
Evaluating Neural Network Methods for PMC-based CPU Power Prediction

Mario Gutierrez, Dan Tamir, and Apan Qasem
Department of Computer Science

Texas State University

San Marcos, TX

 {mag262, dt19, apan}@txstate.edu

Abstract—Emphasis on energy efficient computing has established

power consumption, as well as energy and heat dissipation as

determinant metrics for analyzing High performance computing

applications. Consequently, optimizations that target High

performance computing systems and data centers have to

dynamically monitor system power consumption in order to be

effective. Current architectures are exposing on-chip power

sensors to designers and users. The general state of power

measurement tools across different architectures, however,

remains deficient. Recent research has shown that first-order,

linear models can be effectively used to estimate real-time power

consumption. This paper describes a neural-network based model

for fine-grain, accurate and low-cost power estimation. The

proposed model takes advantage of the wide array of performance

monitoring counters available on current systems. We analyze the

prediction capability of the model under various scenarios and

provide guidelines for feature selection for other machine learning

models for estimating power consumption on future architectures.

Keywords–energy efficiency; power consumption; workload
characterization, performance counters.

I. INTRODUCTION

The proliferation of portable wireless devices, along with

the rapid growth of high-performance server farms and data

centers, have made energy efficiency a central concern for the

entire computing industry. Poorly managed and unbalanced

power consumption of computing systems has direct economic

and environmental impact in the form of high energy bills and

large carbon footprints. Furthermore, it leads to device

reliability degradation and high chip packaging costs. In recent

years, numerous strategies for reduction in power usage have

emerged. Current research is focused on hardware techniques

such as developing new energy conserving components and on

software strategies that aim to exploit existing hardware in an

energy-efficient manner.

Most software techniques rely on methods for estimating

system power in making optimization decisions. Several

architectures provide a mechanism for measuring power

directly. But for architectures that do not expose these metrics,

obtaining system power involves attaching an external device

or running costly simulations [1]. Neither method is suitable for

software-based techniques that need to react to changes in

power usage and make real-time decisions to conserve energy.

Furthermore, even on platforms where the power counters are

available, measurements incur a high overhead.

An efficient solution can be constructed via the reuse of

hardware devices. One of the most important elements used in

previous research is the set of built-in Performance Monitoring

Counters (PMCs). These are registers built into the Central

Processing Unit (CPU) and/or into the Performance Monitoring

Unit (PMU) that can track performance-related information such

as instruction counts, cache misses, and resource stalls.

Several models that correlate program behavior, captured via

PMCs, to system power consumption have been proposed. In the

body of research on modeling of CPU power consumption using

PMCs, the dominant trend is to use linear regression. A linear

framework is useful for understanding the relations between and

importance of the independent variables used, but it is very rigid

and requires tailoring to the specific problem.

This article presents an analysis of the power prediction

behavior of a linear regression model from various perspectives

and compares it to a neural network model. The purpose of this

is to discover the underlying patterns of these models on the

specific task of estimating and predicting power through the

PMU hardware. This knowledge can serve as a guide for

researchers for further investigation of power models.
The paper is organized as follows: Section II discusses

related work. Section III details the research methodology, the
experimental setup, the experiments, and the results obtained.
Section IV includes result evaluation and Section IV presents
conclusions and proposals for future research.

II. RELATED WORK

The use of PMCs for energy-aware applications has been

heavily researched over the past few years. One of the first links

between PMCs and power consumption has been pointed to by

Bellosa [2]. In his paper, Bellosa has demonstrated the high

correlation of PMCs to power consumption, and has presented

strategies for energy-aware scheduling.

