
Autoencoder vs. Regression Neural Networks
for Detecting Manipulated Wine Ratings∗

Michaela Baumann
Business Intelligence / Analytics Competence Center

NÜRNBERGER Versicherung
Nürnberg, Germany

email: michaela.baumann@nuernberger.de
ORCID: 0000-0001-5066-9624

Michael Heinrich Baumann
Department of Mathematics

University of Bayreuth
Bayreuth, Germany

email: michael.baumann@uni-bayreuth.de
ORCID: 0000-0003-2840-7286

Abstract—In this study, we analyze the ability of different
(neural network based) detection methods to identify manipu-
lated wine ratings for two “vinho verde” datasets. We find that
autoencoders perform best on unmanipulated test data. How-
ever, regressions outperform autoencoders in terms of true/false
positive rates on the manipulated test data in median. This is
interesting, since autoencoders are generally used for outlier
detection. Furthermore, hyperparameter tuning via sequential
accumulative selection is established.

Keywords—anomaly detection; manipulation identification; wine
preferences; artificial neural networks; autoencoder.

I. INTRODUCTION

In a world of increasingly differentiated products and cus-
tomers who frequently change their buying behavior, it is
difficult to assess whether the price-performance ratio is ap-
propriate before making a purchase. An important and much-
used assistance in such buying decisions are ratings. In this
study, we are going to approach the question of whether and
how manipulated ratings can be detected using wine quality
ratings as an example. When ratings come from an official or
non-official authority (such as Gambero Rosso’s Vini d’Italia
[1], Robert Parker’s The Wine Advocate [2], Gault&Millau
[3], or Guide Michelin [4], when dealing with wines, hotels,
restaurants, or related topics), it is possible to verify with little
effort whether ratings given by a merchant or producer are
genuine by simply looking up the relevant work. However,
since by far not all wines are represented and rated in one
of the works published by an authority, there are countless
other ratings. These other ratings, which are not given by
an authority, are difficult to verify for authenticity, and it
might even be possible that they are not objective, but rather
paid for by someone. In the following, we are going to show
possibilities for detecting such manipulated or faked ratings.

A very basic idea for how to identify manipulated ratings
would be via (linear) regressions. That means, when we have
other, exactly measurable features, such as alcohol content, pH
value, or density, we can learn how to predict the rating using
these independent variables on correctly rated data objects.
Ratings that differ (strongly) from the predicted ones on
unseen data might be suspicious. The described methodology
is commonly used in many contexts, such as in economics and

∗Corrected version, October 2022

finance, and often leads to useful results (cf. [5]). However,
a linear regression does not lead to good results in our case,
i.e., when trying to detect manipulated wine ratings. Thus,
the research question is how manipulated wine ratings may
be detected in a better way. Since artificial neural networks
are currently en vogue, one can of course use a regression
by means of a neural network (cf. [6]–[9]). Note that a linear
regression is the same as an exactly trained, fully connected
neural network without any hidden layer with linear activation
functions (i.e., id resp. pass-through), when adding a dummy
column (filled with 1s) in the data for the intercept and using
Mean Squared Error (MSE) as loss. Regressions based on
shallow or deep neural networks are likely to outperform a
linear regression.

Especially when dealing with outlier detection, so-called au-
toencoders (resp. reconstruction networks or auto-associative
neural networks) are a common means [10]–[13]. Autoen-
coders consist of two parts (i.e., two regressions), an encoder
and a decoder. The encoder compresses the input data to
a lower dimensional representation usually referred to as
the code; the decoder takes the code as input and aims to
reconstruct the original input.

Given a well trained autoencoder, when the input and
the output differ (strongly), the data might be manipulated
(or in other contexts: an outlier, an anomaly, fraudulent,
or suspicious). Note that there are much more application
areas of autoencoders, such as dimensionality reduction, data
compression, or denoising. Although it is in principal assumed
that the quality depends on the other features, the autoencoder
does not use this information, that is, the quality and all other
features are considered as coequal input (and output) variables.
Since the autoencoder does not use all the information that is
actually available, it would be very interesting if it nevertheless
achieved better results.

