
Using ODA Method and FOIL Algorithm to Determine Organizational Agility Level

Gusts Linkevics, Uldis Sukovskis

Institute of Applied Computer Systems

Riga Technical University

Riga, Latvia

e-mail: gusts.linkevics@rtu.lv, uldis.sukovskis@rtu.lv

Abstract — Agile software development has become more

common during the past decade. Transitioning an organization

to be agile is not an undemanding task, and it requires an active

involvement of all the stakeholders. The main issue is that

organizations are not aware of their agility level and the

necessary operations they should perform to become more agile.

The purpose of this research is to use Agility Impact Index (AII)

in combination with Organization Agility Model (OAM),

question generation algorithm and First-Order Inductive

Learner (FOIL) algorithm to calculate the agility level of an

organization. The result of the research is a proof of the

Organization Domain Agility (ODA) method concept. The

intention of the ODA method is to determine the agility level of

a Software Development Company (SDC), which is an

important step to improve the agility level of an organization.

Keywords - Agile; Software development; FOIL; AII.

I. INTRODUCTION

Agile software development is being implemented by an
increasing number of Software Development Companies
(SDCs). SDCs use various agile methods, for example,
Extreme Programming or Scrum [3]. There are two common
issues that SDCs encounter during agile method application.
One of the issues is related to the lack of awareness about their
efficiency in applying agile methodology. The other common
issue is the incapability to identify the exact problem in the
agile methodology implementation process. Such problems
can be solved by hiring agile experts or by training internal
employees, which may require a significant amount of time
and financial resources. The other approach is to use a method
which helps to solve this problem by determining the
problematic areas. Organization Domain Agility (ODA) [1] is
one of the methods used for a periodical evaluation of the
organisation and the team to determine the problematic areas.

The main focus of the paper is to provide a compendious
introduction of the ODA method and to present detailed
findings about its main components which enable to
determine the agility level of an organization:

• Agility Impact Index (AII);
• Question generation algorithm;
• Domain, Sub-domain and attribute Value Tree (DSA

Value Tree);
• First level rule generation using FOIL [6] algorithm.

This paper consists of 6 sections. In Section 1 the problem

of the organization agility and the goal of the paper is

described. In Section 2 the ODA method and its process is
introduced. The ODA method is developed to evaluate the
agility level of SDCs. In Section 3 the Question generation
process is explained. Generated questions are used to gather
the data about SDCs. In Section 4, the DSA Value Tree is
depicted, and it consists of AII values. AII value is defined for
each element of the DSA tree. AII values are determined by
the group of experts. In Section 5, we focus on FOIL
algorithm usage for the evaluation of the SDC agility level.
Section 6 concludes the paper and provides an outline of the
future work.

II. ODA METHOD

ODA method uses Organization Agility Model (OAM) [1]
to describe an organization and its team in a structured way.
The structural approach provides an opportunity to evaluate
various parts of the organization. OAM is organized in a tree
structure where the organization is described by the DSA
Value Tree. The DSA Value Tree groups similar items of the
organization into domains and sub-domains.

The initial model consisted of five domains [2]:
Organization, Productivity, Process, Quality and Value.
During the more detailed research it was noticed that an
additional top level domain is needed to describe the project
component of the organization (Figure 1).

Organization

Process

Productivity Quality

Value

Organization
agility

Project

Figure 1. Extended OAM .

The purpose of the Project domain is to describe attributes
of the particular project. Different projects in the SDC can be
at different agility levels and can influence the Organizational
agility differently.

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Project

Size

Complexity

Involved person
count

Length

Project type

Agile Iterative &
Incremental

Waterfall

Experience in
project

Actual length

Figure 2. Project Domain Components.

Figure 2 shows the structure of the Project domain, and it
consists of seven sub-domains:

 Project type – it is possible to identify 3 project
subtypes:

o Waterfall – this is a classical approach to
software development.

o Iterative and Incremental – this approach is
a custom type of Agile methodology.

o Agile – a project is based on Scrum or a
similar method.