Contreras et el. have used PMCs in a linear model for the

prediction of CPU (and memory) power consumption [3]. Singh

et al. demonstrated the use of PMCs for power-aware thread

scheduling [4]. Nagasaka et al. have been able to achieve good

results by using PMCs to estimate GPU energy consumption

[5]. Stockman et al. has examined machine learning techniques

for the prediction of memory power usage [6]. Rodrigues et al.

have shown that a power estimation model trained on one CPU

can be used with reasonable accuracy on other CPUs with

similar micro- architectures [7]. Lee et al. have investigated the

use of PMCs for estimating micro-architectural components

temperature [8]. Cavazos et al. have presented work on using

PMCs to determine the best compiler optimization settings [9].

While these papers demonstrate the importance of PMCs for

CPU performance evaluation, the use of PMCs for power

estimation and prediction is concentrated on regression models.

Our literature survey did not identify reference to the usage of

neural networks for this process.

138Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

III. METHODOLOGY

This section includes details concerning the setup, data

collection, and models used in the reported experiments. This

information is useful as a point of reference concerning the

machines and models in the experimental section as well as for

implementing similar experiments on additional machines.

A. Selecting PMC Events

In the initial stages of the project, twelve PMCs of an Intel-

based system have been considered for use in the models. For

the final models, the five with the highest correlation value and

the resource stalls counter have been chosen. Similar PMCs to

those six have been located for the AMD machine and for the

Power PC architecture.

B. Generating Training Data

To generate the training data for the learning models we

have utilized a workload generation script that creates a large

number of parallel workloads with diverse characteristics. The

script selects a subset of the PARSEC programs and executes

them by varying execution parameters such as the number of

threads and data set size [1][3][7]. During each run of a

workload, the PMC events listed in Table I are probed at a fixed

interval. The power consumption values are recorded using the

available power sensors on the Sandybridge architecture

[1][3][7]. We have used an interval of 10 seconds.

The Watts-Up-Pro power meter is used for collecting power

samples from the AMD machine since that machine does not

have power sensors [7]. Initially, unnecessary background

programs have been disabled, the workload script has been

initiated, and peripherals have been disconnected. The

workload has generated PMC event samples with an added time

stamp component to assist in the synchronization with the

power samples. Power samples have been collected every 2

seconds, and the PMC samples have been collected every 8

seconds (16 total as a sample is collected in two steps).

After the workload script has completed, the power samples

have been collected from the memory of the PMU. To create

the final dataset, the four power samples leading up to the

elapsed time per PMC half-sample are found. Then, the eight

power samples per PMC sample are averaged and used in the

final dataset. This method has proved as highly reliable. The

workload power patterns have been found to be well defined

and prediction on the set has been very accurate.

C. Linear Regression Model

In these experiments, a straightforward multivariate linear

regression model is used. The model is expresses via the

following equation:

𝑌𝑝𝑤𝑟 = 𝑎1 × 𝑝1 + 𝑎2 × 𝑝2 + . . . + 𝑎6 × 𝑝6 (1)

Where 𝑝𝑖 are the PMC counter values, 𝑎𝑖 are the coefficients

to be trained/identified, and 𝑌𝑝𝑤𝑟 is the power value. The

model starts with 𝑌𝑝𝑤𝑟 = 𝑎1 × 𝑝1 and a term, 𝑎𝑖 × 𝑝𝑖 is

added at each step. The lm training function from R is used.

D. Neural Network Model

In contrast to the linear model, a neural network is more

flexible, but more difficult to train. Additionally, because the

weights are randomly initialized and the training only finds

local minima, there is a problem with the results variance. There

are several types of neural networks; for the reported

experiments, a multi-layer, feed-forward structure utilizing the

neuralnet implementation from R has been used. The default

resilient back-propagation with weight backtracking procedures

are used for training the model [10]

A neural network model consists of an input layer, one or

more hidden layers, and an output layer. Our neural network

model has one node in the input layer for each PMC event, and

one node for the power value in the output layer. There are two

hidden layers, one layer with 5 nodes and a second layer with 3

nodes. Originally, the model had only one layer, however the

performance has been deficient. The addition of an extra layer

has achieved satisfactory accuracy. The final values, which

have yielded the local minimum, have provided significant

improvement over the linear regression model.

