding attributes A) that it is allowed
to access, as well as a set of commands C that it is allowed to
execute. We specify the following probabilities for each role:
(1) the probability of using a command c C given a role r,
p(c|r), (2) the probability of projecting a table t T given a
command c and a role r, p(Pt|c,r), (3) the probability of
selecting a table t given a set of projected tables PT,
command c, and role r, p(St|PT,c,r), (4) the probability of
projecting an attribute a A given a projected table Pt,
command c, and role r, p(Pa|Pt,c,r), (5) the probability of
selecting an attribute a given a selected table St, command c,
and role r, p(Sa|St,c,r), (6) the probability of including a
random string or numeric value v V in the selection clause
given a command c and role r, p(vsn|c,r), (7) the probability
of including a JOIN J given a command c and role r, p(J|c,r),
and (8) the probability of including an AND or OR given a
command c and role r, p(AO|c,r).

Note that probabilities 2 to 6 are uniformly distributed
among a role’s corresponding set of tables T, projected tables
PT, projected table Pt, selected table St, and list of random
strings and numeric V, respectively. Probability 1 is based on
a set of commands C (may compose of any combinations of
SIUD) that a role/transaction is allowed to issue. For a
certain role, probability 7 means that a query can contain a
JOIN or not, while probability 8 may contain a combination
of AND and OR, AND only, OR only, or none at all [18].

We generate 1,000 queries for each role, labeling each
query with its corresponding class, for a total of 11,000
queries or training samples for our normal query log data set.
Since we create the models with insider threats in mind,
anomalous queries are generated using the same probability
distribution as that with normal queries, only with role
information negated. That is, if the role annotation for a

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

certain normal query is class 1, we change it to any other role
other than class 1, effectively making it anomalous [4].

C. Results
From this point on, we will refer to features describing

the number of elements present in a query as counting
features, and those that represent the position of elements as
ID features.

The number of features generated largely depends on the
number of tables and attributes in the schema. In the case of
TPC-E, a total of 277 features were extracted.

Figure 2 shows the average merit based on IG and GR
measures. The line indicates the threshold we adopted to get
the feature subset for IG and GR. IG produced 12 features
while GR produced 144 features. Observing the variables
chosen by both measures, IG preferred counting features
(those having more possible values), while GR produced a
more spread-out merit graph, noticeably preferring pairs of
counting by table and ID features while removing string
features (SV and SL).

We determine the threshold for PCA by plotting the
eigenvalues, as shown in Figure 3. Optimal coordinates
method produced a subset of 13 features (PCA3), while
parallel analysis yielded 63 features (PCA2) [22]. We obtain
an additional subset by getting 99% of the variance of the
data (113 features, PCA1) for comparison purposes.

For the filter methods, BFS yielded 19 features using
correlation as the evaluation measure. Consequently, GA

Figure 2. IG and GR values in terms of average merit (y-axis); features

(x-axis).

was run for 20 generations with a population size of 20
individuals, crossover rate of 0.6, mutation rate of 0.033 and
correlation as evaluation measure. GA chose a total of 68
features, which are noticeably more diverse than the ones
chosen by IG, GR, and BFS.

The performances of classifiers in terms of false positive
(FP) and false negative (FN) error rates are shown in Table
II. False positives are those queries that should have been
classified as normal but tagged as abnormal, while false
negatives are those that should have been identified as
anomalous but were categorized as normal. The Weka toolkit
was used in all our experiments and all parameters were left
to their default settings [23].

Based on the resulting feature subsets, it can be observed
that counting features are vital to obtain a satisfactory
classification performance (as seen in the performance of the
IG subset). However, they are not enough on their own. PCA
came out to be the best feature selection technique among the
ones employed—from 277 features, it reduced the data set to
113 features (threshold of 99% variance, PCA1), yielding the
overall best average performance. Halving PCA1 to form
PCA2 does not have any significant effect on the FP and FN
rates, and even when only one-third of PCA2 is retained
(PCA3), it still yielded above average performance. This
proves that PCA effectively eliminates most of the noise in

Figure 3. Eigenvalues, parallel analysis, and optimal coordinates plot.

