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Abstract—Emphasis on energy efficient computing has established 

power consumption, as well as energy and heat dissipation as 

determinant metrics for analyzing High performance computing 

applications. Consequently, optimizations that target High 

performance computing systems and data centers have to 

dynamically monitor system power consumption in order to be 

effective. Current architectures are exposing on-chip power 

sensors to designers and users. The general state of power 

measurement tools across different architectures, however, 

remains deficient. Recent research has shown that first-order, 

linear models can be effectively used to estimate real-time power 

consumption. This paper describes a neural-network based model 

for fine-grain, accurate and low-cost power estimation. The 

proposed model takes advantage of the wide array of performance 

monitoring counters available on current systems. We analyze the 

prediction capability of the model under various scenarios and 

provide guidelines for feature selection for other machine learning 

models for estimating power consumption on future architectures. 

Keywords–energy efficiency; power consumption; workload 
characterization, performance counters. 
 

I. INTRODUCTION 
 

The proliferation of portable wireless devices, along with 

the rapid growth of high-performance server farms and data 

centers, have made energy efficiency a central concern for the 

entire computing industry. Poorly managed and unbalanced 

power consumption of computing systems has direct economic 

and environmental impact in the form of high energy bills and 

large carbon footprints. Furthermore, it leads to device 

reliability degradation and high chip packaging costs. In recent 

years, numerous strategies for reduction in power usage have 

emerged. Current research is focused on hardware techniques 

such as developing new energy conserving components and on 

software strategies that aim to exploit existing hardware in an 

energy-efficient manner.  

Most software techniques rely on methods for estimating 

system power in making optimization decisions. Several 

architectures provide a mechanism for measuring power 

directly. But for architectures that do not expose these metrics, 

obtaining system power involves attaching an external device 

or running costly simulations [1]. Neither method is suitable for 

software-based techniques that need to react to changes in 

power usage and make real-time decisions to conserve energy. 

Furthermore, even on platforms where the power counters are 

available, measurements incur a high overhead.  

An efficient solution can be constructed via the reuse of 

hardware devices. One of the most important elements used in 

previous research is the set of built-in Performance Monitoring 

Counters (PMCs). These are registers built into the Central 

Processing Unit (CPU) and/or into the Performance Monitoring 

Unit (PMU) that can track performance-related information such 

as instruction counts, cache misses, and resource stalls. 

Several models that correlate program behavior, captured via 

PMCs, to system power consumption have been proposed. In the 

body of research on modeling of CPU power consumption using 

PMCs, the dominant trend is to use linear regression. A linear 

framework is useful for understanding the relations between and 

importance of the independent variables used, but it is very rigid 

and requires tailoring to the specific problem.  

This article presents an analysis of the power prediction 

behavior of a linear regression model from various perspectives 

and compares it to a neural network model. The purpose of this 

is to discover the underlying patterns of these models on the 

specific task of estimating and predicting power through the 

PMU hardware. This knowledge can serve as a guide for 

researchers for further investigation of power models.  
The paper is organized as follows: Section II discusses 

related work. Section III details the research methodology, the 
experimental setup, the experiments, and the results obtained. 
Section IV includes result evaluation and Section IV presents 
conclusions and proposals for future research. 

 

II. RELATED WORK 
 

The use of PMCs for energy-aware applications has been 

heavily researched over the past few years. One of the first links 

between PMCs and power consumption has been pointed to by 

Bellosa [2]. In his paper, Bellosa has demonstrated the high 

correlation of PMCs to power consumption, and has presented 

strategies for energy-aware scheduling.   

Contreras et el. have used PMCs in a linear model for the 

prediction of CPU (and memory) power consumption [3]. Singh 

et al. demonstrated the use of PMCs for power-aware thread 

scheduling [4]. Nagasaka et al. have been able to achieve good 

results by using PMCs to estimate GPU energy consumption 

[5]. Stockman et al. has examined machine learning techniques 

for the prediction of memory power usage [6]. Rodrigues et al. 

have shown that a power estimation model trained on one CPU 

can be used with reasonable accuracy on other CPUs with 

similar micro- architectures [7]. Lee et al. have investigated the 

use of PMCs for estimating micro-architectural components 

temperature [8]. Cavazos et al. have presented work on using 

PMCs to determine the best compiler optimization settings [9]. 