Every node in a layer of the neural network model is mapped

to every other node in the next layer. A mapping from one node

to another can be represented by a weighted edge and finding

these weights is the goal of training the network. The values of

each node are calculated using: the values from the previous

layer, the weights, and a squashing function. As an example, let

𝑣𝑗𝑚 be the 𝑗𝑡ℎ node in layer 𝑚, and let 𝑣𝑖𝑛 be the 𝑖𝑡ℎ node in the

previous layer 𝑛, let 𝑤𝑖,𝑗be the weight from node 𝑖 to node 𝑗,

and let 𝑠𝑞𝑠ℎ be the sigmoid function. Then,

𝑣𝑗𝑚 = 𝑠𝑞𝑠ℎ(∑ (𝑣𝑖𝑛
𝑛
𝑖=1 × 𝑤𝑖,𝑗)) (2)

The hidden and output layers have an additional bias node

whose value is always 1.

IV. EVALUATION

This section presents and discusses the results of various

experiments. Each experiment examines a particular aspect of

power prediction using the data, models, and setup described in

the previous section.

A. Platforms

Table II provides details on the three systems that served as

the evaluation platforms. In the rest of the paper, we refer to these

platforms using the names listed in the header row. We have

included both AMD and Intel-based systems in our experiments

as the PMC units differ significantly.

B. Effect of Sample Size

The first experiment has explored the effect that the number

of power samples has on the amount of prediction error. The

purpose of this experiment is to determine the benefit of using

more power samples for training. Figure 1 provides the results of

this experiment.

At the beginning of the procedure, the samples of the dataset

are normalized and shuffled. We have chosen to run the

experiment for 24 trials of increasing sample size.

139Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

TABLE I. PERFORMANCE COUNTER EVENT NAMES PER MACHINE

Phenom Sandybridge

CPU CLOCKS UNHALTED UNHALTED CLK CYCLES

INSTRUCTIONS RETIRED INSTR RETIRED ANY

UOPS RETIRED UOPS RETIRED ALL

DISPATCHED FAST FPU FP COMP OPS EXE X87

BRANCH MISPREDICT RETIRED BR MISP RETIRED ALL BRANCHES

DISPATCH STALLS RESOURCE STALLS ANY

Figure 1. Sample Size Result on Phenom (l) and Sandybridge (r)

The next step is used to determine the number of samples

Needed for increasing the dataset between each trial. After this,

the dataset of each trial is split into 6 disjoint partitions for

cross-validation (6-fold). Multiple runs of the procedure

produce graphs with variability that makes it difficult to discern

a clear pattern. To emerge the underlying pattern, the procedure

has been repeated 50 times and the values are averaged. Both

of the graphs for this experiment used the same procedure. One

result used samples of the Phenom dataset [7], and the other

used samples of the Sandybridge dataset.

The experiment results are interesting in several ways. First,

the results are very similar despite the fact that each run used a

dataset from different architectures. This is representative of the

similar nature of the datasets, despite the fact they came from

different architectures. Second, the linear regression model

reaches its best performance for a small number of samples.

Third, the neural network eventually outperforms the linear

regression model, but at different numbers of sample size. We

speculate that the neural network overtakes the linear model at

different points both because of the amount of noise in the

Sandybridge data, and the inherent differences that are due to

differing architectures.

The noisiness of the Sandybridge data has the larger effect

as it prevents the linear regression model from converging to a

lower error. Thus, the intersection point moves leftward. This

assumes that the neural network can better handle noisy data.

In general, not much improvement in accuracy is seen

between the models by the maximum amount of samples used.

It is necessary, however, to have at least one thousand samples

for obtaining reasonable variance. It is also expected that the

neural network will continue to achieve slightly better

accuracy for larger dataset sizes. A good strategy for quick

power modeling is to collect one thousand samples and use a

linear regression model. If accuracy the observed accuracy is

not sufficient, a neural network model with a few thousand

samples is recommended. We expect future collected datasets

of the same type as used in this paper to behave similarly.

