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Abstract—This paper presents a series of implementations 
of cellular automata rules using the Matlab programming 
environment. A cellular automaton is a decentralized 
computing model providing an excellent platform for 
performing complex computations with the help of only local 
information. Matlab is a numerical interactive computing 
environment and a high-level language with users coming from 
various backgrounds of engineering, science, and economics 
that enables performing computationally intensive tasks faster 
than with traditional programming languages (such as C, C++, 
and Fortran). Our objective has been to investigate and exploit 
the potential of Matlab, which is simple mathematical 
programming environment that does not require specific 
programming skills, regarding the understanding and the 
efficient simulation of complex patterns, arising in nature and 
across several scientific fields, captured by simple cellular 
automata structures. We have implemented several cellular 
automata rules from the recent literature; herein we present 
indicative cases of practical interest: the forest fire 
probabilistic rule, the sand pile rule, the ant rule, the traffic 
jam rule as well as the well-known “Game of Life”. Our work 
indicates that Matlab is indeed an appropriate environment for 
developing simulations for cellular automata models. 
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I.  CELLULAR AUTOMATA 
A cellular automaton (CA) is an idealization of a 

physical system in which space and time are discrete and the 
physical quantities take only a finite set of values. 
Informally, a cellular automaton is a lattice of cells, each of 
which may be in a predetermined number of discrete states 
(a formal definition can be found in [7]). A neighborhood 
relation is defined over this lattice, indicating for each cell 
which cells are considered to be its neighbors during state 
updates. Time is also discrete; in each time step, every cell 
updates its state using a transition rule that takes as input the 
states of all cells in its neighborhood (which usually 
includes the cell itself). All cells in the cellular automaton 
are synchronously updated. At time t = 0 the initial state of 
the cellular automaton must be defined; then repeated 
synchronous application of the transition function to all cells 
in the lattice will lead to the deterministic evolution of the 
cellular automaton over time. Many variations of this basic 
model exist: CA can be of arbitrary dimension, although 
one-dimensional and two-dimensional CA have received 
special attention in the literature. CA can be infinite or 

finite. Finite CA can have periodic boundaries (e.g., the 
opposite ends of a one-dimensional finite CA are joined 
together so the whole forms a ring). Updates can be 
synchronous or asynchronous. Transition rules can be 
deterministic or stochastic. Many other variations exist; 
those mentioned above are some of the most typical ones. 

The concept of cellular automata was initiated in the 
early 1950's by John Von Neumann and Stan Ulam [18]. 
Von Neumann was interested in their use for modelling self-
reproduction and showed that a CA can be universal. He 
devised a CA, each cell of which has a state space of 29 
states, and showed that it can execute any computable 
operation. However, Von Neumann rules, due to their 
complexity, were never implemented on a computer. Von 
Neumann's research raised a dichotomy in CA research. On 
one hand, it was proven that a decentralized machine can be 
designed to simulate any arbitrary function. On the other 
hand, this machine (CA) can become as complex as the 
function it is intended to simulate.  

Cellular automata have received extensive academic 
study into their fundamental characteristics and capabilities 
and have been applied successfully to the modelling of 
natural phenomena and complex systems [1], [3], [4], [13], 
[17], [24], [23]. Based on the theoretical concept of 
universality, researchers have tried to develop simpler and 
more practical architectures of CA that can be used to model 
widely divergent application areas. In the 1970, the 
mathematician John Conway proposed the (now famous) 
Game of Life [10], which received widespread interest 
among researchers. Since the beginning of the 80’s, Stephen 
Wolfram has studied in much detail a family of simple one-
dimensional cellular automata rules (known as Wolfram 
rules [24]) and has showed that even these simplest rules are 
capable of emulating complex behavior. Other applications 
include, but are not limited to, theoretical biology [2], game 
theory [19], and non-equilibrium thermodynamics [15]. 

The rest of the paper is structured as follows: Section II 
includes a brief description of Matlab as well as main 
reasons that motivated us for using it in our simulations. 
Simulations are presented in Section III. Section IV includes 
conclusion and plans for future work on cellular automata 
simulations using Matlab.  
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II. MATLAB 
MATLAB is a numerical computing environment and 

fourth-generation programming language which allows 
matrix manipulations, plotting of functions and data, 
implementation of algorithms, creation of user interfaces, 
and interfacing with programs written in other languages, 
including C, C++, Java, and Fortran. Although it was 
intended primarily for numerical computing, it also allows 
symbolic computing, graphical multi-domain simulation and 
model-based design for dynamic and embedded systems. It 
has been widely used in academia and industry by users 
coming from various backgrounds of engineering, science 
and economics. MATLAB was first adopted by researchers 
and practitioners in control engineering, and quickly spread 
to many other domains. It is now also used in education, in 
particular the teaching of linear algebra and numerical 
analysis, and is very popular amongst scientists involved in 
image processing [16].  

