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Abstract—The increasing popularity of smartphones makes them
popular tools for various big data collecting crowdsourcing
campaigns, but there are still many open questions about the
proper methodology of these campaigns. Beyond this, despite the
growing popularity of this type of research, there are familiar
difficulties and challenges in handling a wide range of uploads,
maintaining the quality of the datasets, cleaning the data sets
containing noisy, incorrect data, motivating the participants, and
providing support for data collecting regardless of the remoteness
of the device. In order to collect information about the Network
Address Translation (NAT) related environment of mobile phones,
we utilized a crowdsourcing approach. We collected more than 70
million data records from over 100 countries measuring the NAT
characteristics of more than 1300 carriers and over 35000 WiFi
environments during the three year project. Here, we introduce
our data collecting architecture, some of the most prominent
problems we have encountered since its launch, some of the
solutions and proposed solutions to handle difficulties.

Keywords–smartphones; data cleaning; crowdsourcing.

I. MOTIVATION

In recent years, smartphones have become part of our
everyday lives. Their wide range of uses along with multiple
sensors, networking and computational capabilities have also
made them seemingly ideal platforms for research. One re-
search area is data collection, with the collected datasets avail-
able for a wide area of analysis, including network mapping,
discovering and analyzing various networks, and the network
coverage of certain areas.

Different research teams from all over the world have dis-
covered these new opportunities, and they employ smartphones
as crowdsourcing tools in a wide variety of ways. Through
crowdsourcing, they assign tasks to different users with dif-
ferent device types to collect data in real-life situations, or a
monitored environment, providing huge amounts of realistic
data. In recent years, we have seen a lot of successful, and
interesting approaches to this methodology.

However, it is still a question of how exactly crowdsourcing
campaigns should be implemented. Several research projects,
such as SmartLab [1], the behaviour-based malware detection
system Crowdroid [2], and the cross-space public information
crowdsensing system FlierMeet [3] recruited a small number
of users, who could be trusted, contacted if necessary, and pro-
vided the data taken from a known environment, specifically
chosen, or created for the crowdsourcing project. This limited
the variability and the amount of the data, but the results were
of a high quality and easy to validate.

Another approach for recruitment is to upload the smart-
phone application to the Google Play store, or the Apple App
Store, making it available for download by anyone world-wide,
and opening up data collecting opportunities for anyone who
agreed to the terms and services of the software package. With
proper marketing, the results could include enormous datasets

obtained from around the world. The NoiseTube project [4]
for crowdsourcing noise pollution detection was downloaded
by over 500 people from over 400 regions world-wide. The
Dialäkt App [5], one of the most well-known crowdsourcing
campaigns in recent years, was the most downloaded iPhone
app in Switzerland after its launch, with wide media coverage,
and over 78000 downloads from 58923 users by the time they
had published their results. Many more datasets were collected
in the Bredbandskollen project, later to be used by various
smartphone-based research projects [6], which has collected
network data from 3000 different devices and over 120 million
records since its launch in 2007, and the OpenSignal [7]
application, which between 2012 and 2013 collected over 220
million data records from more than 530000 devices and from
over 200 countries.

However, collecting data using smartphones is not without
its difficulties, and there are a number of challenges when
smartphones are used as the prime source of information.
Among these, battery consumption and network state are
among the most important elements, as constantly accessing
the state of the phone sensors and listening to specific events
takes a heavy toll on the battery, making data collection
inadvisable in certain situations (for example, after a device
signalled a battery low event), and it is feasible, but pointless
in other situations (the phone is on a charger while the user is
asleep - the energy is there, but the valuable information is only
a fraction of what we would get from an active user). Network
state again has to be taken into account, as even today in many
environments, we cannot ensure that a device will always have
a connection strong enough to send the collected data to the
server. Privacy is also an issue, since the data has to remain
identifiable yet not contain any trace of personal information.