C. Effect of the Number of PMCs

The next experiment has examined the way that the

performance of a power model behaves as more PMCs

counters are included. Figure 2, depicts the experiment results.

At the start of the procedure, the samples of the dataset are

normalized and shuffled. The dataset at each trial is then split

into 6 disjoint partitions for cross-validation. This procedure

is conducted on each dataset to obtain the respective results.

140Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

TABLE II. EVALUATION PLATFORMS

 Core Sandybridge Phenom

Cores 4 6 (12 logical with HT) 4
Processor 2.40 GHz Intel Core 2 Quad 2.0 GHz Intel Xeon 1.00 GHz AMD Phenom

L1 32 KB (private) 32 KB (private per physical core) 64 KB (private)
L2

L3

2 × 4 MB (shared 2 cores)

none

256 (private per physical core)

15 MB (shared all)

512 KB (private)

2 MB (shared)
Compiler GCC 4.8.2 -O2 GCC 4.8.2 -O2 GCC 4.8.2 -O2
OS Ubuntu 14.04.1 Ubuntu 14.04.1 Ubuntu 14.04.1

Kernel 3.13 3.13 3.13

TABLE III. PMC EVENT NAMES IN ORDER OF ADDITION FOR EXPERIMENT 4.2

 Phenom Sandybridge

1 INSTRUCTIONS RETIRED UNHALTED CLK CYCLES
2 UOPS RETIRED INSTR RETIRED ANY
3 BRANCH MISPREDICT RETIRED UOPS RETIRED ALL

4 CPU CLOCKS UNHALTED FP COMP OPS EXE X87
5 DISPATCHED FAST FPU BR MISP RETIRED ALL BRANCHES

6 DISPATCH STALLS RESOURCE STALLS ANY

1 2 3 4 5 6

Number of PMCs

1 2 3 4 5 6

Number of PMCs

Figure 2. Number of PMCs Result on Phenom (l) and Sandybridge (r)

The PMCs have been added to the feature vector in order

of decreasing Spearman correlation value. This method can be

used with any set of PMC events. Table III provides the names

of the PMCs in the order of insertion. The results from this

experiment did not exhibit similar patterns.

For the Sandybridge dataset, both models have performed

very similarly with one feature. Each subsequent feature

improved performance for each model, showing stronger

improvement for the neural network model. For the Phenom

dataset, the neural network outperformed the linear regression

model up until the fourth feature, after which the difference in

performance became smaller. A few phenomena have been

observed from these results. First, having more features

improves accuracy. Second, a neural network model slightly

outperforms a linear regression model with the same feature

set.

Most machines have built-in PMCs, but only a few

performance counters can be sampled at a time. From these

experiment, it is easy to see that better results are obtained

when more features are sampled. Furthermore, four metrics is

a sufficient number of features to sample at a time. PMCs can

be collected in alternating sets. This, however, slows down the

rate of update in a real-time system by a multiple of the

amount of sets. Additionally, there are problems if the PMCs

are sampled over long periods of time.

D. Performance on New Workloads

To measure performance on new workloads, rather than

unseen samples, the following experiment is performed. With

this experiment, the error of the models on unseen workloads

is observed. This may give an account the type of workloads

that are not well predicted by our set of PMC events. The

experiment results are depicted in Figure 3.

In this experiment, both the Phenom and Sandybridge

datasets have been used. Initially, each dataset has consisted

of samples collected from 66 different workloads. Both

datasets shared a very similar distribution of samples for the

respective workloads. The first step in preparing the datasets

for the experiment is excluding very small workloads. The

next step is trimming down all the remaining datasets (54 data

sets) to the size of the sample with the minimum number of

samples. This eliminates the likelihood that a large sample

will cause a training. Next, for each reaming workload, the

models are trained on samples from all other workloads and

the prediction error is determined.