Why we used Matlab for our simulations? Existing 
implementations of cellular automata have been developed 
using Java and C/C++. This selection has been supported by 
the graphical interface these programming languages offer 
as well as by their strict object-oriented programming 
nature. In this way, implementation of cellular automata can 
be a very efficient and effective development task. For our 
study, Matlab offers simplicity coupled with power; this 
mainly motivated us to use it for the 
implementation/simulation of cellular automata, i.e., of 
simple structures that can, however, model complex 
behavior and real-world patterns. Matlab neither requires 
nor focuses on particular programming skills; on the 
contrary, it provides an efficient tool for the researcher/user 
to simulate simple models without focusing on 
programming and easily conceive such complex patterns in 
practice – not only through some mathematically defined 
function (however, using appropriate toolboxes, Matlab 
code can be converted – if needed – to C/C++ code). 

More specifically, cellular automata can be implemented 
using matrices of one or several dimensions. Matlab makes 
a quite appropriate environment since it offers a wide range 
of operations and functions particularly working on 
matrices. Moreover, the status of network cells can be easily 
represented using function surf(), while necessary diagrams 
and graphical representations can be produced - almost 
directly - using function plot(). Using Matlab only a single 
file per cellular automaton (i.e., per algorithm) is needed; 
this provides high flexibility in the experimentation and 
simplicity in the code execution process.  Furthermore, 
syntax is simpler (than in involved programming languages) 
thus directly reflecting the simplicity of the rules according 
to which automaton cell status is altered. Such technicalities 
could be of high importance when it comes to communities 
of researchers not familiar with programming languages: 
they could easily deploy their model and see its behavior 

without having to spend extra resources for becoming 
programming experts. Of course, Matlab is a rather slow 
environment and Matlab programs require more 
computational power compared to Java or C++; this could 
be a drawback if our algorithms were to be used as parts of 
intense resource-requiring applications. 

III. OUR SIMULATIONS 
As already stated, the question that motivated our work 

is the following: Matlab is a “simple” programming 
environment that does not require a researcher/student to be 
a programming-expert to use it. Cellular automata can 
capture, via a small set of simple rules, very complex 
phenomena from the real world. Is Matlab efficient for 
simulations involving cellular automata? 

We have implemented several CA rules from the recent 
literature: the Wolfram’s 184 rule, rules for probabilistic 
cellular automata, the Q2R rule, the annealing rule, the HPP 
rule, the sand pile rule, the ant rule, the traffic jam rule, the 
solid body motion rule, the “Game of Life”. Detailed 
description of these rules can be found in [7]. 

Herein, we present in detail five indicative cases of 
practical interest we simulated (and used for teaching 
purposes in the Theory of Computation lab of our 
department): Probabilistic Cellular Automata rules for forest 
fire models, the Sand Pile rule, the Ant rule, the Traffic Jam 
rule and the John Conway’s Game of Life.  

Matlab Version 7.0.0.19920 (R14) has been used for 
implementation. Simulations have been executed on a 
system using an Intel Core i3 530 processor (2.93GHz, 
6144MB DDR3 RAM), running Windows 7 Premium 32-bit 
operating system. For the graphical representation of the 
behavior of simulated models, function surf() has been used 
(full size figures can be found at [25]). 

A. Implementation of a probabilistic rule for Burning 
Forest 
Probabilistic Cellular Automata (PCA) are ordinary 

cellular automata where different rules can be applied at 
each cell according to some probability [24]. An interesting 
and simple example of a PCA model is a probabilistic rule 
for Burning Forest. The cellular automaton used for 
simulation uses a (nxn) grid, representing the forest, and a 
Moore neighborhood. Cells correspond to trees and can be 
in one of the following three states: green tree (1), empty 
site (2), burning tree (3). Initially, all cells are in state (1) 
(i.e., contain a green tree). Cell states are updated according 
to the following rules presented in detail in [5], [8]: 
− A burning tree becomes an empty site. 
− A green tree becomes a burning tree if at least one of its 

nearest neighbors is burning. 
− At an empty site, a tree grows with probability p. 
− A tree without a burning nearest neighbor becomes a 

burning tree in one time step with probability f.  
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At each time step, every cell is assigned a new random 
value (in [0,1]) for fire (f) and birth (p) probability. A green 
tree becomes a burning tree when f is greater than a 
threshold value set to 0.001. A new tree grows in an empty 
site when p is greater than a threshold value set to 0.1. 
These threshold values for f and p, once set remain the same 
throughout a single execution. Threshold value for f has 
been chosen to be sufficiently small so that in a large grid 
only few fires can start. Threshold value for p has been 
chosen to be greater than this for f so that new trees can 
grow and simulation can continue.  