Aside from all of the above, if data collection was success-
ful, we still have the problem of noisy, incorrect, disorganized
data. We have to take into consideration the fact that there are
different devices, different versions of the same OS, bugs, such
as duplicated records uploaded by the client on network error
and damaged records resulting from a similar event. We also
have to take user interference into account, who may not wish
to provide valuable data (e.g., by deliberately leaving the phone
at home on a charger, having it switched off during specific
hours, etc.). Their results will still be counted as valuable data,
but this can severely distort the collected data set, as well as
the results used in evaluations.

An even bigger problem, when crowdsourcing is a global
campaign, is that of time synchronization. Not only do we
have to find a good solution for the various time zones of
the devices, but also the different time codes of the phone
collecting and sending the data and the server storing this data,
and the possibility that the user might have manually altered
the date and time on the test phone as well.

All of the possibilities mentioned above result in a mixed
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situation where the power and potential of the smartphones, as
research tools cannot be denied, but to acquire correct, useful
data is a challenge in itself. This requires careful planning,
taking into account almost every possible cause of data distor-
tion, well-defined filters and data cleaning algorithms before
any actual research can be performed on the data collected.
In this article, we are going to present our solutions with this
type of data collection, and our solutions to the problems that
emerged.

Our goal was to develop an Android app in order to
collect important network information for research on the
peer-to-peer (p2p) capabilities of smartphones, including the
NAT type, network type and network provider. It does so
by taking measurements on a regular basis as well as during
specific events. When taking the measurements, the app sends
a request to a randomly chosen Session Traversal Utilities for
NAT (STUN) Server from a list, displaying useful network
information, such as the IP address and NAT type to the user,
while also storing the necessary data in an SQLite database,
which later gets uploaded to a data collector server for analysis.
The application called Stunner has been available for download
from the Play Store since December 2013 [8].

Using the collected data, we will be able to define the graph
model of a worldwide, peer-to-peer smartphone network. In
this model, we aim to test various peer-to-peer protocols to
measure the capabilities of a serverless network architecture,
where the phones can slowly update their datasets and generate
various statistics, without the data ever leaving this smartphone
network. The ultimate goal of our research is the creation of
an Application Programming Interface (API), through which
developers can utilize these peer-to-peer capabilities to create
various data collecting and processing applications (for exam-
ple, general mood or health statistic researching applications
for a specific region) without the need of a processing server.

II. LITERATURE OVERVIEW

The challenges outlined above have been collected from
the research results of other teams (Table I) - and nearly all of
them offered good design viewpoints during the development
of our own data collecting application.

Perhaps the best overview of the possible difficulties was
provided by Earl Oliver [9]. While developing a data collecting
application for BlueBerry, he defined five of the most common
and serious problems, namely volatile file systems on mobile
devices (as file systems can be easily mounted and unmounted
on nearly any device), the energy constraints, the intervention
of third-party applications running in the background, the non-
linear time characteristics of the devices, and malicious user
activity (file manipulation, simulated manipulation, etc.)

He solved these by exploiting many trends of BlackBerry
users: the general maintenance of high battery levels, retrieving
manifests of active applications, and data analysis for patterns
of manipulation attacks. However, even he could not define a
general solution for every problem, and these problems were
not the only ones encountered by other research teams. In fact,
they found other challenges to be rather common among data
collecting applications.

The researchers at Rice University, while developing Live-
Lab [10], a methodology used to measure smartphone users
with a similar logging technique, encountered the problem
of energy constraints, with various optimizations needed to
lower the high consumption of the logging application. They
also recognized the problem associated with data uploading,
namely the connectivity to the server which collects the data

from the devices and updates them with new information. They
chose rsync for its ability to robustly upload any measurement
archive which failed earlier.

A similar method of re-uploading the failed archives was
used by a research team at the University of Cambridge in
their Device Analyzer project [11], which sought to build a
dataset that captured real-world usage of Android smartphones,
again with a similar event logging based solution. They found
that repeated attempts at uploading caused duplicated data
on the server, which could simply be removed by the server
before saving it to a database. They also solved the above-
mentioned problem of nonlinear time by timestamping every
measurement with the device’s uptime in milliseconds, record-
ing the wall-clock time of the device when their application
started, and later recording every adjustment to it by listening
to the notifications caused by these adjustments. From these
three elements, a simple server-side processing algorithm was
able to reconstruct the exact wall-clock time of any given
measurement.