TABLE II. PERFORMANCE OF CLASSIFIERS AND CORRESPONDING NUMBER OF FEATURES IN DECREASING ORDER

No. of
features

GR PCA1 GA PCA2 BFS PCA3 IG Avg.
144 113 68 63 19 13 12

Classifiers FP FN FP FN FP FN FP FN FP FN FP FN FP FN FP FN
NB 0.153 0.008 0.227 0.014 0.244 0.011 0.248 0.012 0.274 0.017 0.224 0.012 0.389 0.024 0.251 0.014

KNN 0.119 0.006 0.141 0.008 0.128 0.006 0.126 0.007 0.140 0.009 0.107 0.004 0.242 0.012 0.143 0.007
MLP 0.143 0.007 0.079 0.003 0.128 0.007 0.082 0.004 0.166 0.008 0.104 0.007 0.232 0.013 0.133 0.007
SVM 0.574 0.051 0.095 0.004 0.449 0.034 0.103 0.005 0.455 0.034 0.103 0.004 0.485 0.039 0.323 0.024
BN 0.064 0.002 0.131 0.007 0.083 0.004 0.168 0.010 0.089 0.005 0.160 0.009 0.097 0.004 0.113 0.006
J48 0.067 0.003 0.113 0.005 0.086 0.003 0.118 0.006 0.092 0.004 0.117 0.006 0.091 0.004 0.098 0.0044
RF 0.055 0.003 0.075 0.004 0.079 0.003 0.078 0.005 0.086 0.003 0.079 0.004 0.126 0.006 0.083 0.0039

Avg. 0.168 0.012 0.123 0.006 0.171 0.010 0.132 0.007 0.186 0.011 0.128 0.007 0.237 0.015

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

the data, at the same time reducing its dimensions
significantly. GA is second in line to PCA (in terms of
performance and number of features used), followed closely
by BFS.

Among the classifiers that we have evaluated, graphical
models like J48, RF, and BN noticeably performed better
than the other algorithms. This may be due to the fact that
SQL language syntax has an inherent tree-like structure—a
simple attribute that these classifiers are most likely to
exploit. Conversely, SVM yielded the worst performance,
producing a satisfactory result only with the PCA feature
subsets. It is clear that the application of special kernel
methods is necessary to obtain acceptable results with SVM.
Moreover, NB is the second worst performer, having yielded
the highest FP and FN rates for all PCA subsets. In terms of
algorithm speed, SVM and MLP are significantly and
impractically slower in build time compared to other
classifiers, while J48 and RF yielded the fastest detect times.

V. CONCLUSION AND FUTURE WORK
We have shown a clear, side-by-side comparison of data

mining feature selection methods and classifiers as applied to
the context of database IDS. PCA demonstrated exceptional
performance in reducing noise and dimension in the data set,
while graphical models, especially RF, came out to be the
best suited classifiers for the intrusion detection task,
exhibiting very reasonable FP and FN trade-offs and fast
detection speed. We hope that these results will provide
researchers with a more concrete direction towards designing
a more efficient database IDS.

Although we have covered many algorithms in this work,
there are still a lot of subjects to explore. Future works will
include considering the sensitivity of the tables and attributes
in the database. We are also considering on building an
ensemble model to be able to develop a stronger classifier
out of simple ones.

ACKNOWLEDGMENT
This work is supported by the National Strategic R&D

Program for Industrial Technology (10044828), funded by
the Ministry of Trade, Industry and Energy (MOTIE)..

REFERENCES
[1] X. Jin and S. L. Osborn, “Architecture for data collection in

database intrusion detection systems,” Secure Data
Management, VLDB Workshop, vol. 4721, Sept. 2007, pp.
96-107.

[2] C. Mouza et al., “Towards an automatic detection of sensitive
information in a database,” Int’l Conf. on Advances in
Databases, Knowledge, and Data Applications (DBKDA),
Jan. 2010, pp. 247-252.

[3] I. J. Rajput and D. Shrivastava, “Data mining based database
intrusion detection system: A survery,” Int’l Journal of
Engineering Research and Applications (IJERA), vol. 2, no.
4, July 2012, pp. 1752-1755.

[4] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous
access patterns in relational databases,” The VLDB Journal,
vol. 17, no. 5, Aug. 2008, pp. 1063-1077.