The following figures show instances of the simulation 
using a grid of size 200x200. In the beginning (Fig. 1a) two 
fires (white areas) have started in the forest (black area). 
Fire starts spreading among green trees, leaving empty sites 
behind (grey areas) (Fig. 1b). The fire spreading pattern 
looks like growing circular discs with a white outline 
(burning sites) and grey inside area (destroyed sites). 

 
(a) (b) 

Fig. 1: Two fires have started in the forest (white sites) (a). The fire is 
spreading among green trees, turning them to empty sites (b). 

B. Implementation of the Sand Pile rule 
The physics of granular materials has recently attracted 

CA-related research interest. It is possible to devise a simple 
cellular automaton rule to model basic piling and toppling of 
particles like sand grains [7]. The idea is that grains can 
stack on top of each other if this arrangement is stable. Of 
course, real grains do not stand on a regular lattice and the 
stability criteria are expected to depend on the shape of each 
grain. Despite the microscopic complexity, the result is sand 
piles that are too high to topple.  

Toppling mechanisms can be captured by the following 
cellular automaton rule: a grain is stable if there is a grain 
underneath and two other grains preventing it falling to the 
left or right (Fig. 2). Assuming a Moore neighborhood, the 
rule implies that a central grain will be at rest if the south-
west, south and south-east neighbors are occupied. 
Otherwise, the grain topples downwards to the nearest 
empty cell.  

 
Figure 2: The top grain will not move. 

 
The cellular automaton used for simulation uses a (nxn) 

grid and a Margolus neighborhood which gives a simple 
way to deal with the synchronous motion of all particles 
[20]. Informally, when Margolus neighborhood is used, the 
lattice is divided in disjoint blocks of size 2x2; each block 
moves down and to the right with the next generation, and 

then moves back [21]. Cells can be in one of the following 
two states: grain of sand (1), empty cell (0). Initially, sand 
grains are placed randomly on the grid (no additional grains 
appear during the evolution of the cellular automaton). Cell 
states are updated according to the following rule [7], which 
is also presented graphically in Fig. 3: 

 
Current 

state 
1000 0100 1010 1001 0110 0101 1110 1101 1100 

(p) 
1100 
(1-p) 

Next 
state 

0010 0001 0011 0011 0011 0011 1011 0111 0011 11100 

 

 
Figure 3: Sand pile rule for Margolus neighborhood 

 
The configuration in which the upper part of a block is 

occupied by two particles while the lower part is empty, is 
not listed in the above image, although it certainly yields 
some toppling. When this configuration occurs, we adopted 
the probabilistic evolution rule shown in Fig. 4 in order to 
produce a more realistic behavior: some friction may be 
present between grains and some arches may appear to 
delay collapse. Of course, the toppling of other 
configurations could also be controlled by a random choice. 
 

 
Figure 4: Probabilistic behavior of the sand pile rule [7] 

 
In this simulation, p has been set to 0.5, i.e., two 

neighboring grains can equiprobably either fall (filling the 
cells bellow them) or remain at rest.  

Fig. 5a, 5b and 5c show simulation instances. Initially, 
all grains are falling, except those at the bottom which 
remain at rest. The Margolus neighborhood does not affect 
grains at the grid boundaries, so they also remain at rest. 
The sand pile is growing and the number of falling grains 
decreases (Fig. 5b). The simulation terminates when there 
are no more grains to fall (Fig. 5c).  

 
(a) (b) (c) 

Figure 5: The initial state of the lattice (a). The growing sand pile due to 
falling grains (b). Finally, a sand pile is created (c) 

C. Implementation of the Ant rule  
Langton's Ant [13, 14] follows extremely simple rules 

and initially appears to behave chaotically, however after a 
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certain number of steps a recurring pattern emerges. 
Langton’s Ant models the true behavior of ants in nature: a 
moving ant tends to leave pheromones behind it. All other 
ants moving in the same area can sense that substance and 
follow the motion of the first ant. 