Members of the Italian National Research Council [12]
also confirmed these challenges (i.e., the scarcity of resources,
difficulties with network monitoring and privacy) while also
highlighting two more problems, caused by the participants
using the devices - the much more complex control tasks
in these types of research projects, and the issue of user
motivation to get them carry out the tasks required to get valid
data.

TABLE I. COMPARISON OF DATA COLLECTING PROJECTS

Problem BlackBerry
logger

Device Analyzer Portolan Livelab

Energy
constraints

OS callback
based logging

Only 2% of the
energy
consumption

Computational and
analyzation processes are
run by the server and the
collecting is not too
energy consuming

The logging
events are
optimized,
some of the
data being
collected
directly from the
system logs

Non-linear
time

Dates are
logged in a
UTC timezone;
datetime
modifications
recorded

Every measurement
stamped with a device
uptime in milliseconds;
on startup, the device
time is logged, like
every modification
on device time

Not described (there is a
strict communication
between client and server,
probably kept in sync by
this procedure)

Not described,
the datetime is
most likely to
be among the
logged data

Offline state,
unsuccessful
upload

- Batched uploads only
when the device is
online and the charger
is connected

Uploads are handled by
proxy servers

Rsync protocol
keeps trying
until the upload
is successful

Multiplicated
data

- Every device has a file
on the server, multiple
copies of data being
detected by the server

This is solved by proxy
servers

Not described
most likely to
be filtered by
the server

In this article, we present our experiences with
crowdsourcing-based data collection along with our methods
and results of data cleaning on the present dataset.

• We propose a solution for the biggest challenge of the
batched data uploads, namely the time synchroniza-
tion among the different elements of the architecture,
utilizing a 3-way logging solution, and lightweight log
synchronization.

• We introduce heuristics to analyze incorrect NAT
values, in order to decide which cases failed because
of server side problems, and which cases originated
from the client side.

• We also introduce a data cleaning algorithm to correct
timestamp overlaps, using battery-based smartphone
heuristics to detect anomalies among consecutive mea-
surements, such as excessively rapid charging, or
charging when the smartphone is in a discharging state
or when no charger is connected.
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III. OUR FRAMEWORK

A. Architecture
Our goal with crowdsourcing measurements was to collect

information about the network environment of mobile phones.
This information is of key importance if one wishes to build a
p2p network mobile phones. The crowdsourcing architecture
consists of an Android based mobile app, several publicly
available STUN servers and a data collecting server. The
application collects the information described in Table II.

TABLE II. DISCOVERYDTO OBJECT

DiscoveryDTO

batteryDTO Energy supply data specified in the BatteryInfoDTO.

wifiDTO WiFi connection data at the moment of measurement
specified in the WifiIntoDTO.

mobileDTO Mobile network data at the moment of measurement
specified in the MobileNetInfoDTO.

publicIP The public (external) IP address.

localIP The local (internal) IP address.

timestamp UNIX timestamp at the end of the measurement.

androidVersion The version of Android running on the device.

discoveryResultCode The result of the NAT measurement, defined by the
DiscoveryResult enumeration.

connectionMode The connection code used while taking the measurement
is defined by the ConnectionType enumeration.

triggerCode The event that triggered the measurement is defined by
the DiscoveryTriggerEvent enumeration.

appVersion The version of the application.

timeZoneUTCOffset The difference between UTC and the device time in
signed integer format.

Taking a measurement can be triggered by the events
defined in the DiscoveryTriggerEvents enumeration. The event
that triggered the measurement lives until the last running test
is complete. The enumeration consists of the following items.

• USER: The user started the measurement using the
user interface (UI).

• CONNECTION CHANGED: The broadcast sent by
the Android indicated changes in the connection and
it triggered the taking of the measurement.

• BATTERY LOW: The broadcast sent by the Android
indicated a low charge level and it triggered the taking
of the measurement.

