
Cellular Automata: Simulations Using Matlab

Stavros Athanassopoulos1,2, Christos Kaklamanis1,2, Gerasimos Kalfoutzos1, Evi Papaioannou1,2
1Dept. of Computer Engineering and Informatics, University of Patras

2Computer Technology Institute and Press “Diophantus”
Patras University Campus, Building B, GR26504, Rion, Greece
e-mail: {athanaso, kakl, kalfount, papaioan}@ceid.upatras.gr

Abstract—This paper presents a series of implementations
of cellular automata rules using the Matlab programming
environment. A cellular automaton is a decentralized
computing model providing an excellent platform for
performing complex computations with the help of only local
information. Matlab is a numerical interactive computing
environment and a high-level language with users coming from
various backgrounds of engineering, science, and economics
that enables performing computationally intensive tasks faster
than with traditional programming languages (such as C, C++,
and Fortran). Our objective has been to investigate and exploit
the potential of Matlab, which is simple mathematical
programming environment that does not require specific
programming skills, regarding the understanding and the
efficient simulation of complex patterns, arising in nature and
across several scientific fields, captured by simple cellular
automata structures. We have implemented several cellular
automata rules from the recent literature; herein we present
indicative cases of practical interest: the forest fire
probabilistic rule, the sand pile rule, the ant rule, the traffic
jam rule as well as the well-known “Game of Life”. Our work
indicates that Matlab is indeed an appropriate environment for
developing simulations for cellular automata models.

Keywords-cellular automata; simulation; Matlab.

I. CELLULAR AUTOMATA
A cellular automaton (CA) is an idealization of a

physical system in which space and time are discrete and the
physical quantities take only a finite set of values.
Informally, a cellular automaton is a lattice of cells, each of
which may be in a predetermined number of discrete states
(a formal definition can be found in [7]). A neighborhood
relation is defined over this lattice, indicating for each cell
which cells are considered to be its neighbors during state
updates. Time is also discrete; in each time step, every cell
updates its state using a transition rule that takes as input the
states of all cells in its neighborhood (which usually
includes the cell itself). All cells in the cellular automaton
are synchronously updated. At time t = 0 the initial state of
the cellular automaton must be defined; then repeated
synchronous application of the transition function to all cells
in the lattice will lead to the deterministic evolution of the
cellular automaton over time. Many variations of this basic
model exist: CA can be of arbitrary dimension, although
one-dimensional and two-dimensional CA have received
special attention in the literature. CA can be infinite or

finite. Finite CA can have periodic boundaries (e.g., the
opposite ends of a one-dimensional finite CA are joined
together so the whole forms a ring). Updates can be
synchronous or asynchronous. Transition rules can be
deterministic or stochastic. Many other variations exist;
those mentioned above are some of the most typical ones.

The concept of cellular automata was initiated in the
early 1950's by John Von Neumann and Stan Ulam [18].
Von Neumann was interested in their use for modelling self-
reproduction and showed that a CA can be universal. He
devised a CA, each cell of which has a state space of 29
states, and showed that it can execute any computable
operation. However, Von Neumann rules, due to their
complexity, were never implemented on a computer. Von
Neumann's research raised a dichotomy in CA research. On
one hand, it was proven that a decentralized machine can be
designed to simulate any arbitrary function. On the other
hand, this machine (CA) can become as complex as the
function it is intended to simulate.

Cellular automata have received extensive academic
study into their fundamental characteristics and capabilities
and have been applied successfully to the modelling of
natural phenomena and complex systems [1], [3], [4], [13],
[17], [24], [23]. Based on the theoretical concept of
universality, researchers have tried to develop simpler and
more practical architectures of CA that can be used to model
widely divergent application areas. In the 1970, the
mathematician John Conway proposed the (now famous)
Game of Life [10], which received widespread interest
among researchers. Since the beginning of the 80’s, Stephen
Wolfram has studied in much detail a family of simple one-
dimensional cellular automata rules (known as Wolfram
rules [24]) and has showed that even these simplest rules are
capable of emulating complex behavior. Other applications
include, but are not limited to, theoretical biology [2], game
theory [19], and non-equilibrium thermodynamics [15].

The rest of the paper is structured as follows: Section II
includes a brief description of Matlab as well as main
reasons that motivated us for using it in our simulations.
Simulations are presented in Section III. Section IV includes
conclusion and plans for future work on cellular automata
simulations using Matlab.