LNR ANN

LNR ANN

M
e

a
n

 C
V

 E
rr

o
r

(W
a
tt
s
)
+
/−

 S
D

2

.4

2
.6

2

.8

3
.0

3

.2

1
.5

2

.0

2
.5

141Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

10 20 30 40 50 60

Workload

10 20 30 40 50 60

Workload

Figure 3. Feature Selection Result on Phenom (l) and Sandybridge (r)

The procedure is executed 50 times and averaged for the final

result. This method is used to produce the resulting graph for

the Phenom and Sandybridge datasets (Figure 3).

The graphs of Figure 3 are structured in a way to display the

error per workload as a set of distinct trials, and to accentuate

the relative error between the linear regression and neural

network. Each point plots the prediction error on a workload

after being trained on all the other workloads. There are two

points per workload trial, a blue one for the neural network

result and a red one for the linear regression result. A line

connects a pair and has the color of the best performing model.

The models have very similar performance on Phenom

35.2% of the time (less than 0.15 Watt difference). They

demonstrate similar performance on Sandybridge 27.8% of the

time (less than 0.20 Watt difference). With the Phenom data,

the neural network outperforms the linear regression model

59.3% of the time. With Sandybridge, the linear regression

model won out 55.6% of the time. On average, Phenom had

error of 1.42 +/- 0.68 Watts for the linear regression model and

1.40 +/- 0.68 Watts for the neural network model. On

Sandybridge, the average error is 2.75 +/- 1.60 Watts for the

linear regression model and 2.78 +/- 2.37 Watts for the neural

network model.

A. Cross-Architecture Power Prediction

The final experiment performed discovers whether patterns

in power prediction are reasonably similar between different

architectures. If this is the case, it would be reasonable to train

a predictive model on one architecture and use it for prediction

on other machines. The experiment results are included in

figure 4.

Figure 4. Cross-Architecture Result for Neural Network Model

The procedure for this experiment starts with the

normalization of datasets to the range of [0, 1]. After this step,

the models are trained on the data from one machine and used

for prediction on the other machine. To settle the intrinsic

variance in the neural network model, we have averaged the

results over 50 experiments.

The linear regression model is able to achieve a prediction

error of 8.13 +/- 5.42 Watts when trained on the Sandybridge

data and used for prediction on Phenom. The error is 9.28 +/-

5.32 Watts when trained on Phenom and used for prediction on

Sandybridge. These are moderately acceptable results. The box

objects in Figure 4 show the performance of the neural network

when trained on Phenom and used for prediction on

Sandybridge (𝑅(𝑇) and 𝑇(𝑅)). The 𝑅(𝑇) performance is about

the same as the linear regression model achieved. The 𝑇(𝑅)

performance had a relatively low median error, but high

variance.

In conclusion, the result of this experiment is quite

surprising. We did not expect the models to perform as well as

they did. However, the performance of prediction between

machines with vastly different architectures is still quite poor

and not a recommended alternative to the collection of training

data from the target machine itself. On the other hand, it is very

these results signify that prediction between similar machines

could be performed much more accurately. This is in line with

the cross-architecture prediction results of [7].

LNR ANN

●●

●● ●●

●●

●

●●

●

● ●

 ●●●

●●
●

 ●

●●

●●

●

●

●
●● ●●

●●
●●●

●●

●●●●● ●●●

●●
●

LNR ANN

●

●●

●●

●

 ● ●

●●●

●

●

●●

● ●

●

●●● ●

 ●● ●

●●

 ●

●● ●●

●●

●●

● ●

●● ● ●● ●●

●● ●●

●●

 ●

M
e

a
n

 P
re

d
ic

ti
o

n
 E

rr
o

r
(W

a
tt
s
)

0

2

4

6

8

1
0

0

1

2

3

4

5

142Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

V. CONCLUSION AND FURTHER RESEARCH

Several aspects of power prediction using PMCs are

examined in this paper. These are: the effect of the number of

power samples used, the effect of the number of performance

counters used, the predictive accuracy on unseen workloads,

and the prediction accuracy using training data from machines

with different architectures.