• BATTERY POWER CONNECTED: The broadcast
sent by the Android indicated a connection to a power
supply and it triggered the taking of the measurement.

• BATTERY POWER DISCONNECTED: The broad-
cast sent by the Android indicated a disconnection
from a power supply and it triggered the taking of
the measurement.

• BATTERY SCHEDULED: The scheduled battery sta-
tus control triggered the taking of the measurement,
which occurs every 10 minutes.

• BOOT OR FIRST START: Taking the measurement
was triggered by the first execution of the application
or by the booting of the device.

A measurement starts with an Intent object. The Intent
establishes a new DiscoveryService that uses the Discovery-
ThreadHandler to start a new thread. The application uses a
service implementation running in the background, which may
be executed in parallel (with more threads) (Figure 1).

There are two different types of collection, namely online
and offline. It is online if there is an active Internet connection
on a WiFi or Mobile Network - in this case all the data types
mentioned above can be measured and collected. In the case of
no Internet connection, there is no guarantee that the network
information will be initialized. The schedule in the offline case
is set to 30 minutes.

The uploading process occurs when a device is online and
it contains at least 10 non-uploaded measurements stored in the
local database. After a successful uploading, the records get
deleted from the local database in order to avoid duplication.
The application did not store any index associated with the
measurements, the only field available for this being the
timestamp, stored with the discovery data. The storage time
is very limited. In fact, after the very first measurement on a
given day, the application deletes every record from previous
days.

B. Statistics
Our application went live on 20th December, 2013. To

promote the usage of the application we also launched a
campaign, during which we provided 80 university students
and users with smartphones, who agreed to download and
provide data with the application for the duration of one year.
On 21st March, 2017 the application had been downloaded
and installed by 14,727 users on 745 different device types
representing 1300+ carriers and 35000+ WiFi networks.

Although we have not released a new version since 5th
January, 2016, the average daily installs have remained un-
changed in recent months (the most popular phase being in
2015).

Our target API level was originally 19 (Android 4.4), but
the application is still being downloaded and installed on more
and newer devices, with Android 6.0 being currently the most
popular on active installs.

We have also reached a wide variety of different types
of devices, upon which the application got installed. The
application also successfully reached hundreds of different
mobile providers in different countries, which provided us
with various, realistic NAT patterns and traces - which will be
important later on, after the data cleaning phase is finished, and
the analysis and usage of the data collected has commenced.

1) The collected data and the most important descriptive
statistics: Based on the size of the dataset collected and our
good track record since the 2013 release, it is safe to say
that our application and data collecting campaign were both a
success (with 70+ million records).

The chart (Figure 2) shows the number of uploaded records
per device. The majority of users did not provide any measure-
ments, but the decline of the slope lessened, indicating that the
users who provided data were more likely to stay and keep
providing data.

During the summer of 2015 we had to reassign some
resources to other projects, resulting in an absence of data
in the given time period. However, after restarting the server,
our input declined only slightly, resulting in a steady amount
of data arriving to this day despite the gap of a few months
(Figure 3).

An interesting aspect is that although the daily uploads
have been pretty steady since the hiatus, the number of active
devices providing the uploads has been on a steady decline
since early 2016. We hope that with our current developments,
this decline can be reversed, and a new record in both the
number of active devices and daily uploads obtained (Figure
4).
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/Intent

/DiscoveryService

/DiscoveryThreadHandler

<<create>>

<<create>>

/SyncAdapter

triggerSync()

/Connector<<create>>

/UploadRequest
<<create>>

/DataUploadService

HTTP Post to /datacollector/rest/upload
/ApplicationDAO<<create>>

/UploadedData<<create>>

records

response

/DataUploadServiceResponse

response

Figure 1. Upload process

Figure 2. The plot shows the uploaded data per device

Figure 3. The plot show the uploaded data per day during the whole
measurement period.