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

II. MATLAB
MATLAB is a numerical computing environment and

fourth-generation programming language which allows
matrix manipulations, plotting of functions and data,
implementation of algorithms, creation of user interfaces,
and interfacing with programs written in other languages,
including C, C++, Java, and Fortran. Although it was
intended primarily for numerical computing, it also allows
symbolic computing, graphical multi-domain simulation and
model-based design for dynamic and embedded systems. It
has been widely used in academia and industry by users
coming from various backgrounds of engineering, science
and economics. MATLAB was first adopted by researchers
and practitioners in control engineering, and quickly spread
to many other domains. It is now also used in education, in
particular the teaching of linear algebra and numerical
analysis, and is very popular amongst scientists involved in
image processing [16].

Why we used Matlab for our simulations? Existing
implementations of cellular automata have been developed
using Java and C/C++. This selection has been supported by
the graphical interface these programming languages offer
as well as by their strict object-oriented programming
nature. In this way, implementation of cellular automata can
be a very efficient and effective development task. For our
study, Matlab offers simplicity coupled with power; this
mainly motivated us to use it for the
implementation/simulation of cellular automata, i.e., of
simple structures that can, however, model complex
behavior and real-world patterns. Matlab neither requires
nor focuses on particular programming skills; on the
contrary, it provides an efficient tool for the researcher/user
to simulate simple models without focusing on
programming and easily conceive such complex patterns in
practice – not only through some mathematically defined
function (however, using appropriate toolboxes, Matlab
code can be converted – if needed – to C/C++ code).

More specifically, cellular automata can be implemented
using matrices of one or several dimensions. Matlab makes
a quite appropriate environment since it offers a wide range
of operations and functions particularly working on
matrices. Moreover, the status of network cells can be easily
represented using function surf(), while necessary diagrams
and graphical representations can be produced - almost
directly - using function plot(). Using Matlab only a single
file per cellular automaton (i.e., per algorithm) is needed;
this provides high flexibility in the experimentation and
simplicity in the code execution process. Furthermore,
syntax is simpler (than in involved programming languages)
thus directly reflecting the simplicity of the rules according
to which automaton cell status is altered. Such technicalities
could be of high importance when it comes to communities
of researchers not familiar with programming languages:
they could easily deploy their model and see its behavior

without having to spend extra resources for becoming
programming experts. Of course, Matlab is a rather slow
environment and Matlab programs require more
computational power compared to Java or C++; this could
be a drawback if our algorithms were to be used as parts of
intense resource-requiring applications.

III. OUR SIMULATIONS
As already stated, the question that motivated our work

is the following: Matlab is a “simple” programming
environment that does not require a researcher/student to be
a programming-expert to use it. Cellular automata can
capture, via a small set of simple rules, very complex
phenomena from the real world. Is Matlab efficient for
simulations involving cellular automata?

We have implemented several CA rules from the recent
literature: the Wolfram’s 184 rule, rules for probabilistic
cellular automata, the Q2R rule, the annealing rule, the HPP
rule, the sand pile rule, the ant rule, the traffic jam rule, the
solid body motion rule, the “Game of Life”. Detailed
description of these rules can be found in [7].

Herein, we present in detail five indicative cases of
practical interest we simulated (and used for teaching
purposes in the Theory of Computation lab of our
department): Probabilistic Cellular Automata rules for forest
fire models, the Sand Pile rule, the Ant rule, the Traffic Jam
rule and the John Conway’s Game of Life.

Matlab Version 7.0.0.19920 (R14) has been used for
implementation. Simulations have been executed on a
system using an Intel Core i3 530 processor (2.93GHz,
6144MB DDR3 RAM), running Windows 7 Premium 32-bit
operating system. For the graphical representation of the
behavior of simulated models, function surf() has been used
(full size figures can be found at [25]).

A. Implementation of a probabilistic rule for Burning
Forest
Probabilistic Cellular Automata (PCA) are ordinary

cellular automata where different rules can be applied at
each cell according to some probability [24]. An interesting
and simple example of a PCA model is a probabilistic rule
for Burning Forest. The cellular automaton used for
simulation uses a (nxn) grid, representing the forest, and a
Moore neighborhood. Cells correspond to trees and can be
in one of the following three states: green tree (1), empty
site (2), burning tree (3). Initially, all cells are in state (1)
(i.e., contain a green tree). Cell states are updated according
to the following rules presented in detail in [5], [8]:
− A burning tree becomes an empty site.
− A green tree becomes a burning tree if at least one of its

nearest neighbors is burning.
− At an empty site, a tree grows with probability p.
− A tree without a burning nearest neighbor becomes a

burning tree in one time step with probability f.