In the work at hand, we investigate how Regression Neural
Networks (RNN) and Neural Network based Autoencoders
(NNA) can be used to identify manipulated data. Additionally,
as benchmark models we use a linear regression (Linear
Model; LM; see [5]) and an autoencoder that implements
two linear regressions (Benchmark Autoencoder; BA; see
Section IV-D). Clearly, there are several other data analytics
methods that might be applied, e.g., support vector machines

7Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

[14], however, an investigation is postponed to future work,
as it would go well beyond the scope of this paper, especially
since the number of those techniques keeps growing (see
[15][16]).

We find that neural network based autoencoders perform
best on unmanipulated test data. However, they are not that
useful for detecting manipulated wine ratings since for this
task, the regression neural networks show a better detection
performance in median. This may be unexpected since one of
the main application areas of autoencoders is anomaly detec-
tion. However, the regression neural network shows a great
variability on the unmanipulated test data, i.e., its behavior
is not that stable especially compared to a benchmark linear
regression model, whose computation time is considerably
lower.

The remainder of this paper is organized as follows: Sec-
tion II reviews both the literature on wine data analysis
and those on anomaly detection in general while Section III
specifies the data we are using. Sections IV and V describe the
method we use and Section VI presents the results. Finally,
Sections VII and VIII conclude and describe possibilities for
ongoing work.

II. LITERATURE REVIEW

The closely related literature roughly splits into two groups,
namely data analytics of wine quality and general out-
lier/anomaly detection resp. fraud identification. The analytics
of wine quality mostly covers the prediction of wine ratings
based on measurable features. Cortez et al. [17][18] compare
several data mining regression methods for predicting wine
preferences based on easily available data during the certifica-
tion of wines. In this context, they originally published the two
datasets that are also used in the work at hand. They use the
vinho verde white wine dataset [18] and both the vinho verde
red wine and white wine datasets [17]. Besides these papers,
also the importance of the selection of the most relevant
features before predicting the wine quality with machine
learning regression methods is investigated for the vinho verde
datasets [19]. The vinho verde white wine dataset is used
for classifying wine preferences via fuzzy inductive reasoning
[20]. Deep neural networks are applied for classifying wine
ratings (in detail: multiple classification) on the vinho verde
datasets [21].

Several regression models for assessing wine quality are
developed with data from southern France consisting of
altogether 137 variables (vineyard variables and enological
variables) to assist the winemakers in their business [22].
Also, the effect of weather and climate changes as well as the
effect of expert ratings on the prices of Bordeaux wines are
analyzed [23][24]. With this, the efficiency of the Bordeaux
wine market is assessed. Tree models are used for predicting
the relative quality of German Rhinegau Riesling considering
terrain characteristics obtained through cartographic studies
[25]. A framework is developed that automatically finds an
appropriate set of classifiers and hyperparameters via evolu-

tionary optimization for predicting wine quality for arbitrary
wine datasets [26].

Having in mind the literature reviewed above, which pre-
dicts wine ratings or conducts data analyses of wine quality,
the work at hand contributes by connecting wine rating pre-
dictions and anomaly detection. The topic of outlier/anomaly
detection and fraud identification is addressed in a lot of
related work in various contexts (see, for example, the surveys
and summaries [27]–[31]) and we can only touch on this broad
topic here. Generally, according to Chandola et al., “Anomaly
detection refers to the problem of finding patterns in data that
do not conform to expected behavior” [27]. Usually, anomalies
have to be identified throughout the analysis of data so that
they can be treated separately and do not distort the results
of the analysis of “normal” data. However, in the case of
fraud and also in our case of manipulation detection they are
of special interest. Fraudulent and manipulated data objects
inhibit abnormal patterns but they try to appear as normal. The
detection of anomalies, especially of intentional, malicious
anomalies, such as fraud or manipulation, is very challenging
and there are many approaches that try to accomplish this
task. The approaches basically fall in one of the following
three categories [28]:

• Unsupervised methods (e.g., clustering); labels are not
needed here and new patterns (normal ones and outliers)
may be processed correctly.

• Supervised methods (e.g., classification); this needs pre-
labeled data, however, anomalies are usually very rare
and the labeled datasets are, thus, highly unbalanced; new
patterns are unlikely to be processed correctly.

• Semi-supervised methods (e.g., autoencoders); normal
behavior is known, i.e., (a part of) the training data is
labeled as normal, and new, unlabeled data objects are
compared to the normal case.