While these papers demonstrate the importance of PMCs for 

CPU performance evaluation, the use of PMCs for power 

estimation and prediction is concentrated on regression models. 

Our literature survey did not identify reference to the usage of 

neural networks for this process.   
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III. METHODOLOGY 
 

This section includes details concerning the setup, data 

collection, and models used in the reported experiments. This 

information is useful as a point of reference concerning the 

machines and models in the experimental section as well as for 

implementing similar experiments on additional machines. 
 

A. Selecting PMC Events 

In the initial stages of the project, twelve PMCs of an Intel- 

based system have been considered for use in the models. For 

the final models, the five with the highest correlation value and 

the resource stalls counter have been chosen. Similar PMCs to 

those six have been located for the AMD machine and for the 

Power PC architecture. 
 

B. Generating Training Data 

To generate the training data for the learning models we 

have utilized a workload generation script that creates a large 

number of parallel workloads with diverse characteristics. The 

script selects a subset of the PARSEC programs and executes 

them by varying execution parameters such as the number of 

threads and data set size [1][3][7]. During each run of a 

workload, the PMC events listed in Table I are probed at a fixed 

interval. The power consumption values are recorded using the 

available power sensors on the Sandybridge architecture 

[1][3][7]. We have used an interval of 10 seconds. 

The Watts-Up-Pro power meter is used for collecting power 

samples from the AMD machine since that machine does not 

have power sensors [7]. Initially, unnecessary background 

programs have been disabled, the workload script has been 

initiated, and peripherals have been disconnected. The 

workload has generated PMC event samples with an added time 

stamp component to assist in the synchronization with the 

power samples. Power samples have been collected every 2 

seconds, and the PMC samples have been collected every 8 

seconds (16 total as a sample is collected in two steps). 

After the workload script has completed, the power samples 

have been collected from the memory of the PMU. To create 

the final dataset, the four power samples leading up to the 

elapsed time per PMC half-sample are found. Then, the eight 

power samples per PMC sample are averaged and used in the 

final dataset. This method has proved as highly reliable. The 

workload power patterns have been found to be well defined 

and prediction on the set has been very accurate. 

 

C. Linear Regression Model 

In these experiments, a straightforward multivariate linear 

regression model is used. The model is expresses via the 

following equation: 
 

𝑌𝑝𝑤𝑟 =  𝑎1 × 𝑝1 +  𝑎2 × 𝑝2 + . . . + 𝑎6 × 𝑝6     (1)  
 

Where 𝑝𝑖 are the PMC counter values, 𝑎𝑖 are the coefficients 

to be trained/identified, and 𝑌𝑝𝑤𝑟 is the power value. The 

model starts with 𝑌𝑝𝑤𝑟 = 𝑎1 × 𝑝1 and a term, 𝑎𝑖 × 𝑝𝑖 is 

added at each step. The lm training function from R is used. 
 

 

 

 

 

 

 

 

D. Neural Network Model 

In contrast to the linear model, a neural network is more 

flexible, but more difficult to train. Additionally, because the 

weights are randomly initialized and the training only finds 

local minima, there is a problem with the results variance. There 

are several types of neural networks; for the reported 

experiments, a multi-layer, feed-forward structure utilizing the 

neuralnet implementation from R has been used. The default 

resilient back-propagation with weight backtracking procedures 

are used for training the model [10] 

A neural network model consists of an input layer, one or 

more hidden layers, and an output layer. Our neural network 

model has one node in the input layer for each PMC event, and 

one node for the power value in the output layer. There are two 

hidden layers, one layer with 5 nodes and a second layer with 3 

nodes. Originally, the model had only one layer, however the 

performance has been deficient. The addition of an extra layer 

has achieved satisfactory accuracy. The final values, which 

have yielded the local minimum, have provided significant 

improvement over the linear regression model. 

Every node in a layer of the neural network model is mapped 

to every other node in the next layer. A mapping from one node 

to another can be represented by a weighted edge and finding 

these weights is the goal of training the network. The values of 

each node are calculated using: the values from the previous 

layer, the weights, and a squashing function. As an example, let 

𝑣𝑗𝑚 be the 𝑗𝑡ℎ node in layer 𝑚, and let 𝑣𝑖𝑛 be the 𝑖𝑡ℎ node in the 

previous layer 𝑛, let 𝑤𝑖,𝑗be the weight from node 𝑖 to node 𝑗, 

and let 𝑠𝑞𝑠ℎ be the sigmoid function. Then, 
 

𝑣𝑗𝑚 = 𝑠𝑞𝑠ℎ(∑ (𝑣𝑖𝑛
𝑛
𝑖=1 × 𝑤𝑖,𝑗))     (2) 

 

The hidden and output layers have an additional bias node 

whose value is always 1.  
 