 Number of people involved – agile methods work
better with small number of people within a team. In
case of large projects, there is some overhead in
managing the large teams, and it can decrease the
overall agility level of the project.

 Experience in a project – experience of the team with
the particular project also influences the agility level
of the team and organization. In case the project has
been running for several years and it is necessary to
switch it to the agile development approach, some
experienced employees may resist using the agile
method in the project.

 Size – smaller projects are easier to shift to the agile
approach than larger projects.

 Length – similarly to the size of the project the length
of the project also will influence the agility level of
the organization.

 Complexity – sometimes it is related to the project
size. Complex projects fail more frequently than less
complex projects as the complex projects require
more formal approach. The approach could still be
agile, but the more complex projects require more
detailed documentation.

 Actual length (Age) – the time the project has been
already running. As mentioned before, projects
running for a long period of time have a potentially
higher risk when switching to the agile approach than

starting a new project completely with agile from the
beginning.

There are several attributes that describe each sub-domain.

The attribute values for the Complexity sub-domain are
shown in TABLE I, and the Size (Amount of the investment)
sub-domain attributes are listed in TABLE II. The list of all
attributes is not included in the paper due to the limited space.

TABLE I. COMPLEXITY SUB-DOMAIN ATTRIBUTES

Attribute Description

Low

Project is simple and does not have complex
integrations and components.

Medium

Project has some integrations, but they are

not complex. Project has several
components which need to be integrated.

High
Complex algorithms, integrations and

components are used.

TABLE II. SIZE SUB-DOMAIN ATTRIBUTES

Attribute Investment amount

Enhancement x < $250,000

Small $250,000 < x < $ 1M

Medium $ 1M < x < $ 3M

Large $ 3M < x < $ 10M

Very large x > $ 10M

AII values range from 1 to 10, where 1 means that the DSA

item does not influence organization agility, and 10 means that
the item significantly impacts the agility, for example, the
Productivity domain does not influence the agility level the
same way as Organization domain. AII is determined by the
expert evaluation method DELPHI [5] which uses an external
agile expert network to evaluate the common DSA. Agile
experts do not need any information about the particular
organization, and they are not directly related to it. The
evaluation they provide is bound to the common DSA, which
is then used together with the information acquired from the
particular organization. In general, there is a basic agile
knowledge which can be applied to any organization looking
towards agile software development.

 Agile experts evaluate the DSA at least once and then
repeat it if the structure of the DSA is changed. It is possible
to change the DSA structure for the ODA method (Figure 3.)
in case the organization uses any other agile method than
Scrum.

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Create or modify
domains and
subdomains

Evaluate domains
and subdomanis

Create AII
Do we need to update

domain and subdomain
information?

Start

Yes

No

Generate
questions

Send invites to
questionary

Gather information

Classify organization Generate reports

Is desired Agility
level achieved?

No

Yes
Create

Improvement
plan

Implement
Improvement plan

End

Set desired Agility
level

Figure 3. Process of a Method ODA.

After all of the AII values for the DSA are determined, the
Question generation algorithm is used to generate question
sets for the employees. In the next section, the Question
generation algorithm is described in more detail. The
generated questions are distributed among employees in
different departments.

III. QUESTION GENERATION

Question generation is an important part of the ODA
method, and it is required to generate only a small set of
questions for each employee at each evaluation period. There
are approximately 300 questions to ask, and it is impractical
to ask each employee all of them. Based on the question
ranking by AII value, the most influential questions are asked
first.

As it is shown in Figure 4 the Question generator generates
subsets of questions from the set of all questions (1).

 Q = {q1, q2, q3 … qm}

Where:

 Q – Set of all questions.

 q1…m – Questions, where m is the total number of
questions.

An employee based question set can be defined as a subset

of all questions (2).

 A1…n Q

Where:

 Q – Set of all questions.