In addition to methods that require tabular data (a priori tabular
data, but also image, audio, or video data transferred to tabular
data) there are methods that operate on graph based data
[32], which are especially useful when identifying anomalies
in highly connected data. The approach of the work at hand
falls into the third category, i.e., semi-supervised methods, and
works on tabular data.

III. DATA

The approach described in this work is applicable to various
working areas (see Section VIII). We demonstrate it using
wine data as an example because of the following reasons.

A rather simple advantage is the good data availability
and (if no wine names or winemaker names are used) the
innocuousness of the data. Further, the explaining variables
(except for wine or winemaker names) are metric, clearly
defined, and exactly measurable (e.g., alcohol content, acid,
pH value, red/white). The used datasets further have a unique
target feature and not a list of ratings (see also Section VIII).

We use the “Wine Quality Datasets” [17] from the Univer-
sidade do Minho [33], more specifically the datasets “White

8Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

Wine Quality—Simple and clean practice dataset for re-
gression or classification modelling” [34] and “Red Wine
Quality—Simple and clean practice dataset for regression or
classification modelling” [35] downloaded from kaggle, which
are licensed under “Database Contents License (DbCL) v1.0,”
Database: Open Database, Contents: Database Contents [36].
Both datasets contain anonymized vinho verde wines and have
the same twelve columns, i.e., features, namely: “fixed acid-
ity,” “volatile acidity,” “citric acid,” “residual sugar,” “chlo-
rides,” “free sulfur dioxide,” “total sulfur dioxide,” “density,”
“pH,” “sulfates,” “alcohol,” and “quality.” There, quality is
the wine rating, which is supposed to depend on the other,
explaining features, called independent. All values except for
the ratings are in some meaningful physical unit, while the
ratings range from 0 (very bad) to 10 (excellent) in integer
steps [17]. The red wine dataset consists of 1,599 entries while
the white wine data has 4,898 rows, leading to a combined data
set with 6,497 rows and 13 columns. For the distinction of
red and white wines we added a binary encoded categorical
column. Please note that we do include neither descriptive
statistics like plots or correlations, nor explorative analyses,
such as clusterings, nor distribution estimations etc. in this
work. There is already a lot of such work done for the vinho
verde datasets. Such statistics and many more analyses can be
found in the work of Cortez et al. [17][18], in other papers
[19]–[21], and further tutorials or notebooks [37]–[41].

IV. METHODOLOGY

As outlined in Section I, the aim of this work is to
identify manipulated ratings. For this, we train several network
based models on the provided, correct data. We then make
predictions on unseen data objects where we manipulate a
certain part of these objects. As manipulation, we increase
the original rating of very low rated wines as this seems
to be a “reasonable” manipulation in the context of wine
ratings (when someone wants to increase sales numbers). By
comparing the provided, potentially manipulated data and the
predicted data we aim at identifying the manipulated data
objects. Objects for which the predicted values strongly differ
from the provided data are more likely to be manipulated. We
assess the models’ detection performance, i.e., their ability to
identify manipulations through calculating the true and false
positive rates when marking the most deviating data objects
as suspicious. To prevent overfitting and account for other
random effects we apply bootstrapping. That is, we repeat the
process of randomly splitting the data and training the models.
Finally, we take among others the median over the particular
results.

In the following, we explain our methodology in detail. The
implementation is done in R using the Keras library, which
is an API to TensorFlow, for the neural networks.

A. Bootstrapping and Data Splitting

The bootstrapping is in our case a Monte-Carlo-like ap-
proach of repeatedly and independently splitting the complete
dataset all (6,497 rows, 13 columns) with a ratio of 70:30

into training data (4,547 rows, 13 columns) and test data
(1950 rows, 13 columns) 100 times: all = train ∪̇ test.
To make this process reproducible, we set an initial seed and
randomly draw 100 seeds (seed1, . . . , seed100). Before every
splitting we explicitly set the seed to the respective run’s seed.
The training data is further split with a ratio of 70:30 into
development data (3,182 rows, 13 columns) and validation data
(1,365 rows, 13 columns): train = dev ∪̇ val.