Following the hiatus, the first spike above shows all the
collected data uploaded to the server at the same time. While
the Wifi based tests closely follow the trends of active devices
and daily uploads, the Mobile Operator-based measurements
have been taken at a relatively low, but steady rate (Figure 5).
The plot indicates that we can monitor more than 200 mobile
networks and over 500 WiFi environments day after day. Here
we have shown that a significant amount of data has been
collected over the three year period. The real value of the
data depends on the quality of the timestamps. Now, we will
describe our findings in the area of data cleaning.

Figure 4. The plot shows the number of active devices per day.

Figure 5. The measurements based on Mobile Operator and WiFi.

IV. ISSUES WITH COLLECTED DATA

A. Data Duplication
In spite of the theoretically sound software environment

where the server-side logic was implemented in JEE with
transactional integrity taken into account, it turned out that
a significant proportional percentage of the dataset had been
duplicated. We applied simple heuristics in order to filter out
the duplicate measurement records by comparing only the
client-side content and skipping the server-side timestamp and
other added information. In practice, we utilized the Python
Pandas framework duplicate filtering method shown in Figure
6, to remove the duplicates.

We found that out of the 70+ million rows only 30+
million rows were unique, while the remaining part were
duplicates. We investigated the possible root cause of this
phenomenon. Figure 7 shows the total submitted records per
device versus the duplicated records per device. It clearly
shows that there is a linear relationship between the two values.
This is an evidence that this is a system-level symptom and
not a temporal one related to the server overloading. The same
is true if we check the temporal dimension of the duplicated

PSEUDO CODE:
d a t a [ ’ d u p l i c a t e d ’ ] = = d a t a . d u p l i c a t e d ( s u b s e t =[ a l l c l i e n t s i d e columns ] , keep = ’ f i r s t ’ )

Figure 6. JSON sample
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Figure 7. The plot shows the duplicated data per device vs the total number
of records submitted by that device

Figure 8. The plot concerning the duplicated data per day (server side)

records during the given period (Figure 8).
After an in-depth investigation of the client code, we found

that the default HttpClient configuration contained a very
robust upload model, with a default value of 3 retries for every
HyperText Transfer Protocol (http) operation, if it failed with
a timeout. This is a very useful method for simple data upload,
but in our case, if the timeout chosen in the settings was too
short, the client might have uploaded the same batch of records
up to four times to the server, which would acknowledge and
store all of them. In order to stop further multiple uploads,
we will need to carefully look at the correct timeout and retry
values and also identify the upload batches, so the server will
be able to detect the retries on upload.

1) Overlap of the client-side timestamps: The actual un-
reliability of the client-side timestamps was a surprise for us.
Figure 9 shows the difference between the Android timestamp
and the date captured on the server side. A significant number
of measurements have big differences between these two
dates. The difference between the two timestamps is only an
indication that there could be an error in the measurements as
a week or weeks may pass by after capturing and uploading

Figure 9. Difference between the Android and Server date

TABLE III. HEURISTICS FOR DETECTION

Name Description Detection capability

Fast change detector (ABC
and SBC) (the first letter
codes the ordering applied:
A - android, S - server side,
this coding being consistent
among the different
detectors)

We used the battery percentage and its sluggish
behaviour to detect the fast changes. We defined
the speed of change as the ratio of the two
consecutive timestamps and the battery
percentage difference between these two
timestamps. We defined a threshold high enough
to be able to recognize the measurement as an
error.

For time-reset starting
date estimation.

Rules based on charging and
plugged state

This method focuses on the rules defined without
time being included.
Rules: Charging (more than 20% change) while
not on charger (ACEU-SCEU)
Charging (more than 20% change) while in
discharging state (ACED-SCED)
Big changes between consecutive elements
(charging 20%, discharging 6%) (AP-SP)
Charging (more than 20% change) while not on
the charger and the phone is in a discharging
state (ASC-SSC)

These methods could be
applied in order to detect
the beginning of a new
measurement period
(among the overlapped
timestamps)

the data to the server in the case of missing or inadequate
network conditions.

We started to examine the nature of the Android timestamp.
First, we noticed records with timestamps that were signifi-
cantly earlier (e.g., 01.01.1970) or later (01.01.2023) than our
other measurements. Finding invalid time periods was trivial
(like 2023), but it transpired during our in-depth investigation
that several phones were reset to a valid date that lay within the
observation period. In order to be able to properly detect this
anomaly, we elaborated several simple heuristics for detection,
these being shown in Table III.