The rule simulates the following idea: an ant sits on a 
cell of a grid where all other cells are initially empty. It 
moves into a neighboring cell and does one of two things, 
based on the color of the cell: 
− If the square is white, it turns 90 degrees to the left and 

colors the square grey 
− If the square is grey, it turns 90 degrees to the right and 

colors the square white 
The movement is continued in the same fashion, ad 

infinitum. The interesting thing about this is that after a 
fixed number of steps, the ant builds a highway and hotfoots 
it into infinity. The motion of the ant in this highway is not 
linear; it rather looks like the pattern of operation of a 
sewing machine. Although the ant rule seems to be very 
simple, it drives the ant to a chaotic state. This feature also 
shows the power of modeling systems with cellular 
automata: even though the cellular automata rules are very 
simple, they can implement very complex behaviors.  

The cellular automaton used for simulation uses a (nxn) 
grid and a Von Neumann neighborhood; a von Neumann 
neighborhood is composed of the four cells orthogonally 
surrounding a central cell on a two-dimensional square 
lattice [12]. A cyclic neighbourhood has been used for cells 
at the lattice boundaries: when an ant reaches the lattice 
boundaries, it returns to the lattice simulating the existence 
of a second ant. Cells can be in one of two states: ant (1), 
empty cell (0). Initially, all cells are empty (state 0) apart 
from one cell (state 1) which contains the ant. Cell states are 
updated according to the following rules: 
− ni (r + ci, t + 1) = μ ni-1 (r, t) + (1 – μ) ni+1 (r, t) 
− μ (r, t + 1) = μ (r, t) ⊕ n1(r, t) ⊕  n2(r, t) ⊕  n3(r, t) ⊕  

n4(r, t) 
where ni: new state, r: current cell, ci: current direction, t: 
current time step, μ: cell color (1=white, 0=black). Initially, 
c0=4, r=central cell of the grid. 

        
(a) (b) (c) 

Figure 6: (a) The ant starts its journey from the centre of the lattice. (b) 
Chaotic situation due to the ant movement. (c) Ant’s highway. 

 
In our simulation, an ant starts its journey from the 

central cell of a 100x100 grid (Fig. 6a). All cells are initially 
black; the ant turns them white as it moves over them. After 
approximately 7000 steps, the ant is trapped in a chaotic 
situation (Fig. 6b). After approximately 10000 steps, the ant 
creates its way out of the chaotic situation, building its 
highway and moving away from its initial position (Fig. 6c). 

As soon as the ant reaches the lattice boundary it returns to 
the lattice from a different position as a “second” ant, which 
has just entered the area. This second ant continues moving 
on the highway, just like the first one (Fig. 7a), moves 
towards the chaotic area (created by the first ant) (Fig. 7b) 
and starts moving irregularly (Fig. 7c). The “second” ant 
“senses the pheromones” of the first ant and escapes the 
chaotic situation faster than the previous ant. Ants can either 
create their own highways (Fig. 7d) or follow existing ones 
depending on the position of the chaotic area they enter. 

 
(a)                          (b)                        (c)                        (d) 

Figure 7: the movement of a second ant 

D. Implementation of the Traffic Jam rule 
Cellular automata models for road traffic have received 

a great deal of interest. One-dimensional models for single-
lane car motions are quite simple and elegant [6]. The road 
is represented as a line of cells: each cell is either occupied 
by a vehicle or not. All cars travel in the same direction. 
Their positions are updated synchronously, in successive 
iterations (discrete time steps). During the motion, each car 
can be at rest or jump to the nearest-neighbor site, along the 
direction of motion. The rule is that a car moves only if its 
destination cell is empty. This means that the drivers are 
short-sighted and do not know whether the car in front will 
move or whether it is also blocked by another car. Therefore 
the state of each cell si is entirely determined by the 
occupancy of the cell itself and its two nearest neighbors si−1 
and si+1. The motion rule can be summarized in the 
following table, where all eight possible configurations (si−1 
si si+1)t → (si) 

t+1 are given [6]: 
111 110 101 100 011 010 001 000 

        
1 0 1 1 1 0 0 0 

This simple dynamics captures an interesting feature of 
real car motion: traffic congestion. This cellular automaton 
rule turns out to be Wolfram’s rule 184 [6].  