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

At each time step, every cell is assigned a new random
value (in [0,1]) for fire (f) and birth (p) probability. A green
tree becomes a burning tree when f is greater than a
threshold value set to 0.001. A new tree grows in an empty
site when p is greater than a threshold value set to 0.1.
These threshold values for f and p, once set remain the same
throughout a single execution. Threshold value for f has
been chosen to be sufficiently small so that in a large grid
only few fires can start. Threshold value for p has been
chosen to be greater than this for f so that new trees can
grow and simulation can continue.

The following figures show instances of the simulation
using a grid of size 200x200. In the beginning (Fig. 1a) two
fires (white areas) have started in the forest (black area).
Fire starts spreading among green trees, leaving empty sites
behind (grey areas) (Fig. 1b). The fire spreading pattern
looks like growing circular discs with a white outline
(burning sites) and grey inside area (destroyed sites).

(a) (b)

Fig. 1: Two fires have started in the forest (white sites) (a). The fire is
spreading among green trees, turning them to empty sites (b).

B. Implementation of the Sand Pile rule
The physics of granular materials has recently attracted

CA-related research interest. It is possible to devise a simple
cellular automaton rule to model basic piling and toppling of
particles like sand grains [7]. The idea is that grains can
stack on top of each other if this arrangement is stable. Of
course, real grains do not stand on a regular lattice and the
stability criteria are expected to depend on the shape of each
grain. Despite the microscopic complexity, the result is sand
piles that are too high to topple.

Toppling mechanisms can be captured by the following
cellular automaton rule: a grain is stable if there is a grain
underneath and two other grains preventing it falling to the
left or right (Fig. 2). Assuming a Moore neighborhood, the
rule implies that a central grain will be at rest if the south-
west, south and south-east neighbors are occupied.
Otherwise, the grain topples downwards to the nearest
empty cell.

Figure 2: The top grain will not move.

The cellular automaton used for simulation uses a (nxn)

grid and a Margolus neighborhood which gives a simple
way to deal with the synchronous motion of all particles
[20]. Informally, when Margolus neighborhood is used, the
lattice is divided in disjoint blocks of size 2x2; each block
moves down and to the right with the next generation, and

then moves back [21]. Cells can be in one of the following
two states: grain of sand (1), empty cell (0). Initially, sand
grains are placed randomly on the grid (no additional grains
appear during the evolution of the cellular automaton). Cell
states are updated according to the following rule [7], which
is also presented graphically in Fig. 3:

Current

state
1000 0100 1010 1001 0110 0101 1110 1101 1100

(p)
1100
(1-p)

Next
state

0010 0001 0011 0011 0011 0011 1011 0111 0011 11100

Figure 3: Sand pile rule for Margolus neighborhood

The configuration in which the upper part of a block is

occupied by two particles while the lower part is empty, is
not listed in the above image, although it certainly yields
some toppling. When this configuration occurs, we adopted
the probabilistic evolution rule shown in Fig. 4 in order to
produce a more realistic behavior: some friction may be
present between grains and some arches may appear to
delay collapse. Of course, the toppling of other
configurations could also be controlled by a random choice.

Figure 4: Probabilistic behavior of the sand pile rule [7]

In this simulation, p has been set to 0.5, i.e., two

neighboring grains can equiprobably either fall (filling the
cells bellow them) or remain at rest.

Fig. 5a, 5b and 5c show simulation instances. Initially,
all grains are falling, except those at the bottom which
remain at rest. The Margolus neighborhood does not affect
grains at the grid boundaries, so they also remain at rest.
The sand pile is growing and the number of falling grains
decreases (Fig. 5b). The simulation terminates when there
are no more grains to fall (Fig. 5c).

(a) (b) (c)

Figure 5: The initial state of the lattice (a). The growing sand pile due to
falling grains (b). Finally, a sand pile is created (c)

C. Implementation of the Ant rule
Langton's Ant [13, 14] follows extremely simple rules

and initially appears to behave chaotically, however after a

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

certain number of steps a recurring pattern emerges.
Langton’s Ant models the true behavior of ants in nature: a
moving ant tends to leave pheromones behind it. All other
ants moving in the same area can sense that substance and
follow the motion of the first ant.