 A1…n – Subsets of questions for an employee, where
n is the amount of employees participating in survey.

The organization sets the number of questions for each

employee. It is not recommended to create large sets of
questions as it may lead to low quality of answers. It is
recommended to include up to 10 questions in each evaluation
[8], and the evaluation process should take from 5 to 7
minutes.

There are three types of questions in the employee question
set (3):

 Priority questions – the initiator of question
generation marks a number of questions to be
included in all of the generated question sets. The
priority questions make 20 per cent of all the
questions in the set.

 Unanswered questions ordered by AII – a list of all
the unanswered questions ordered by AII value.
After adding High priority questions to the set, the
unanswered questions are added to the set. This is
required to cover the maximum amount of
information about the DSA. At the beginning the
most influential questions are added. Those
questions make 60 per cent of all the questions in the
set.

 Previously answered questions ordered by AII – this
type of questions helps to keep the “pulse” on the
most influential DSA elements, and those questions
form 20 per cent of all the questions.

 A1…n = {Pq, N1…n, O1…n}.

Where:

 A1…n – Question set for particular employee.

 Pq – Set of priority questions.

 N1…n – Unanswered questions ordered by AII.

 O1…n – Previously answered questions ordered by
AII.

The question generation process is shown in Figure 4. For

example, if there are 17 questions in the question set Q, as in

Q = {q1=9, q2=8, q3=7, q4=6, q5=9, q6=8, q7=7, q8=7, q9=8,
q10=9, q11=9, q12=8, q13=7, q14=7, q15=6, q16=7, q17=8}.

And 4 questions in priority question set Pq (Priority
questions have been selected by generation initiator) as in

 Pq = {q10=9, q17=8, q3=7, q15=6}.

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Pq

Start

End

Get employee list

Get priority questions
(p)

Add (p) question to
set

O

Is Pq full?

Get Unanswered
questions (n)

Yes

Add (n) question to
set

No
Are there more
(p) questions?

Yes

No

Is N full?

Yes

No
Are there more
(n) questions?

Yes

Get Previously answered
questions (o)

Add (o) question to
set

Is O full?

No

Are there more
(o) questions?

No

Yes

Get next employee
Are there more

employees?

Yes

Yes

No

N

Q

Figure 4. Question Generation Process.

And 4 questions in the previously answered question set O,
as in

 O = {q12=8, q7=7, q16=7, q4=6}.

And there is one employee involved in the evaluation of 10
questions, then the resulting question set would contain
questions

A1 = {P{q10,q17},N{q1,q5,q11,q2,q6,q9},O{q12,q7}}. (7)

Depending on the number of employees correct timing for

question generation should be selected. As question
generation depends heavily on question sets N and O, then it
is reasonable to assume that the questions are generated during
the night. In this way, also the system is not congested during
working hours.

After question generation, question sets are sent to each
employee. Time for question sending should be selected
properly [9], in this case, after the Review meeting and before
the Retrospective meeting. The gathered information is used
to build the DSA Value Tree.

IV. DSA VALUE TREE

DSA value tree is a way to represent the gathered data.
Tree view is a convenient way to identify the problematic
areas and compare the gathered data with the AII values
identified by the expert.

Organization
agility

Domain 1Domain ...

Subdomain 1 Subdomain 2

Attribute 1Attribute 2Attribute ...

Subdomain ...

978

6 97

98

796

7.3 89

8.17

8 8.56.6

7 8 8

7.5 8.5

Figure 5. DSA value tree example.

Figure 5 shows a sample of a DSA Value Tree where the
values on the right are the values gathered from the employee
surveys (ESV), and the values on the left are the AII values
defined by the experts. ESV values are calculated using
average weighted values (5).

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Where:

 ӯ – Set of all questions.

 wi – weight value, in this case AII.

 xi – ESV value, determined from surveys.

 n – Number of respondents who have answered
particular question.