B. Data Manipulation

As an example, we manipulate the 5% worst ranked test
data by averaging the original rating and the highest possible
rating (10) and rounding up. That is, we split the test data
test = low ∪̇ high with a ratio of 5:95 (with a random
tie breaking), manipulate low 7→ lowmanip and get the
manipulated test data manip := lowmanip ∪̇ high. We also
add a flag column to the manipulated test data for marking
the manipulated entries for evaluation purposes.

C. Data Normalization

The independent features are all normalized by min-max-
scaling where train serves as reference. That means, also
the test datasets are normalized with the minimum and max-
imum values of train. For LM and RNN, the target variable
“quality” is not normalized. For BA and NNA, “quality” is
an input variable like the others and, hence, normalized. To
obtain comparable results, the performance of the regression
models is normalized afterwards (using train).

D. Models

We consider four different kinds of models: LM, RNN, BA,
and NNA. The two simple models LM and BA are solely for
benchmarking the general performance of the two correspond-
ing (deep) neural network models on the unmanipulated test
data test. We measure the manipulation detection performance
for the two (deep) neural network models only. LM uses R’s
lm function. BA is a fully connected, three layer network
with input layer (size 14), code layer (size 4), and output
layer (size 14). The input is the 13 dimensional data plus a
constant column of 1s (intercept) in order to mimic two nested
linear regressions. Thus, linear activation functions and MSE
are used.

E. Hyperparameter Tuning

In every step during the bootstrapping, the deep models
are trained with hyperparameter optimization over a grid.
How these grids are obtained is outlined in Section V. The
hyperparameter grid for RNN is:

• Activation function (hidden layers): linear,
softplus, ReLU

• Activation function (output layer): linear
• Number of hidden layers: 1, 3, 5, 7
• Dropout rate: 0%, 5%, 10%
• Number of neurons in each hidden layer: 32, 64, 128
• Number of neurons the input layer: 12
• Number of neurons the output layer: 1

9Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

• Batch size: 32, 64
• Learning rate: 5%, 10%
• Patience for early stopping: 15
• Patience for learning rate reduction: 7
• Loss function: MSE
• Evaluation measure: Mean Absolute Error (MAE)
• Optimizer: Adam
• Number of epochs: 75
• Batch normalization: between every layer

The grid for NNA is defined as follows:
• Activation function (hidden layers, except the code):
softplus, ReLU

• Activation function (code layer and output layer):
linear

• Number of hidden layers (except code layer): 4, 6
• Dropout rate: 0%
• Number of neurons in each hidden layer (except the

code): 64, 128
• Number of neurons the input layer as well as in the output

layer: 13
• Number of neurons the code layer: 4
• Batch size: 32, 64
• Learning rate: 5%, 10%
• Patience for early stopping: 15
• Patience for learning rate reduction: 7
• Loss function: MSE
• Evaluation measure: MAE
• Optimizer: Adam
• Number of epochs: 75
• Batch normalization: between every layer

F. The Algorithm

The bootstrapping, model training, and evaluation algorithm
is depicted in the algorithm in Figure 1. All individual steps
are described above. The algorithm is parallelized.

1: begin
2: for i=1 to n do
3: begin
4: Prepare datasets with seedi (split, manipulate, normal-

ize);
5: Train the two benchmark models on train;
6: Optimize RNN’s and NNA’s hyperparameters (train on

dev, validate on val using MAE as performance measure)
and retrain the best model in each case on train;

7: Measure all four models’ performance on test;
8: Measure RNN’s and NNA’s detection performance on

manip;
9: end

10: end

Figure 1. Procedure for model training and evaluation. Input: the original
dataset; a seed vector (seed1, . . . , seed100); two hyperparameter grids.
Output: list of performance data.

As one can see from the algorithm, both approaches (RNN,
NNA) are semi-supervised. We use labeled data to train the

networks, but only data that is labeled as “correct,” i.e., that
is not manipulated. Although in the analysis, “correct” and
“incorrect,” i.e., manipulated, data are used, no incorrect data
are used for training—that is, one does not need a data set
where “incorrect” data are already identified as incorrect.
We use the information about which data entries are really
“incorrect” only for the statistical analysis of the results for
this paper.