The rule simulates the following idea: an ant sits on a
cell of a grid where all other cells are initially empty. It
moves into a neighboring cell and does one of two things,
based on the color of the cell:
− If the square is white, it turns 90 degrees to the left and

colors the square grey
− If the square is grey, it turns 90 degrees to the right and

colors the square white
The movement is continued in the same fashion, ad

infinitum. The interesting thing about this is that after a
fixed number of steps, the ant builds a highway and hotfoots
it into infinity. The motion of the ant in this highway is not
linear; it rather looks like the pattern of operation of a
sewing machine. Although the ant rule seems to be very
simple, it drives the ant to a chaotic state. This feature also
shows the power of modeling systems with cellular
automata: even though the cellular automata rules are very
simple, they can implement very complex behaviors.

The cellular automaton used for simulation uses a (nxn)
grid and a Von Neumann neighborhood; a von Neumann
neighborhood is composed of the four cells orthogonally
surrounding a central cell on a two-dimensional square
lattice [12]. A cyclic neighbourhood has been used for cells
at the lattice boundaries: when an ant reaches the lattice
boundaries, it returns to the lattice simulating the existence
of a second ant. Cells can be in one of two states: ant (1),
empty cell (0). Initially, all cells are empty (state 0) apart
from one cell (state 1) which contains the ant. Cell states are
updated according to the following rules:
− ni (r + ci, t + 1) = μ ni-1 (r, t) + (1 – μ) ni+1 (r, t)
− μ (r, t + 1) = μ (r, t) ⊕ n1(r, t) ⊕ n2(r, t) ⊕ n3(r, t) ⊕

n4(r, t)
where ni: new state, r: current cell, ci: current direction, t:
current time step, μ: cell color (1=white, 0=black). Initially,
c0=4, r=central cell of the grid.

(a) (b) (c)

Figure 6: (a) The ant starts its journey from the centre of the lattice. (b)
Chaotic situation due to the ant movement. (c) Ant’s highway.

In our simulation, an ant starts its journey from the

central cell of a 100x100 grid (Fig. 6a). All cells are initially
black; the ant turns them white as it moves over them. After
approximately 7000 steps, the ant is trapped in a chaotic
situation (Fig. 6b). After approximately 10000 steps, the ant
creates its way out of the chaotic situation, building its
highway and moving away from its initial position (Fig. 6c).

As soon as the ant reaches the lattice boundary it returns to
the lattice from a different position as a “second” ant, which
has just entered the area. This second ant continues moving
on the highway, just like the first one (Fig. 7a), moves
towards the chaotic area (created by the first ant) (Fig. 7b)
and starts moving irregularly (Fig. 7c). The “second” ant
“senses the pheromones” of the first ant and escapes the
chaotic situation faster than the previous ant. Ants can either
create their own highways (Fig. 7d) or follow existing ones
depending on the position of the chaotic area they enter.

(a) (b) (c) (d)

Figure 7: the movement of a second ant

D. Implementation of the Traffic Jam rule
Cellular automata models for road traffic have received

a great deal of interest. One-dimensional models for single-
lane car motions are quite simple and elegant [6]. The road
is represented as a line of cells: each cell is either occupied
by a vehicle or not. All cars travel in the same direction.
Their positions are updated synchronously, in successive
iterations (discrete time steps). During the motion, each car
can be at rest or jump to the nearest-neighbor site, along the
direction of motion. The rule is that a car moves only if its
destination cell is empty. This means that the drivers are
short-sighted and do not know whether the car in front will
move or whether it is also blocked by another car. Therefore
the state of each cell si is entirely determined by the
occupancy of the cell itself and its two nearest neighbors si−1
and si+1. The motion rule can be summarized in the
following table, where all eight possible configurations (si−1
si si+1)t → (si)

t+1 are given [6]:
111 110 101 100 011 010 001 000

1 0 1 1 1 0 0 0

This simple dynamics captures an interesting feature of
real car motion: traffic congestion. This cellular automaton
rule turns out to be Wolfram’s rule 184 [6].