IV. EVALUATION 
 

This section presents and discusses the results of various 

experiments. Each experiment examines a particular aspect of 

power prediction using the data, models, and setup described in 

the previous section.  
 

A. Platforms 

Table II provides details on the three systems that served as 

the evaluation platforms. In the rest of the paper, we refer to these 

platforms using the names listed in the header row. We have 

included both AMD and Intel-based systems in our experiments 

as the PMC units differ significantly. 
 

B. Effect of Sample Size 

The first experiment has explored the effect that the number 

of power samples has on the amount of prediction error. The 

purpose of this experiment is to determine the benefit of using 

more power samples for training. Figure 1 provides the results of 

this experiment. 

At the beginning of the procedure, the samples of the dataset 

are normalized and shuffled. We have chosen to run the 

experiment for 24 trials of increasing sample size. 
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TABLE I. PERFORMANCE COUNTER EVENT NAMES PER MACHINE 

 
 

Phenom Sandybridge 
 

CPU CLOCKS UNHALTED UNHALTED CLK CYCLES 

INSTRUCTIONS RETIRED INSTR RETIRED ANY 

UOPS RETIRED UOPS RETIRED ALL 

DISPATCHED FAST FPU FP COMP OPS EXE X87 

BRANCH MISPREDICT RETIRED BR MISP RETIRED ALL BRANCHES 

DISPATCH STALLS RESOURCE STALLS ANY 

 

 

Figure 1. Sample Size Result on Phenom (l) and Sandybridge (r) 
 

The next step is used to determine the number of samples    

Needed for increasing the dataset between each trial. After this, 

the dataset of each trial is split into 6 disjoint partitions for 

cross-validation (6-fold). Multiple runs of the procedure 

produce graphs with variability that makes it difficult to discern 

a clear pattern. To emerge the underlying pattern, the procedure 

has been repeated 50 times and the values are averaged. Both 

of the graphs for this experiment used the same procedure. One 

result used samples of the Phenom dataset [7], and the other 

used samples of the Sandybridge dataset.  

The experiment results are interesting in several ways. First, 

the results are very similar despite the fact that each run used a 

dataset from different architectures. This is representative of the 

similar nature of the datasets, despite the fact they came from 

different architectures. Second, the linear regression model 

reaches its best performance for a small number of samples. 

Third, the neural network eventually outperforms the linear 

regression model, but at different numbers of sample size. We 

speculate that the neural network overtakes the linear model at 

different points both because of the amount of noise in the 

Sandybridge data, and the inherent differences that are due to 

differing architectures.  

The noisiness of the Sandybridge data has the larger effect 

as it prevents the linear regression model from converging to a  

 

 

 

 

 

 

lower error. Thus, the intersection point moves leftward. This 

assumes that the neural network can better handle noisy data. 

In general, not much improvement in accuracy is seen 

between the models by the maximum amount of samples used. 

It is necessary, however, to have at least one thousand samples 

for obtaining reasonable variance. It is also expected that the 

neural network will continue to achieve slightly better 

accuracy for larger dataset sizes. A good strategy for quick 

power modeling is to collect one thousand samples and use a 

linear regression model. If accuracy the observed accuracy is 

not sufficient, a neural network model with a few thousand 

samples is recommended. We expect future collected datasets 

of the same type as used in this paper to behave similarly. 
 

C. Effect of the Number of PMCs 
 

The next experiment has examined the way that the 

performance of a power model behaves as more PMCs 

counters are included. Figure 2, depicts the experiment results. 