We applied the anomaly detection heuristics mentioned
above in order to compare two basic sorting approaches;
namely, sorting by the server-side information (e.g., serial
number) and the sorting based on the mobile timestamp. We
observe that for about 6-7 thousand devices the number of
errors is zero. So about 1/8 of the total devices are affected by
the time overlap. Figure 10 shows the results of the fast change
detector applied for the two ordering approach (it was run on a
filtered dataset, skipping the valid data). The green line (server-
side sorting) indicates fewer fast change errors in most cases
(it was able to eliminate this error on about 40% of the affected
devices). The scatterplot below (Figure 11) also shows a clear
correlation between the two sorting approaches and the number
of fast change errors. The slope of the correlation line (and the
points under the line) tells us that the server side sorting was
able to reduce the fast change errors in most cases. Based on
these findings, one simple approach for time overlap fixing
might be the hybrid sorting approach where a given number
of records are located after a fast change error had been sorted
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Figure 10. Fast change errors

Figure 11. Mobile timestamp and server-side ordering

based on the server-side sorting.
The effectiveness of the simple server-side sorting is also

shown in the Figure 12 concerning the correlation between
different error detection heuristics and the sorting methods. It
is apparent that server-side sorting can significantly decrease
the error level for all error detectors (when comparing the same
method with S and A sorting, most of the points are below or
above the similarity line).

With the previously described heuristics, we were able to
demonstrate that the server-side sort order can reduce the rows
suspected of being in the wrong position to about 1/10 of
the total dataset. A further decrease in the suspected errors
could be achieved with a richer ruleset that incorporated
different mathematical models for batteries. For our purposes,
the current reliability level of the causality dimension of the
data set is quite sufficient.

B. NAT discovery result code corrections
The main feature of our application is the discovery of

the NAT type. Users can ask the application about their NAT
information and public IP address. This method is based on
User Datagram Protocol (UDP) message-based communication
between the device and a randomly picked STUN server. A
STUN server can discover the public IP address and the type
of NAT that the clients are behind.

We were faced with a problem that was caused by the
prefixed STUN server list. It contains a list of 12 reliable

Figure 12. Error detectors

servers that are suitable for NAT detection, this list being
embedded inside the application code. It allows the device
to randomly pick a STUN server. As a result, every measured
NAT type in the timeline is based on a different STUN server’s
NAT test. Hence it makes the measured data more trustworthy.
This random pick approach has been well designed and worked
very well initially. However, after a time four of the STUN
servers went offline without any prior notice. Since then this
four failed STUN server provide the same NAT discovery
result code as firewall blocked connections. As a result of
this error, some uncertainty exists in the NAT discovery result
code. Therefore we propose a solution on how to correct it and
make the collected data useable afterward. Quite significantly,
another solution is needed to avoid connections to a failed
STUN server.

Now we need to discuss the obscure NAT discovery result
code. This is the 16.76% of the total measurement records. We
have carried out this examination over the dataset, which has
already been prefiltered and processed, the order being based
on the approach defined above (Figure 13).

Firstly we need to discuss the FIREWALL BLOCKS re-
sult code. This code is corresponding to NAT tests that has
open communication channel but never get response from the
STUN server. In normal case it means that firewall blocks the
connection. Unfortunately records also has no response from
failed server. Even though a part of those records may have
online NAT type. Therefore these records are uncertain and
further examination is needed.