[5] F. S. Rietta, “Application layer intrusion detection for SQL
injection,” ACM Southeast Regional Conference, Mar. 2006,
pp. 531-536.

[6] A. Adebowale, Idowu S.A, and O. Oluwabukola, “An
overview of database centred intrusion detection systems,”
Int’l Journal of Eng’g. and Advanced Technology, vol. 3, no.
2, Dec. 2013, pp. 273-275.

[7] Y. Hu and B. Panda, “A data mining approach for database
intrusion detection,” ACM Symposium on Applied
Computing, 2004, pp. 711-716.

[8] A. Srivastava, S. Sural, and A. K. Majumdar, “Database
intrusion detection using weighted sequence mining,” Journal
of Computers, vol. 1, no. 4, July 2006, pp. 8-17.

[9] S. Hashemi, Y. Yang, D. Zabihzadeh, and M. Kangavari,
“Detecting intrusion transactions in databases using data item
dependencies and anomaly analysis,” Expert Systems, vol. 25,
no. 5, Oct. 2008, pp. 460-473.

[10] D. Barbara, R. Goel, and S. Jajodia, “Mining malicious
corruption of data with hidden Markov models,” Research
Directions in Data and Applications Security, Int’l Federation
for Information Processing (IFIP), vol. 128, 2003, pp. 175-
189.

[11] P. Ramasubramanian and A. Kannan, “A genetic algorithm
based neural network short-term forecasting framework for
database intrusion prediction system,” Soft Computing, vol.
10, no. 8, June 2006, pp. 699-714.

[12] C. Pinzon, A. Herrero, J. F. De Paz, E. Corchado, and J. Bajo,
“CBRid4SQL: A CBR intrusion detector for SQL injection
attacks,” Hybrid Artificial Intelligence Systems, vol. 6077,
2010, pp. 510-519.

[13] R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, and M. M.
Fahmy, “A hybrid network intrusion detection framework
based on random forests and weighted k-means,” Ain Shams
Eng’g. Journal, vol. 4, no. 4, Dec. 2013, pp. 753-762.

[14] E. Bertino, E. Terzi, A. Kamra, and A. Vakali, “Intrusion
detection in RBAC-administered databases,” Computer
Security Applications Conf. (ACSAC) , Dec. 2005, pp. 170-
182.

[15] F. Valeur, D. Mutz, and G. Vigna, “A learning-based
approach to the detection of SQL attacks,” Detection of
Intrusions and Malware, and Vulnerability Assessment, vol.
3548, 2005, pp. 123-140.

[16] S. X. Wu and W. Banzhaf, “The use of computational
intelligence in intrusion detection systems: A review,”
Technical Report, Dept. of Computer Science, Memorial
University of Newfoundland, Nov. 2008.

[17] A. Zainal, M. A. Maarof, and S. M. Shamsuddin, “Feature
selection using rough set in intrusion detection,” IEEE Region
10 Conf. (TENCON) , Nov. 2006, pp. 1-4.

[18] Transaction Processing Performance Council (TPC), TPC
benchmark E, Standard specification, version 1.13.0, 2014.

[19] H. A. Nguyen and D. Choi, “Application of data mining to
network intrusion detection: Classifier selection model,”
Challenges for Next Generation Network Operations and
Service Management, vol. 5297, 2008, pp. 399-408.

[20] L. M. Lima de Campos, R. C. Limao de Oliveira, and M.
Roisenberg, “Network intrusion detection system using data
mining,” Eng’g. Applications of Neural Networks,
Communications in Computer and Information Science, vol.
311, 2012, pp. 104-113.

[21] J. Zhang and M. Zulkernine, “Anomaly based network
intrusion detection with unsupervised outlier detection,” IEEE
Int’l Conf. on Communications, 2006, pp. 2388-2393.

[22] S. B. Franklin, D. J. Gibson, P. A. Robertson, J. T. Pohlmann,
and J. S. Fralish, “Parallel analysis: A method for determining
significant principal components,” Journal of Vegetation
Science, vol. 6, no. 1, 1995, pp. 99-106.

[23] M. Hall et al., “The WEKA data mining software: An
update,” SIGKDD Explorations, vol. 11, no. 1, 2009, pp. 10-
18.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-381-0

ICDS 2015 : The Ninth International Conference on Digital Society