The agility level can be determined on an organization

level, on a project level or on a team level. The following
breakdown is required to improve the agility level at a
particular team or a project. As mentioned before, the agility
level can differ on a team or a project level. In case of a team
or a project agility level determination, filtering of set ӯ is used
to include only ESV values for a particular team or a project
(Figure. 6).

Team 1
agility

DSA value Tree

Filter 1

Team 2
agility

Filter 2

Team n
agility

Filter n

Figure 6. DSA Value Tree filtered for the team.

One of the ways to represent the gathered data is grouping
the data by project and team after the DSA value tree is created
(Figure. 7).

Organization
agility

Project 1
agility

Team 1
agility

Team 2
agility

...
Project n

agility

Team n
agility

Team 3
agility

Team 4
agility

Figure 7. Grouping of the DSA value tree.

The grouping approach helps to identify the problematic
projects and teams where additional effort for the agility level
increment is needed.

After all ӯ values are calculated, the rules based on these
values can be created. The ODA method uses FOIL algorithm

to generate the rules for the final evaluation of the SDC agility
level.

V. USING FOIL ALGORITHM FOR THE RULE

GENERATION

FOIL is a system for finding function-free Horn clauses [6].

FOIL searches for the first-order rules using a learning set.
The search results in finding a set of logical rules describing
the system under consideration.

The first-order rule is a logical proposition of the form:

 R(V1,V2,…,Vk) L1, L2, …, Lm

Where:

 R is a target relation between variables Vi.

 Li are literals composing a condition which verity
enables one to state that the head of the rule is true.

Within this research FOIL is used to determine the agility

level of the SDC where the set of the first-order rules
determines the agility class of the SDC. Before generating the
first-order rules for determining the agility level of an
Organization, a Project or a Team, it is necessary to define the
agility classes. The Agility class determines the present agility
level of an organization, a project or a team. Knowledge helps
to create a specific improvement plan and to implement it
later. It is reasonable to use 5 or 10 agility classes of
evaluation, as it is with grades at school. Some school systems
use 5 point grading system, whereas some schools use 10
point grading system. It depends on how accurately we want
to evaluate. In this case, it is decided to use 5 agility classes
(K1, K2, K3, K4 and K5) which will map to the average
values of the DSA Value Tree. Each class corresponds to 2
values (Table III).

TABLE III. AGILITY CLASS MAPPING TO THE DSA VALUE TREE

DSA Value

Tree values

Agility

Class
Description

1, 2 K1 Not agile and no evidence of agility

3, 4 K2
Not agile, but some evidence of agility
exists

5, 6 K3
Some evidence of agility, but major

improvements should be introduced

7, 8 K4
Agile, but some problems exist and
requires some improvements

9, 10 K5
Agile and no important improvements

are needed.

The first-order rules are important for the agility class

determination because it is not possible to determine the exact
level of agility there is only the information about the DSA
Value Tree. For example, if the top-level domain average
values are 1, 4, 5, 6, 7 and 8 (each value represents average
value of the Organization, Productivity, Quality, Project,
Value and Process domain), one should analyse in more detail
if it means the organization is agile. The same question may
be discussed if the DSA Value Tree values are 5, 2, 7, 9, 3 and
8. The FOIL algorithm can be used to resolve such problems.

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

FOIL algorithm uses learning data set which contains
information about the known organisations valued by experts.
The learning data set has information about the specific
organisation values and its class. There is a small learning data
sample presented in Table IV. The data listed in the Table IV
has been simplified to shorten the solution (Value ranges are
shortened and not all the domains are included). Columns D1,
D2, D3 and D4 represent four top level domains Organization,
Process, Productivity and Quality. The sample learning data
set contains learning data only for three agility classes N1 (Not
agile and no signs of agility), N2 (Some signs of agility, but
major improvements should be introduced) and N3 (Agile and
no important improvements are needed) and is also simplified.