G. Detection Performance

The detection performance is measured as follows: For
RNN, we calculate the squared difference of the predicted
quality and the given quality (which is possibly manipulated)
for each data object (Squared Error; SE). For NNA, we com-
pute for all data objects the sum over all features of the squared
differences between the predicted feature and the respective
given (possibly manipulated) feature (Sum of Squared Errors;
SSE). We sort the data in descending order according to
these deviation values (once for RNN and once for NNA):
manip 7→ (manipreg,manipauto). Then, we determine the
true/false positive rates when marking the first qi% of the
data objects in the sorted sets manipreg and manipauto as
suspicious for qi = i, i = 1, 2, . . . , 99. The True Positive Rate
tpr is defined as tpr = TP/(TP + FN) = 1− fnr and the
False Positive Rate fpr is fpr = FP/(TN+FP) = 1−tnr,
where TP is the number of True Positives, i.e., of manipulated
objects that are marked suspicious, TN is the number of True
Negatives, i.e., of unmanipulated objects that are not marked,
and FP and FN are the respective False Positives/Negatives
and fnr and tnr the respective Rates. If one would assign
the “suspicious marks” randomly with equal probabilities to
q% (q ∈ [0, 100]) of the data, the expected true/false positive
rates would equal q, i.e., E[tpr] = E[fpr] = q, independent of
the share of real positives/negatives. The values for q = 0 and
q = 100 are meaningless since in the former case no object
would be marked as suspicious and in the latter case all objects
would be marked as suspicious. To summarize the results of
all runs, we calculate all quartiles of tpr and fpr for every qi,
i.e., minimum, first quartile, median, third quartile, maximum.
Before presenting the results of our analysis in Section VI, we
describe how the set of possible hyperparameters is found.

V. HYPERPARAMETERS

Since basically the set of possible hyperparameters is infi-
nite, it is quite natural that this set has to be shrunk. In doing
so, we start with an initial set for possible hyperparameters
and with an initial guess for a plausible setting (underlined).
This is done based on comparisons to similar problem as well
as extensive trail-and-error pre-tests.

The initial hyperparameter grid for RNN is:
• Activation function: linear, softplus, ReLU, tanh,
sigmoid

• Number of hidden layers: 0, 1, 3, 5, 7
• Dropout rate: 0%, 5%, 10%
• Number of neurons in each hidden layer: 32, 64, 128
• Batch size: 32, 64

10Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

• Learning rate: 5%, 10%
The initial grid for NNA is:
• Activation function: linear, softplus, ReLU, tanh,
sigmoid

• Number of hidden layers (excluding the code layer): 0,
2, 4, 6

• Dropout rate: 0, 0.05, 0.1
• Number of neurons in each hidden layers (except the code

layer): 32, 64, 128
• Batch size: 32, 64
• Learning rate: 0.05, 0.1
All other parameters are fixed to the values of Section IV-E.

Note that we intentionally did not include varying numbers of
neurons for the code layer (in the autoencoder case). This is
because higher numbers of neurons in the code lead to a higher
performance, but a lower compression. Since both values
are important for outlier detection, based on comparisons to
similar examples, we chose four as a promising tradeoff.

Using the heuristic strategy of sequential accumulative
selection, this set is further shrunk so that the hyperparameter
optimization in the algorithm in Figure 1 (in Section IV)
performs within a reasonable runtime. Next, we explain the
sequential accumulative selection: We started with performing
50 runs with the hyperparameters fixed to the underlined,
plausible values except for the activation function, which was
allowed to be any of the given possibilities. All activation
functions that were taken at least once in the hyperparameter
optimization in the 50 runs were declared to be also plausible,
all others were deleted. In the same fashion, next, the number
of hidden layers was analyzed, i.e., the hyperparameter opti-
mizer had to optimize over the set of the plausible activation
functions (due to step one there is possibly more than one
plausible activation function) and the number of hidden layers.
All values for the hidden layers that were chosen at least once
were declared to be also plausible, all others deleted. The
plausible activation functions remain the same. This procedure
is repeated in the following order with number of neurons,
dropout rate, batch size, learning rate. The results of the
sequential accumulative selection, i.e., of the diminution of
the possible hyperparameters can be found in Section IV-E.
For clear, the procedure of sequential accumulative selection
is done separately for RNN and NNA.