The cellular automaton used for simulation uses a line
and a one-dimensional neighborhood. Cells can be in one of
three states: empty cell (0), stopped car (1), moving car (2).
Initially, cars are placed randomly in line cells. Cell states
are updated according to the following rule:
− ni(t+1)=ni

in(t)(1-ni(t))+ ni(t) ni
out(t),

where ni(t) denotes the car occupation number (ni=0: free
site, ni=1: a car is present at site i). ni

in(t) denotes the state of
the source cell, i.e., that from which a car may move to cell
i. Similarly, ni

out(t) indicates the state of the destination cell,
i.e., that the car at site i would like to move to. The rule
implies that the next state of cell i is 1 if a car is currently
present and the next cell is occupied, or if no car is currently
present and a car is arriving.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

A car is moving or not according to its “speed”, a
variable taking random values in [0,1] that change in each
time step. If a car has a “speed” lower than a threshold value
set to 0.05, then it stops for one time step. When a car
reaches the leftmost cell of its row, it is injected in the
rightmost cell of the lattice in the same row and keeps
moving in loops. Fig. 8a shows a normal traffic instance
where all the cars are moving from right to left by one cell
per step. White cars are moving; grey cars have stopped. In
Fig. 8b, cars 1 and 2 stop. When car 1 stops, all following
cars also stop (since there are no empty cells between them)
and turn grey. Cars in front of car 1 keep moving left
because no preceding car has stopped. When car 2 stops,
there is an empty cell behind it. This is why the following
cars remain white and keep moving left, covering every
empty cell.

(a)

(b)
Figure 8: Normal traffic (a) and traffic with cars that are not moving (b).

In Fig. 9a, another instance of normal traffic is shown.
The car pointed by the arrow stops and becomes grey (Fig.
9b). There is an empty cell behind it, so all cars that follow
keep moving left and remain white.

(a)

(b)

Figure 9: Normal traffic (a) and then a car stops (b)
Finally, the last car (Fig. 10a) stops (and becomes grey

in Fig. 10b). All other cars keep moving left leaving an
empty cell in front of the last car.

(a)

(b)

Figures 10: Normal traffic (a) and then a car stops (b)

E. John Conway’s Game of Life
The Game of Life is a cellular automaton devised by the

British mathematician John Horton Conway in 1970 [10].

The game is a zero-player game, meaning that its evolution
is determined by its initial state (called pattern), requiring no
further input. One interacts with the Game of Life by
creating an initial configuration and observing how it
evolves. The universe of the Game of Life is an infinite two-
dimensional orthogonal grid of square cells, each of which
is in one of two possible states, alive (white-1) or dead
(black-0). Every cell interacts with its eight neighbours
(Moore neighbourhood), which are the cells that are
horizontally, vertically, or diagonally adjacent. Cell states
are updated according to the following rule:

− Any live cell with fewer than two live neighbours dies,
as if caused by under population.

− Any live cell with two or three live neighbours lives on
to the next generation.

− Any live cell with more than three live neighbours dies,
as if by overcrowding.

− Any cell with exactly three live neighbours becomes a
live cell, as if by reproduction.

The initial pattern placed in the middle cells of the grid
constitutes the seed of the system. The first generation is
created by applying the above rules simultaneously to every
cell in the seed-births and by deaths occurring
simultaneously, and the discrete moment at which this
happens is sometimes called a tick; in other words, each
generation is a pure function of the preceding one. The rules
continue to be applied repeatedly to create further
generations.

Fig. 11 shows simulation snapshots for 6 different initial
patterns: cell row (Fig. 11a), glinder (Fig. 11b), small
explorer (Fig. 11c), explorer (Fig. 11d), lightweight
spaceship (Fig. 11e), tumbler (Fig. 11f).

Figure 11a: Cell Row

Figure 11b: Glinder

Figure 11c: Small explorer

Figure 11d: Explorer

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

Figure 11e: Lightweight spaceship

Figure 11f: Tumbler

IV. CONCLUSION AND FUTURE WORK
We have simulated several popular cellular automata

rules of practical interest using Matlab. Our simulations yield
evolution patterns in accordance with those expected from
corresponding rules and similar to those obtained so far
using Java or C/C++.

Our work indicates that Matlab is indeed an appropriate
environment for developing compact code for simulations
involving cellular automata, even though it does not always
guarantee high simulation speeds. It does not require specific
programming skills and therefore it offers the flexibility to
non-programming-expert researchers and/or students to
experiment and understand in practice complex patterns
captured by simple cellular automata structures.

Our current ongoing work investigates the potential of
Matlab for simulations involving cellular automata for
problems related to energy-efficient communication in
Wireless Sensor Networks.

ACKNOWLEDGMENT
This work has been partially supported by EU under the

ICT-2010-258307 project EULER and by EU and the Greek
Ministry of Education, Lifelong Learning and Religious
Affairs under the project “Digital School” (296441).