TABLE IV. SAMPLE FOIL LEARNING DATA

D1 D2 D3 D4 Class

1 1 1 1 N1

1 1 1 2 N2

1 1 2 1 N1

1 1 2 2 N3

1 2 1 1 N1

1 2 1 2 N2

1 2 2 1 N1

1 2 2 2 N3

3 1 1 1 N1

3 1 1 2 N2

3 1 2 1 N1

3 1 2 2 N3

3 2 1 1 N1

3 2 1 2 N2

3 2 2 1 N1

3 2 2 2 N1

2 1 1 1 N1

2 1 1 2 N1

2 1 2 1 N1

2 1 2 2 N3

2 2 1 1 N1

2 2 1 2 N2

2 2 2 1 N1

2 2 2 2 N1

 First-order rules can be described in a form of IF … THEN

… or in a form of Horn clauses, Head Body [6]. In this case

Agility Class Condition. In case of simplified learning data
there are three agility classes N1, N2 and N3. Each class in the
learning data set has a specific number of records N1 = 15, N2
= 5 and N3 = 4. The learning data set is used to teach the
algorithm how to identify particular agility class.

FOIL algorithm uses FOIL_GAIN function to evaluate

each next literal to be added to the class identification rule

(10) [6].

Where:

 L – New condition to be added to the rule.

 R – Rule body, to which we want to add the
condition.

 p0 – Number of positive items in rule R.

 n0 – Number of negative items in rule R.

 p1 – Number of positive items in rule R1.

 n1 – Number of negative items in rule R1.

 T – Number of positive items in rule R after adding
new condition L to the rule R.

To create rules for the class N1 we need to identify all

positive and negative examples, as seen in Table V and Table

VI.

TABLE V. POSITIVE SAMPLES FOR CLASS N1

D1 D2 D3 D4 Class

1 1 1 1 N1

1 1 2 1 N1

1 2 1 1 N1

1 2 2 1 N1

3 1 1 1 N1

3 1 2 1 N1

3 2 1 1 N1

3 2 2 1 N1

3 2 2 2 N1

2 1 1 1 N1

2 1 1 2 N1

2 1 2 1 N1

2 2 1 1 N1

2 2 2 1 N1

2 2 2 2 N1

TABLE VI. NEGATIVE SAMPLES FOR CLASS N1

D1 D2 D3 D4 Class

1 1 1 2 N2

1 1 2 2 N3

1 2 1 2 N2

1 2 2 2 N3

3 1 1 2 N2

3 1 2 2 N3

3 2 1 2 N2

2 1 2 2 N3

2 2 1 2 N2

During the next step a new literal should be added (11).

 I(T1) = -log2

After checking the results (Table VII) a literal D4(X, 1)

can be added to the rule N1 D4(X, 1).

TABLE VII. CALCULATION OF FOIL_GAIN FOR CLASS N1

Literal Calculation Foil_Gain

D4(X, 1) I(T2) = -log2(12/(12+0)) =

-log2(1)=0

12*(0,678-0) = 8,136

D4(X, 2) I(T2) = -log2(3/(3+9)) =
-log2(0,25)=2

3*(0,678-2) = -3,966

D3(X, 2) I(T2) = -log2(8/(8+4)) =

-log2(0,666)= 0,586

8*(0,678-0,586) = 0,736

D3(X, 1) I(T2) = -log2(7/(7+5)) =
-log2(0,583)= 0,788

7*(0,678-0,788)=- 0,77

D2(X, 1) I(T2) = -log2(7/(7+5)) =

-log2(0,583)= 0,788

7*(0,678-0,788)=- 0,77

D2(X, 2) I(T2) = -log2(8/(8+4)) =

-log2(0,666)= 0,586

8*(0,678-0,586) = 0,736

D1(X,1) I(T2) = -log2(4/(4+4)) =
-log2(0,5)= 1

4*(0,678-1) = -1,288

D1(X,3) I(T2) = -log2(5/(5+3)) = 5*(0,678-0,678) = 0

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

Literal Calculation Foil_Gain

-log2(0,625)= 0,678

D1(X,1) I(T2) = -log2(6/(6+2)) =
-log2(0,75)= 0,415

2*(0,678-0,415) = 0,263

As this condition does not return any negative samples, it

is possible to stop the further processing of the rule. However,

as this rule does not return all the positive samples, it is

necessary to add an additional condition to the rule set for

class N1. After removing all the positive samples covered by

the first condition, there are only 3 positive samples left

(Table VIII).