VI. RESULTS

Here, we do set neither an explicit threshold for the share
of data objects to be marked as suspicious nor an explicit
threshold for the SE resp. SSE beyond which the data objects
have to be marked as suspicious since the aim of this work
is not to find a classifier for manipulated wine data quality,
but the comparison of the two neural network based models.
How a threshold can be found is, e.g., outlined in [42]. To
illustrate the detection performance of RNN and NNA, we
calculate tpr and fpr for all Monte-Carlo-like runs and for
all qi = 1, . . . , 99. For all qi, we calculate the five quartiles of
tpr and fpr for RNN and NNA and plot these values against

q. The results are depicted in Figures 2 (tpr) and 3 (fpr).
The respective quartiles of NNA are drawn solid and of RNN
dashed.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r

[%
] (

qu
ar

til
es

)

model

NNA

RNN

Figure 2. The five quartiles of tpr for varying q and RNN (dashed), NNA
(solid), resp. Additionally, the diagonal and the 5% line are depicted. RNN
outperforms NNA in median, but not in all cases and for all q.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
q [%]

tp
r

[%
] (

qu
ar

til
es

)

model

NNA

RNN

Figure 3. The five quartiles of fpr for varying q and RNN (dashed), NNA
(solid), resp. Additionally, the diagonal and the 5% line are depicted. RNN
outperforms NNA in median, but not in all cases and for all q.

As we can easily observe, the regression network outper-
forms the autoencoder in most of the cases (remember that an
autoencoder does not use the information about the assumed
dependency) concerning tpr and fpr. Both models are better
than randomly guessing (cf. the diagonals in the figures). The
average runtime of RNN was with ca. 2h14’06” much larger
than those of NNA (ca. 15’40.8”). The performance of all four
models on the unmanipulated test data is depicted in Figure 4.

We see that NNA is best (in median), while autoencoders
are better than regressions (in median). RNN is (in median)
a little better than LM, however, its variability is the largest
among all models, while those of LM is the smallest.

11Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

0.00

0.05

0.10

0.15

0.20

NNA BA RNN LM
model

pe
rf

or
m

an
ce

 [M
A

E
] (

tr
un

ca
te

d
at

 0
.2

)

Figure 4. Boxplot of the performance (MAE) of NNA, BA, RNN, LM. There
are some outliers that are not depicted. In median, NNA is best, whilst the
interquartile distance is the smallest for LM.

VII. CONCLUSION

We analyzed four models for predicting resp. reconstructing
wine quality, two benchmark models and two deep neural
network based models (regression neural network and autoen-
coder network). We considered one resp. two specific datasets,
the vinho verde data. We find that a neural network based
autoencoder performs best on unmanipulated test data while a
linear regression shows the smallest variability in the results.

We then analyzed the ability of the two deep neural network
models for detecting manipulated wine ratings. It turns out
that in our study regressions outperform autoencoders on
this task although autoencoders are generally used for outlier
detection. There is a lot of literature concerning regressions
from measurable data to wine quality. Interestingly, such
regressions seem to work well also in our case for semi-
supervised manipulation identification. Further, we established
the procedure of sequential accumulative selection for finding
appropriate hyperparameters.

VIII. FUTURE WORK

In this paper, we assumed that it is reasonable that ma-
nipulations are applied to low rated wines to make them
appear better to increase sales numbers. It would be interesting
to test our approach also on other manipulation strategies,
including, e.g., intentional and unjustified down ratings. Future
work could also deal with the detection of faked ratings
when there are multiple ratings per product as it is typical
for many online stores or rating portals. Are there ways to
detect the faked/manipulated ratings (whether better or worse)
when there are many ratings for the same product? In this
context, many stores and portals offer the possibility to write
a review in addition to the plain rating. The processing of such
information (via Natural Language Processing; NLP) is likely
to be useful here.

Of course, other application areas apart from wine can
be investigated with our approach, for example, ratings for
products in online stores, restaurants, hotels. The detection of
fraud in telecommunication, insurance, etc. [43] is also closely
related. It could be of interest to identify the similarities and

differences between these applications and how they should be
addressed. When analyzing wine ratings, in addition to extend-
ing our approach to other, larger datasets with more features,
such as countries, producing regions, price segments, etc., it
is also worthwhile to apply other models, e.g., SVMs [14],
and compare the results to the neural network based models.
Further, an extensive comparison with other methodologies
concerning the topic of manipulation detection for wine ratings
could be done in future work.