The cellular automaton used for simulation uses a line 
and a one-dimensional neighborhood. Cells can be in one of 
three states: empty cell (0), stopped car (1), moving car (2). 
Initially, cars are placed randomly in line cells. Cell states 
are updated according to the following rule: 
− ni(t+1)=ni

in(t)(1-ni(t))+ ni(t) ni
out(t), 

where ni(t) denotes the car occupation number (ni=0: free 
site, ni=1: a car is present at site i). ni

in(t) denotes the state of 
the source cell, i.e., that from which a car may move to cell 
i. Similarly, ni

out(t) indicates the state of the destination cell, 
i.e., that the car at site i would like to move to. The rule 
implies that the next state of cell i is 1 if a car is currently 
present and the next cell is occupied, or if no car is currently 
present and a car is arriving. 
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A car is moving or not according to its “speed”, a 
variable taking random values in [0,1] that change in each 
time step. If a car has a “speed” lower than a threshold value 
set to 0.05, then it stops for one time step. When a car 
reaches the leftmost cell of its row, it is injected in the 
rightmost cell of the lattice in the same row and keeps 
moving in loops. Fig. 8a shows a normal traffic instance 
where all the cars are moving from right to left by one cell 
per step. White cars are moving; grey cars have stopped. In 
Fig. 8b, cars 1 and 2 stop. When car 1 stops, all following 
cars also stop (since there are no empty cells between them) 
and turn grey. Cars in front of car 1 keep moving left 
because no preceding car has stopped. When car 2 stops, 
there is an empty cell behind it. This is why the following 
cars remain white and keep moving left, covering every 
empty cell.  

 
(a)  

(b) 
Figure 8: Normal traffic (a) and traffic with cars that are not moving (b). 

In Fig. 9a, another instance of normal traffic is shown. 
The car pointed by the arrow stops and becomes grey (Fig. 
9b). There is an empty cell behind it, so all cars that follow 
keep moving left and remain white. 

 
(a) 

 
(b) 

Figure 9: Normal traffic (a) and then a car stops (b) 
Finally, the last car (Fig. 10a) stops (and becomes grey 

in Fig. 10b). All other cars keep moving left leaving an 
empty cell in front of the last car.  

 
(a) 

 
(b) 

Figures 10: Normal traffic (a) and then a car stops (b) 

E. John Conway’s Game of Life 
The Game of Life is a cellular automaton devised by the 

British mathematician John Horton Conway in 1970 [10]. 

The game is a zero-player game, meaning that its evolution 
is determined by its initial state (called pattern), requiring no 
further input. One interacts with the Game of Life by 
creating an initial configuration and observing how it 
evolves. The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which 
is in one of two possible states, alive (white-1) or dead 
(black-0). Every cell interacts with its eight neighbours 
(Moore neighbourhood), which are the cells that are 
horizontally, vertically, or diagonally adjacent. Cell states 
are updated according to the following rule: 

− Any live cell with fewer than two live neighbours dies, 
as if caused by under population. 

− Any live cell with two or three live neighbours lives on 
to the next generation.  

− Any live cell with more than three live neighbours dies, 
as if by overcrowding. 

− Any cell with exactly three live neighbours becomes a 
live cell, as if by reproduction.  

The initial pattern placed in the middle cells of the grid 
constitutes the seed of the system. The first generation is 
created by applying the above rules simultaneously to every 
cell in the seed-births and by deaths occurring 
simultaneously, and the discrete moment at which this 
happens is sometimes called a tick; in other words, each 
generation is a pure function of the preceding one. The rules 
continue to be applied repeatedly to create further 
generations. 

Fig. 11 shows simulation snapshots for 6 different initial 
patterns: cell row (Fig. 11a), glinder (Fig. 11b), small 
explorer (Fig. 11c), explorer (Fig. 11d), lightweight 
spaceship (Fig. 11e), tumbler (Fig. 11f). 

 
Figure 11a: Cell Row 

 
Figure 11b: Glinder 

 
Figure 11c: Small explorer 

 
Figure 11d: Explorer 
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Figure 11e: Lightweight spaceship 

 
Figure 11f: Tumbler 

IV. CONCLUSION AND FUTURE WORK 
We have simulated several popular cellular automata 

rules of practical interest using Matlab. Our simulations yield 
evolution patterns in accordance with those expected from 
corresponding rules and similar to those obtained so far 
using Java or C/C++. 

Our work indicates that Matlab is indeed an appropriate 
environment for developing compact code for simulations 
involving cellular automata, even though it does not always 
guarantee high simulation speeds. It does not require specific 
programming skills and therefore it offers the flexibility to 
non-programming-expert researchers and/or students to 
experiment and understand in practice complex patterns 
captured by simple cellular automata structures.  

Our current ongoing work investigates the potential of 
Matlab for simulations involving cellular automata for 
problems related to energy-efficient communication in 
Wireless Sensor Networks.   
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