TABLE VIII. POSITIVE SAMPLES FOR CLASS N1, AFTER REMOVING

POSITIVE SAMPLES AFFECTED BY FIRST CONDITION

D1 D2 D3 D4 Class

3 2 2 2 N1

2 1 1 2 N1

2 2 2 2 N1

During the following step the next literal should be added

(12).

 I(T1) = -log2

TABLE IX. CALCULATION OF FOIL_GAIN FOR CLASS N1

Literal Calculation Foil_Gain

D4(X, 2) I(T2) = -log2(3/(3+9)) =

-log2(0,25)=2

3*(2-2) = 0

D3(X, 2) I(T2) = -log2(2/(2+4)) =
-log2(0,333)= 1,586

2*(2-1,586) = 0,414

D3(X, 1) I(T2) = -log2(1/(1+5)) =

-log2(0,166)= 2,59

1*(2-2,59) = -0,59

D2(X, 1) I(T2) = -log2(1/(1+5)) =

-log2(0,166)= 2,59

1*(2-2,59) = -0,59

D2(X, 2) I(T2) = -log2(2/(2+4)) =
-log2(0,333)= 1,586

2*(2-1,586) = 0,414

D1(X,1) I(T2) = -log2(0/(0+4)) =

-log2(0)= ∞

-

D1(X,3) I(T2) = -log2(1/(1+3)) =
-log2(0,25)= 2

1*(2-2) = 0

D1(X,2) I(T2) = -log2(2/(2+2)) =

-log2(0,5)= 1

2*(2-1) = 2

As shown in Table IX, the most notable gain is from literal

D1(X, 2), which can be added to the rule, but, as it also selects

negative samples, more literals should be added.

TABLE X. CALCULATION OF FOIL_GAIN FOR CLASS N1

Literal Calculation Foil_Gain

D4(X, 2) I(T2) = -log2(2/(2+2)) =
-log2(0,5)=1

2*(2-1) = 2

D3(X, 2) I(T2) = -log2(1/(1+1)) =

-log2(0,5)=1

1*(2-1) = 1

D3(X, 1) I(T2) = -log2(1/(1+1)) =
-log2(0,5)=1

1*(2-1) = 1

D2(X, 1) I(T2) = -log2(1/(1+1)) =

-log2(0,5)=1

1*(2-1) = 1

D2(X, 2) I(T2) = -log2(1/(1+1)) =

-log2(0,5)=1

1*(2-1) = 1

To this point the second rule is N1 D1(X, 2) D4(X,

2) and it has to be checked if it returns any negative samples.

Considering the fact that it returns negative samples, the

additional literal should be added.

TABLE XI. CALCULATION OF FOIL_GAIN FOR CLASS N1

Literal Calculation Foil_Gain

D3(X, 2) I(T2) = -log2(1/(1+1)) = -log2(0,5)=1 1*(2-1) = 1

D3(X, 1) I(T2) = -log2(1/(1+1)) = -log2(0,5)=1 1*(2-1) = 1

D2(X, 1) I(T2) = -log2(1/(1+1)) = -log2(0,5)=1 1*(2-1) = 1

D2(X, 2) I(T2) = -log2(1/(1+1)) = -log2(0,5)=1 1*(2-1) = 1

D3(X, 2) I(T2) = -log2(1/(1+1)) = -log2(0,5)=1 1*(2-1) = 1

As shown in Table XI, in this case all the literals are

equally bad as all return negative samples. As a consequence,

one more literal should be added to the rule. To this point the

rule is N1 D1(X, 2) ˄ D4(X, 2) ˄ D3(X, 2).