At the start of the procedure, the samples of the dataset are 

normalized and shuffled. The dataset at each trial is then split 

into 6 disjoint partitions for cross-validation. This procedure 

is conducted on each dataset to obtain the respective results.
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TABLE II. EVALUATION PLATFORMS 

 
 Core Sandybridge Phenom 

Cores 4 6 (12 logical with HT) 4 
Processor 2.40 GHz Intel Core 2 Quad 2.0 GHz Intel Xeon 1.00 GHz AMD Phenom 

L1 32 KB (private) 32 KB (private per physical core) 64 KB (private) 
L2 

L3 

2 × 4 MB (shared 2 cores) 

none 

256 (private per physical core) 

15 MB (shared all) 

512 KB (private) 

2 MB (shared) 
Compiler GCC 4.8.2 -O2 GCC 4.8.2 -O2 GCC 4.8.2 -O2 
OS Ubuntu 14.04.1 Ubuntu 14.04.1 Ubuntu 14.04.1 

Kernel 3.13 3.13 3.13 
 

TABLE III. PMC EVENT NAMES IN ORDER OF ADDITION FOR EXPERIMENT 4.2 

 
 Phenom Sandybridge 

1 INSTRUCTIONS RETIRED UNHALTED CLK CYCLES 
2 UOPS RETIRED INSTR RETIRED ANY 
3 BRANCH MISPREDICT RETIRED UOPS RETIRED ALL 

4 CPU CLOCKS UNHALTED FP COMP OPS EXE X87 
5 DISPATCHED FAST FPU BR MISP RETIRED ALL BRANCHES 

6 DISPATCH STALLS RESOURCE STALLS ANY 

 
 

 
1 2 3 4 5 6 

Number of PMCs 
 

 
1 2 3 4 5 6 

Number of PMCs 

Figure 2. Number of PMCs Result on Phenom (l) and Sandybridge (r) 
 

The PMCs have been added to the feature vector in order 

of decreasing Spearman correlation value. This method can be 

used with any set of PMC events. Table III provides the names 

of the PMCs in the order of insertion. The results from this 

experiment did not exhibit similar patterns.  

 

 

For the Sandybridge dataset, both models have performed 

very similarly with one feature. Each subsequent feature 

improved performance for each model, showing stronger 

improvement for the neural network model. For the Phenom 

dataset, the neural network outperformed the linear regression 

model up until the fourth feature, after which the difference in 

performance became smaller. A few phenomena have been 

observed from these results. First, having more features 

improves accuracy. Second, a neural network model slightly 

outperforms a linear regression model with the same feature 

set. 

Most machines have built-in PMCs, but only a few 

performance counters can be sampled at a time. From these 

experiment, it is easy to see that better results are obtained 

when more features are sampled. Furthermore, four metrics is 

a sufficient number of features to sample at a time. PMCs can 

be collected in alternating sets. This, however, slows down the 

rate of update in a real-time system by a multiple of the 

amount of sets. Additionally, there are problems if the PMCs 

are sampled over long periods of time. 
 

D. Performance on New Workloads 
 

To measure performance on new workloads, rather than 

unseen samples, the following experiment is performed. With 

this experiment, the error of the models on unseen workloads 

is observed. This may give an account the type of workloads 

that are not well predicted by our set of PMC events. The 

experiment results are depicted in Figure 3. 

In this experiment, both the Phenom and Sandybridge 

datasets have been used. Initially, each dataset has consisted 

of samples collected from 66 different workloads. Both 

datasets shared a very similar distribution of samples for the 

respective workloads. The first step in preparing the datasets 

for the experiment is excluding very small workloads. The 

next step is trimming down all the remaining datasets (54 data 

sets) to the size of the sample with the minimum number of 

samples. This eliminates the likelihood that a large sample 

will cause a training. Next, for each reaming workload, the 

models are trained on samples from all other workloads and 

the prediction error is determined.   
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10 20 30 40 50 60 

Workload 
 

 
10 20 30 40 50 60 

Workload 
 

Figure 3. Feature Selection Result on Phenom (l) and Sandybridge (r) 
 

The procedure is executed 50 times and averaged for the final 

result. This method is used to produce the resulting graph for 

the Phenom and Sandybridge datasets (Figure 3).  

The graphs of Figure 3 are structured in a way to display the 

error per workload as a set of distinct trials, and to accentuate 

the relative error between the linear regression and neural 

network. Each point plots the prediction error on a workload 

after being trained on all the other workloads. There are two 

points per workload trial, a blue one for the neural network 

result and a red one for the linear regression result. A line 

connects a pair and has the color of the best performing model. 