Below, we present a method for filter the STUN server
errors from FIREWALL BLOCKS discovery result code.
These set of records contains uncertain potential online states.
The server fails with a 4/12 probability, and the event of
consecutive repeated fails has an exponential pattern. Conse-
quently we define sessions with consecutive repeated FIRE-
WALL BLOCKS discovery result codes and look at their
distribution. If the distribution is roughly an exponential dis-
tribution, then we can interpret them as online and we can
define their network properties. Otherwise, the others that do
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Others

4

3

76

12

1
17

5

21

-2
40

NAT Discovery Result Code

-2 NO CONNECTION 11951611 40.03%

-1 ERROR 29 < 0.01%

0 OPEN ACCESS 706662 2.37%

1 FIREWALL BLOCKS 5002770 16.76%

2 SYMMETRIC FIREWALL 198442 0.66%

3 FULL CONE 1993739 6.68%

4 RESTRICTED CONE 280969 0.94%

5 PORT RESTRICTED CONE 6240586 20.90%

6 SYMMETRIC CONE 3482591 11.66%

Figure 13. Discovery Result Code

Others

3

3

8
1

10

6 14

5

24

-2
42

NAT Discovery Result Code after correction

-2 NO CONNECTION 12401805 41.53%

-1 ERROR 29 < 0.01%

0 OPEN ACCESS 284206 0.95%

1 FIREWALL BLOCKS 2999985 10.05%

2 SYMMETRIC FIREWALL 230693 0.77%

3 FULL CONE 2295290 7.69%

4 RESTRICTED CONE 318136 1.07%

5 PORT RESTRICTED CONE 7272018 24.35%

6 SYMMETRIC CONE 4055237 13.58%

Figure 14. NAT Discovery Result Code after correction

Figure 15. Discovery result code enclosed by sessions

Figure 16. Length of candidate sessions

not have an exponential fit will remain FIREWALL BLOCKS.
This means that in this way we cannot prove the opposite
(firewall blocks the connection). In general, we are looking
for a session that begins and ends with the same network
property and there are only uncertain online states between
them. These sessions may be interpretable based on the begin-
end enclosures. More specifically, the sessions must
• begin and end with the same NAT discovery result

code
• begin and end with the same Service Set Identifier

(SSID) in the case of a wifi connection
• begin and end with the same mobile operator in the

case of a mobile data connection
• contain only uncertain online states
• contain a time gap between two records only in a range

of 0 to 15 minutes based on the fact that the maximum
time gap between two regular online records is almost
10 minutes. However, it is not very accurate because of
the Android support scheduler with its inexact trigger
time requirements.

• not be interrupted by trigger events that correspond to
any potential change in network properties.

We show the above-defined candidate sessions in Figure
15 and Figure 16. Let us first take a look at how many

uncertain discovery result codes are enclosed by these sessions
in Figure 15. It is clear that the first four point seem to
fit an exponential curve. Consequently, it is still open to
interpretation and the rest of the points remain undefined.
Next, Figure 16 shows length of the above-defined sessions.
There are some peaks around every 10 minutes. These peaks
correspond to the BATTERY SCHEDULED trigger event,
which is scheduled every 10 minutes and this is the most
common trigger event. For example, if there is exactly one
uncertain FIREWALL BLOCKS value in the appropriate ses-
sion and every taking of a measurement is triggered by this
schedule event, then its length of time is around 20 minutes.
Based on this example, an above-defined session that contains
three unknown records lasts for 50 minutes. Accordingly, we
examined the points from the first phase up to 50 minutes. Our
examination revealed that it also had an exponential pattern.
In contrast to the distribution in Figure 15, this distribution
appears more complex, but it is still acceptable. Next we
associate the two findings. More specifically, the intersection of
the two sets is an above-defined session that contains less than
five uncertain elements and it lasts no longer than 50 minutes.
Based on this rule we can correct the network properties of
6.7% measurement records.

Next, we should mention some further minor errors asso-
ciated with data collection. In a very few cases there was no
network connection, but it still has some errors in the discovery
result code (mainly code 0). We simply correct all of them to
the no connection state (-2).

Now let us have a look at the final results of the NAT data
correction in Figure 14. Records with FIREWALL BLOCKS
code are reduced to 10%, and the records with online state are
expanded.

V. LESSONS LEARNT

Based on our findings, some of the challenges encountered
proved to be quite trivial, and required only some small
modifications to the algorithm, while others still have to be
tested with our proposed solutions.