TABLE XII. CALCULATION OF FOIL_GAIN FOR CLASS N1

Literal Calculation Foil_Gain

D2(X, 1) I(T2) = -log2(0/(0+1)) = -log2(0)=∞ -

D2(X, 2) I(T2) = -log2(1/(1+0)) = -log2(1)=1 1*(2-0) = 2

At this point literal D2(X, 2) can be added to the rule set

N1 D1(X, 2) ˄ D4(X, 2) ˄ D3(X, 2) ˄ D2(X, 2).

Acknowledging the fact that all the positive examples are

not yet covered, an additional rule should be added to the set.

All the positive samples covered by the new rule should be

removed from the learning set, and a search of a new rule

should be continued. The process is repeated as many times

as necessary until all the positive samples are covered. At the

end, the rule set for class N1 looks like:

 N1 D4(X, 1)

 N1 D1(X, 2) ˄ D4(X, 2) ˄ D3(X, 2) ˄ D2(X, 2)

 N1 D1(X, 2) ˄ D4(X, 2) ˄ D3(X, 1) ˄ D2(X, 1)

 N1 D1(X, 3) ˄ D3(X, 2) ˄ D2(X, 2)

This process is repeated for class N2 and N3. A complete

rule set for all tree classes is shown in Table XIII.

TABLE XIII. FINAL RULE SET FOR CLASSES N1, N2 AND N3

Class Rule set

N1 N1 D4(X, 1)

N1 D1(X, 2) ˄ D4(X, 2) ˄ D3(X, 2) ˄ D2(X, 2)

N1 D1(X, 2) ˄ D4(X, 2) ˄ D3(X, 1) ˄ D2(X, 1)

N1 D1(X, 3) ˄ D3(X, 2) ˄ D2(X, 2)
N2 N2 ← D4 (X, 2) ˄ D3 (X, 1) ˄ D2 (X, 2)

N2 ← D4 (X, 2) ˄ D3 (X,1) ˄ D2 (X, 1) ˄ D1 (X, 1)

N2 ← D3 (X, 1) ˄ D4 (X, 2) ˄ D1 (X, 3)

N3 N3 ← D4 (X, 2) ˄ D3 (X, 2) ˄ D1 (X, 1)

N3 ← D4 (X, 2) ˄ D3 (X, 2) ˄ D2 (X, 1)

When the learning data set is processed, the rule sets can

be tested against the learning data set (Table XIV). In this

case, rules generated by FOIL can be used to identify tree

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

classes of agility N1, N2 and N3. These rules are simplified,

but the approach can be used to generate more complex rules

to satisfy the needs of the ODA method.

TABLE XIV. RULE SET TESTING RESULTS

No. D1 D2 D3 D4 Class Result Rule

1 1 1 1 1 N1 N1 1

2 1 1 1 2 N2 N2 6

3 1 1 2 1 N1 N1 1

4 1 1 2 2 N3 N3 8,9

5 1 2 1 1 N1 N1 1

6 1 2 1 2 N2 N2 5

7 1 2 2 1 N1 N1 1

8 1 2 2 2 N3 N3 8

9 3 1 1 1 N1 N1 1

10 3 1 1 2 N2 N2 7

11 3 1 2 1 N1 N1 1

12 3 1 2 2 N3 N3 9

13 3 2 1 1 N1 N1 1

14 3 2 1 2 N2 N2 5,7

15 3 2 2 1 N1 N1 1,4

16 3 2 2 2 N1 N1 4

17 2 1 1 1 N1 N1 1

18 2 1 1 2 N1 N1 3

19 2 1 2 1 N1 N1 1

20 2 1 2 2 N3 N3 9

21 2 2 1 1 N1 N1 1

22 2 2 1 2 N2 N2 5

23 2 2 2 1 N1 N1 1

24 2 2 2 2 N1 N1 2

One of the problems of this approach is that there is a need

for a set of quality training data for the algorithm, which is

not so easy to gather.