The procedure of sequential accumulative selection (as
explained in Section V) can be further analyzed. One might
investigate whether and how the order of the features is impor-
tant. Comparisons to other hyperparameter selection methods
are also possible (cf. [26]). Last but not least, it should be
noted that the topic of explainable AI and responsible AI is
rapidly growing in importance [44]. For example, one can ask
how to explain which data sets are marked as suspicious. As
few as possible false positives are to be marked, whereas all
manipulated ones are to be recognized if possible. So how can
the decisions of the recognition algorithms be (understandably)
explained?

ACKNOWLEDGMENT

Michaela Baumann is with NÜRNBERGER Versicherung,
Germany. The opinions expressed here are her own and not
necessarily those of her employer.

The authors thank Lars Grüne and Bernhard Herz, both with
University of Bayreuth, Germany, as well as Claire Pfeil and
Heinrich Fritzlar, both with NÜRNBERGER Versicherung,
Germany.

REFERENCES

[1] G. Rosso, Italian Wines 2021 (English Edition), Gambero Rosso, 2021
[2] R. Parker, The Wine Advocate, https://www.robertparker.com/articles/the-

wine-advocate, accessed: 2022-02-02
[3] Gault&Millau, https://www.gaultmillau.com/, accessed: 2022-02-02
[4] Guide Michelin, https://guide.michelin.com/en, accessed: 2022-02-02
[5] D. Freedman, R. Pisani, and R. Purves, Statistics, 4th ed., W. W. Nor-

ton & Company, Inc., New York, London, 2007, Chapters 10-12
[6] E. Gelenbe, Z. H. Mao, and Y. D. Li, “Function approximation with

spiked random networks,” in IEEE Transactions on Neural Networks,
vol. 10, no. 1, 1999, pp. 3-9

[7] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” in Neural Computataion, vol. 1, no. 4, 1989,
pp. 502-510

[8] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why and
when can deep-but not shallow-networks avoid the curse of dimension-
ality: a review,” in International Journal of Automation and Computing,
vol. 14, no. 5, 2017, 503-519

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” in nature, vol.
521, no. 7553, 2015, pp. 436-444

[10] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier Detection
Using Replicator Neural Networks,” Data Warehousing and Knowledge
Discovery, 2002, pp. 170-180

[11] M. Sakurada and T. Yairi, “Anomaly Detection Using Autoencoders with
Nonlinear Dimensionality Reduction,” Proceedings of the MLSDA 2014
2nd Workshop on Machine Learning for Sensory Data Analysis, 2014,
pp. 4-11

[12] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” in science, vol. 313, no. 5786, 2006, pp.
504-507

[13] J. D. Kelleher, Deep learning, MIT press, 2019
[14] I. Steinwart and A. Christmann, Support Vector Machines, Springer,

2008

12Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

[15] D. L. Donoho, “High-dimensional data analysis: The curses and bless-
ings of dimensionality,” in AMS math challenges lecture, 2000

[16] J. W. Tukey, “The future of data analysis,” in The Annals of Mathemat-
ical Statistics, vol. 33, no. 1, Institute of Mathematical Statistics, 1962,
pp. 1-67

[17] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physicochemical properties,” in
Decision Support Systems, vol. 47, no. 4, 2009, pp. 547-553

[18] P. Cortez et al., “Using data mining for wine quality assessment,”
in International Conference on Discovery Science, Springer, Berlin,
Heidelberg, 2009, pp. 66-79

[19] Y. Gupta, “Selection of important features and predicting wine quality
using machine learning techniques,” in Procedia Computer Science, vol.
125, 2018, pp. 305-312

[20] À. Nebot, F. Mugica, and A. Escobet, “Modeling wine preferences from
physicochemical properties using fuzzy techniques,” in SIMULTECH,
2015, pp. 501-507

[21] S. Kumar, Y. Kraeva, R. Kraleva, and M. Zymbler, “A deep neural
network approach to predict the wine taste preferences,” in Intelligent
Computing in Engineering, Springer, Singapore, 2020, pp. 1165-1173