REFERENCES
[1] S. Bandini. Guest Editorial - Cellular Automata. Future

Generation Computer Systems, 18:v-vi, August 2002.
[2] M. Boerlijst and P. Hogeweg. Spiral wave structure in pre-

biotic evolution: hypercycles stable against parasites. Physica
D, 48(1):17–28, 1991.

[3] A. W. Burks. Essays on Cellular Automata. Technical Report,
Univ. of Illinois, Urbana, 1970.

[4] P. Pal Chaudhuri, D. R. Chowdhury, S. Nandi, and S.
Chatterjee. Additive Cellular Automata - Theory and
Applications, volume 1. IEEE Computer Society Press, CA,
USA, ISBN 0-8186-7717-1, 1997.

[5] P. Bak, K. Chen, C. Tang. A forest-fire model and some
thoughts on turbulence. Physics Letters A, Vol. 147, Issues 5-
6, pp. 297-300, 1990.

[6] B. Chopard, P. O. Luthi, and P-A. Queloz. Cellular Automata
Model of Car Traffic in a Two-Dimensional Street Network.
Journal of Physics A: Mathematical and General, 29, pp.
2325–2336, 1996.

[7] B. Chopard and M. Droz. Cellular Automata Modeling of
Physical Systems, Cambridge University Press, 1998. ISBN
0-521-46168-5.

[8] B. Drossel, F. Schwabl. Self-organized critical forest-fire
model. Physical Review Letters, Vol. 69, Issue 11, pp. 1629–
1632. 1992.

[9] N. Ganguly, B. K. Sikdar, A. Deutsch, G. Canright, and P. Pal
Chaudhuri. A survey on cellular automata. Technical report,
Centre for High Performance Computing, Dresden University
of Technology, December 2003.

[10] M. Gardner Mathematical Games - The fantastic
combinations of John Conway's new solitaire game "life".
Scientific American, 223. pp. 120-123, 1970. ISBN
0894540017.

[11] R. Goering. Matlab edges closer to electronic design
automation world. EE Times, 10/04/2004
(http://www.eetimes.com/electronics-news/4050334/Matlab-
edges-closer-to-electronic-design-automation-world).

[12] L. Gray. A Mathematician Looks at Wolfram's New Kind of
Science. Not. Amer. Math. Soc. 50, 200-211, 2003.

[13] C. G. Langton. Self-reproduction in cellular automata.
Physica D: Nonlinear Phenomena, Volume 10, Issues 1-2, pp.
135-144, 1984. ISSN 0167-2789, 10.1016/0167-
2789(84)90256-2.

[14] C. G. Langton. Studying artificial life with cellular automata.
Physica D: Nonlinear Phenomena 22 (1-3): 120–149, 1986.

[15] M. Markus B. Hess. Isotropic cellular automaton for
modelling excitable media. Nature, 347(6288):56–58, 1990.

[16] C. Moler. The Origins of MATLAB. December 2004.
Retrieved April 15, 2007.

[17] M. Mitchell, P. T. Hraber, and J. P. Crutcheld. Revisiting the
Egde of Chaos: Evolving Cellular Automata to Perform
Computations. Complex Systems, 7, pp. 89-130, 1993.

[18] J. V. Neumann. The Theory of Self-Reproducing Automata.
A. W. Burks (ed), Univ. of Illinois Press, Urbana and London,
1966.

[19] M. Nowak and R. May. Evolutionary games and spatial
chaos. Nature, 359(6398):826–829, 1992.

[20] J. Schiff. 4.2.1 Partitioning Cellular Automata. Cellular
Automata: A Discrete View of the World, Wiley, pp. 115–
116, 2008.

[21] T. Toffoli, N. Margolus. II.12 The Margolus neighborhood.
Cellular Automata Machines: A New Environment for
Modeling, MIT Press, pp. 119–138, 1987.

[22] S. Wolfram. A New Kind of Science. Champaign, IL:
Wolfram Media, pp. 29-30, 52, 59, 317, and p. 871, 2002.

[23] S. Wolfram. Cellular Automata and Complexity. World
Scientific, Singapore, 1994. ISBN 9971-50-124-4 pbk.

[24] S. Wolfram. Theory and Applications of Cellular Automata.
World Scientific, Singapore, 1986. ISBN 9971-50-124-4 pbk.

[25] http://www.ceid.upatras.gr/papaioan/CA/figs/index.html,
November 15, 2011.

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-176-2

ICDS 2012 : The Sixth International Conference on Digital Society