In the sample size experiment, it is concluded that more

samples improved the performance of neural network model

consistently. On the other hand, the linear regression model

settled onto its best accuracy after only a relatively small

number of samples. The immediate conclusion is that using a

linear regression model is probably fine for most applications

and in cases where only a small number of samples are

available. Otherwise, if high accuracy is desired, it would be

better to use a neural network with a high number of samples.

The next experiment has examined the way that an

increasing number of performance counters affects prediction

accuracy. It has been concluded that using more performance

counters (starting with the highest correlated counter) generally

leads to better accuracy. Four counters has provided sufficient

accuracy for both machines tested. The experiment for

prediction ability on new workloads showed no obvious

patterns between the two machines. This result may indicate

that the prediction error of this type of workload, cannot be

accurately determined given a set of PMCs. This could be,

however, the cause of a difference between implementation of

the PMCs on the different machines.

The final experiment has examined the prediction

performance of training the models on one machine and using

them for prediction on the other machine. The result is not

“bad” given that the two machines used are from very

different architectures. This shows that there exist common

patterns in the collected PMC data between machines. While

this would not be useful for very different machines, it could

be useful when considering machines with similar

architectures. A power-aware scheduling program built on one

machine can work well on a similar machine without having

to collect any new samples.

In tandem, these experiments highlight useful behavior of

power-PMC modeling concentrating on the use of neural

networks for this purpose.

In the future we plan to explore additional neural networks

and perform additional experiments for PMU counter selection.

Additionally, the power estimation and power prediction

models will be embedded in a meta-scheduler developed by the

research team.

VI. ACKNOWLEDGMENTS

Financial support for this work is provided by the

Semiconductor Research Consortium (SRC) under contract no.

2011-HJ-2156 and the National Science Foundation through

awards nos. CNS-1305302 and CNS-1253292.

REFERENCES

[1] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,

“McPAT: An Integrated Power, Area, and Timing Modeling Framework

for Multicore and Manycore Architectures,” in the IEEE/ACM

International Symposium on Microarchitecture, pp. 469-480, 2009.

[2] F. Bellosa, “The benefits of event: Driven energy accounting in power-

sensitive systems,” in Proceedings of the 9th Workshop on ACM SIGOPS

European Workshop, pp. 37–42, 2000.

[3] G. Contreras and M. Martonosi, “Power prediction for intel xscale reg;

processors using performance monitoring unit events,” in the

Proceedings of the International Symposium on Low Power Electronics

and Design, pp. 221–226, 2005.

[4] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation

and thread scheduling via performance counters,” SIGARCH Computer.

Architecture News, 37(2), pp. 46–55, 2009.

[5] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,

“Statistical power modeling of GPU kernels using performance

counters,” in the proceedings of the International Green Computing

Conference, pp. 115–122, 2010.

[6] M. Stockman, M. Awad, R. Khanna, C. Le, H. David, E. Gorbatov, and U.

Hanebutte, “A novel approach to memory power estimation using

machine learning,” in the proceedings of the International Conference on

Energy Aware Computing, pp. 1–3, 2010.

[7] R. Rodrigues, A. Animalia, I. Koren, and S. Kundu, “A study on the use of

performance counters to estimate power in microprocessors,” IEEE

Transactions on Circuits and Systems II: Express Briefs, 60(12), pp.

882–886, 2013.

[8] K.-J. Lee and K. Skadron, “Using performance counters for runtime

temperature sensing in high-performance processors,” in the Proceedings

of the 19th IEEE International Parallel and Distributed Processing

Symposium, pp. 8, 2005.

[9] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and O. Temam,

“Rapidly selecting good compiler optimizations using performance

counters,” in the proceedings of the International Symposium on Code

Generation and Optimization, pp. 185–197, 2007.

[10] F. Gunther and S. Fritsch, “neuralnet: Training of neural networks,” The

R Journal, 2(1), pp. 30-38, 2010.

143Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