VI. CONCLUSION

Shifting a project to agile software development is not an
effortless procedure, and there are different ways to
accomplish it. Some organizations hire expensive agile
experts, while others try to execute the transition process
themselves. The ODA method can support the transition
process. It has several steps, and it starts with the creation of
OAM. The next step is the DSA evaluation carried by agile
experts using the DELPHI method. The evaluated AII values
are later used to generate the employee-based question sets.
The data gathered from the questionnaires is used to create the
DSA value tree. When the DSA value tree is created, it is used
by the FOIL method to generate rules for determining the
agility level.

The process of assessing the actual organization agility is
long, but in most cases it can be completely automated. For
example, the AII values are already defined for the DSA, and
the organization does not need to hire any agile experts. It
could be required only in cases when the existing DSA does
not match the organization, especially in the process domain
part. The initial process domain of the DSA is built based on
Scrum, which resulted to be the most common agile method
during the last few years.

As there are approximately 300 questions in the question
set Q, there is a risk to fail in collecting the necessary data
from all the employees. To mitigate this risk, the Question
generation algorithm is used to generate smaller subsets of
questions each time. The Question set size depends on the
SDC. Some organizations could generate sets of 10 questions
whereas other organizations could generate 15 questions per
set. The question amount per set is configurable in the
supporting tool of the ODA method. The Question sets are
generated periodically, and they include three types of
questions. There are High priority questions which are
included in the question set if it is necessary to gather the
feedback within a short period of time. There are Unanswered
questions ordered by AII and Answered questions with high
AII values which need to be answered more frequently.

There is additional risk related to AII values. In order to
make ODA method work correctly, the agile expert network
should be of a high quality and expertise. High quality expert
network creation is not an easy task, but it is achievable, and
mostly the SDC who use the ODA method will not need to
create the network themselves.

Rule generation using FOIL is automated, and the
algorithm is suitable for grouping tasks. It is assumed that it is
possible to use similar algorithms as well. The biggest
challenge at this step is to have a good quality learning data
for the algorithm as the quality of the generated rules depends
on the quality of the learning data.

During the further research it is planned to test the method
and the used algorithms on several organizations, as the
concept of this approach proves to be beneficial.

REFERENCES

[1] G. Linkevics, “Evaluation of Agility in Software Development

Company” Joint International Conference on Engineering
Education & International Conference on Information
Technology (ICEE/ICIT 2014), 2014, pp. 102.

[2] G. Linkevics, “Adopting to Agile Software Development”,
Applied Computer Systems, 2014, pp. 64 -70.

[3] K. S. Rubin, “Essential Scrum: A Practical Guide to Most
Popular Agile Process”, Addision-Wesley Professional, 2012.

[4] M. Poppendieck and T. Poppendieck, “Implementing Lean
Software Development: From Concept to Cash”, Addision-
Wesley Professional, 2006.

[5] G. J. Skulmoski, F. T. Hartman and J. Krahn, “The Delphi
Method for Graduate Research”, Journal of Information
Technology Education, vol. 6, 2007

[6] J. R. Quinlan. “Learning logical definitions from relations”,
Boston: Kluwer Academic Publishers, 1963, pp. 239–266.

[7] Manifesto for Agile Software Development,
http://agilemanifesto.org/, [retrieved: 12, 2014].

[8] SurveyMonkey, How Much Time are Respondents Willing to
Spend on Your Survey?
https://www.surveymonkey.com/blog/2011/02/14/survey_co
mpletion_times/, [retrieved: 8, 2015].

[9] Fluid Surveys University, It’s All About Timing –When to
Send your Survey Email Invites?
http://fluidsurveys.com/university/its-all-about-timing-when-
to-send-your-survey-email-invites/, [retrieved: 8, 2015].

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-432-9

ICCGI 2015 : The Tenth International Multi-Conference on Computing in the Global Information Technology