The models have very similar performance on Phenom 

35.2% of the time (less than 0.15 Watt difference). They 

demonstrate similar performance on Sandybridge 27.8% of the 

time (less than 0.20 Watt difference). With the Phenom data, 

the neural network outperforms the linear regression model 

59.3% of the time. With Sandybridge, the linear regression 

model won out 55.6% of the time. On average, Phenom had 

error of 1.42 +/- 0.68 Watts for the linear regression model and 

1.40 +/- 0.68 Watts for the neural network model. On 

Sandybridge, the average error is 2.75 +/- 1.60 Watts for the 

linear regression model and 2.78 +/- 2.37 Watts for the neural 

network model. 

 

 

A. Cross-Architecture Power Prediction 

The final experiment performed discovers whether patterns 

in power prediction are reasonably similar between different 

architectures. If this is the case, it would be reasonable to train 

a predictive model on one architecture and use it for prediction 

on other machines. The experiment results are included in 

figure 4. 

 

 
 

Figure 4. Cross-Architecture Result for Neural Network Model 
 

The procedure for this experiment starts with the 

normalization of datasets to the range of [0, 1]. After this step, 

the models are trained on the data from one machine and used 

for prediction on the other machine. To settle the intrinsic 

variance in the neural network model, we have averaged the 

results over 50 experiments. 

The linear regression model is able to achieve a prediction 

error of 8.13 +/- 5.42 Watts when trained on the Sandybridge 

data and used for prediction on Phenom. The error is 9.28 +/- 

5.32 Watts when trained on Phenom and used for prediction on 

Sandybridge. These are moderately acceptable results. The box 

objects in Figure 4 show the performance of the neural network 

when trained on Phenom and used for prediction on 

Sandybridge (𝑅(𝑇) and 𝑇(𝑅)). The 𝑅(𝑇) performance is about 

the same as the linear regression model achieved. The 𝑇(𝑅) 

performance had a relatively low median error, but high 

variance. 

In conclusion, the result of this experiment is quite 

surprising. We did not expect the models to perform as well as 

they did. However, the performance of prediction between 

machines with vastly different architectures is still quite poor 

and not a recommended alternative to the collection of training 

data from the target machine itself. On the other hand, it is very 

these results signify that prediction between similar machines 

could be performed much more accurately. This is in line with 

the cross-architecture prediction results of [7]. 
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V. CONCLUSION AND FURTHER RESEARCH 
 

Several aspects of power prediction using PMCs are 

examined in this paper. These are: the effect of the number of 

power samples used, the effect of the number of performance 

counters used, the predictive accuracy on unseen workloads, 

and the prediction accuracy using training data from machines 

with different architectures. 

In the sample size experiment, it is concluded that more 

samples improved the performance of neural network model 

consistently. On the other hand, the linear regression model 

settled onto its best accuracy after only a relatively small 

number of samples. The immediate conclusion is that using a 

linear regression model is probably fine for most applications 

and in cases where only a small number of samples are 

available. Otherwise, if high accuracy is desired, it would be 

better to use a neural network with a high number of samples. 

The next experiment has examined the way that an 

increasing number of performance counters affects prediction 

accuracy. It has been concluded that using more performance 

counters (starting with the highest correlated counter) generally 

leads to better accuracy. Four counters has provided sufficient 

accuracy for both machines tested. The experiment for 

prediction ability on new workloads showed no obvious 

patterns between the two machines. This result may indicate 

that the prediction error of this type of workload, cannot be 

accurately determined given a set of PMCs. This could be, 

however, the cause of a difference between implementation of 

the PMCs on the different machines. 

The final experiment has examined the prediction 

performance of training the models on one machine and using 

them for prediction on the other machine. The result is not 

“bad” given that the two machines used are from very 

different architectures. This shows that there exist common 

patterns in the collected PMC data between machines. While 

this would not be useful for very different machines, it could 

be useful when considering machines with similar 

architectures. A power-aware scheduling program built on one 

machine can work well on a similar machine without having 

to collect any new samples. 

In tandem, these experiments highlight useful behavior of 

power-PMC modeling concentrating on the use of neural 

networks for this purpose. 

 

 

 

In the future we plan to explore additional neural networks 

and perform additional experiments for PMU counter selection. 

Additionally, the power estimation and power prediction 

models will be embedded in a meta-scheduler developed by the 

research team. 
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