On the client side, we have found several elements where
the default approach of Android development proved insuffi-
cient, and special consideration was needed for proper data
collection. We found that the timeout value of the Android
application should be increased in proportion to the connectiv-
ity quality with the data collector server, while the number of
retries should be reconsidered and perhaps revised with upload
batches accompanied by identifiers to make duplicate detection
easier.

The detection of the NAT anomalies was made significantly
easier through the NetworkInfo and WifiInfo objects of the
Android system. When collecting network data, we found it
highly advisable to include as many attributes from these rich
objects as possible - such as SSID, whether the phone is in the
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roaming mode and whether the network is connection metered
-, since any of these could explain possible anomalies in the
dataset. For example, the phone might be connected to a wifi
network, but the router is not necessarily connected to the
Internet; or, if it is located at a public establishment, it may
redirect the requests to the establishment’s login site instead of
the original destination - all of which are serious problems, and
they could go unnoticed without detailed information about the
network.

Regarding the NAT problem, it is also advisable to recon-
sider storing the list of external servers in a constant array
(a practice which is very common based on our experiences),
because if one of those servers goes offline, it might generate
huge amounts of incorrect data. A proxy which stores the
server list, keeps it updated by using regular checkups, and
forwards the list to the phones on request, would be a better
solution here.

Also, while the deletion of previous data is a good practice
to stop the application from taking up too much storage space,
the 24 hour limit might be too short, since important events
could get lost in that time period. The time limit for storage
before deletion should be featured among the settings. Even
after a delete, it is necessary to leave some trace of the deleted
data - at least a log -, so the anomalies in the later, successful
uploads could be interpreted.

The timestamp desynchronization between the server and
the client remains perhaps the most challenging problem, with
the battery based sortings providing some improvements in the
dataset. One solution might be a lightweight log timestamping.
In this case only a hash of the log would be sent to the server
frequently (in order to minimize the mobile traffic and preserve
the battery), where a reliable timestamp would be attached
on the server side to this hash and saved in a permanent
storage. In this way, we may define reliable milestones which
are independent of the mobile side timestamps. On the mobile
side, it is important to preserve the total order of the events.
This could be achieved by using a simple increasing indexing
procedure in the SQLite database.

We mentioned that even NAT types may be misleading,
despite the quality of the connection. Once again, some of
these incorrect values could be corrected by simply checking
the actual state of connectivity during the upload. The NAT
type in the remaining records is mostly corrected by a pattern
recognition method. Hopefully, this problem may never occur
again after the proposed changes have been made to handle a
dynamic STUN server list.

VI. CONCLUSIONS

As the reader can no doubt see that our approach worked
well in the above-mentioned areas of data cleaning. Since the
application was launched in 2013, it has been downloaded by
more than 14.000 users from over 1300 different carriers and
35000 different WiFi areas, to hundreds of different device
types, which is providing enormous amounts of valuable data
for the analysis of NAT traces, patterns, and later on, for the
simulation of the above attributes.

Compared to other crowdsourcing projects, our crowd-
sourcing approach was a hybrid methodology, where we pro-
vided a certain number of users with smartphones, and released
the app to the Play Store for wider availability, and took more
data measurements from different parts of the world. We did
not reach the volume of OpenSignal or Bredbandskollen with
their 100-200+ million datasets, but this hybrid solution still
provided us with a much bigger amount of valuable data than
a closely monitored environment like FlierMeet or SignalLab

that had roughly 40 devices, a shorter collection time period,
and operated in a restricted environment like a university
campus or a development environment.

Lastly, though we have encountered some of the most
challenging problems of the smartphone-based data-collection,
our data cleaning approach successfully handled the incorrect,
distorted data, and turned the dataset into a clean, organized
state, which is ready for further use and processing. From this
clean data, we are ready to start the graph modeling of the
worldwide peer-to-peer smartphone network. In this simulated
network we will be able to test the dynamics, attributes and
capabilities of smartphones with real-life measurements, and
later, the results of concrete peer-to-peer protocol applications.
Our next major step will be the development and in-depth
testing of peer-to-peer algorithms, the determination of the
speed and stability of smaller applications running in this
simulated environment.
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