[22] P. Abbal, J. M. Sablayrolles, E. Matzner-Lober, and A. Carbonneau,
“A model for predicting wine quality in a rhône valley vineyard,” in
Agronomy Journal, vol. 111, no. 2, 2019, 545-554

[23] O. Ashenfelter, “Predicting the quality and prices of Bordeaux wine,”
in The Economic Journal, vol. 118, no. 529, 2008, F174-F184

[24] O. Ashenfelter, “Predicting the quality and prices of Bordeaux wine,”
in Journal of Wine Economics, vol. 5, no. 1, 2010, 40-52

[25] R. Schwarz, “Predicting wine quality from terrain characteristics with
regression trees,” in Cybergeo: European Journal of Geography, 1997

[26] T. H. Y. Chiu, C. Wu, and C. H. Chen, A generalized wine quality pre-
diction framework by evolutionary algorithms,” in International Journal
of Interactive Multimedia & Artificial Intelligence, vol. 6, no. 7, 2021,
pp. 60-70

[27] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey”, ACM Comput. Surv., vol. 41, no. 3, 2009, article no. 15, pp.
1-15

[28] V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies.”
Artificial Intelligence Review, vol. 22, 2004, pp. 85-126

[29] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
Anomaly Detection: Methods, Systems and Tools,” in IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 1, 2014, pp. 303-336

[30] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” in Computer
Networks, vol. 51, no. 12, 2007, pp. 3448-3470

[31] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection:
A Survey,” preprint on arXiv, https://arxiv.org/abs/1901.03407, 2019

[32] C. C. Noble and D. J. Cook, “Graph-Based Anomaly Detection,”
Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2003, pp. 631-636

[33] Wine Quality Datasets, Universidade do Minho,
http://www3.dsi.uminho.pt/pcortez/wine/, accessed: 2022-02-02

[34] kaggle (Piyush Agnihotri), White Wine Quality—Simple and
clean practice dataset for regression or classification modelling,
https://www.kaggle.com/piyushagni5/white-wine-quality, accessed:
2022-01-19

[35] kaggle (UCI Machine Learning), Red Wine Quality—Simple and
clean practice dataset for regression or classification modelling,
https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009,
accessed: 2022-01-17

[36] Open Data Commons—Legal tools for Open Data, Database Contents
License (DbCL) v1.0, https://opendatacommons.org/licenses/dbcl/1-0/,
accessed: 2022-01-19

[37] T. Shin, “Predicting Wine Quality with Several Clas-
sification Techniques” towards data science, 2020,
https://towardsdatascience.com/predicting-wine-quality-with-several-
classification-techniques-179038ea6434, accessed: 2022-02-02

[38] D. Nguyen, “Red Wine Quality Prediction Using Regression
Modeling and Machine Learning,” Towards Data Science, 2020,
https://towardsdatascience.com/red-wine-quality-prediction-using-
regression-modeling-and-machine-learning-7a3e2c3e1f46, accessed:
2022-02-02

[39] F. Rodrı́guez Mir, “Red Wine Quality,” Data UAB, 2019,
https://datauab.github.io/red wine quality/, accessed: 2022-02-02

[40] unknown “Wine Quality Prediction,” cppsecrets.com, 2021,
https://cppsecrets.com/users/10126100104105114971061121141111061
019964103109971051084699111109/WINE-QUALITY-PREDICTION.
php, accessed: 2022-02-02

[41] D. Alekseeva, “Red and White Wine Quality,” RPubs,
https://rpubs.com/Daria/57835, accessed: 2022-02-02

[42] N. Japkowicz, C. Myers, and M. Gluck, “A Novelty Detection Approach
to Classification,” IJCAI, vol. 1, 1995, pp. 518-523

[43] M. Baumann, “Improving a rule-based fraud detection system with
classification based on association rule mining,” INFORMATIK 2021,
2021, pp. 1121-1134

[44] M. Baumann, “Data science challenge 2021: explainable machine
learning,” https://github.com/DeutscheAktuarvereinigung/Data-Science-
Challenge2021 Explainable-Machine-Learning, accessed: 2022-02-04

13Copyright (c) IARIA, 2023. ISBN: 978-1-61208-972-0

ICCGI 2022 : The Seventeenth International Multi-Conference on Computing in the Global Information Technology

