
Aspect-Oriented Implementation of Concurrent Processing Design Patterns

Shingo Kameyama, Masatoshi Arai, Noriko Matsumoto, Norihiko Yoshida
Graduate School of Science and Engineering

Saitama University
Saitama, Japan

{shingo, arai, noriko, yoshida}@ss.ics.saitama-u.ac.jp

Abstract—A variety of design patterns are now widely used in
software development as their catalog is a collection of knowledge
on design and programming techniques and namely elaborated
patterns. However, as each design pattern is described in the
forms of texts, charts, and simple code examples, it has some
limitations in applicability and formal treatment. One of its
reasons is that the design patterns include some crosscutting
concerns. To solve this problem, aspect-oriented implementation
of the so-called “Gang of Four” (GoF) design patterns, which are
cataloged for component reuse has been proposed. In this paper,
we propose aspect-oriented implementation of design patterns for
concurrent processing, so as to improve and accelerate design
and development processes of, for example, network systems,
embedded systems, and transaction systems. Our aspect-oriented
implementation tailors hierarchical or inclusive relationships
among design patterns well which are not found in the patterns
for component reuse, but found in the patterns for concurrent
processing.

Keywords-Design patterns; aspects; concurrency

I. INTRODUCTION

A variety of design patterns (patterns in short, sometimes,
hereafter) [1] are now widely used in software development
as their catalog is a collection of knowledge on design and
programming techniques and namely elaborated patterns. Their
catalog enables novices to refer to experts’ knowledge and
experiences in software design and development. It accelerates
software productivity and improves qualities as well as it helps
communication within a development team.

Many researchers have proposed various patterns. However,
patterns have sometimes difficulties in formal or systematic
treatment. It is because patterns are described in the forms of
texts in a natural language, charts, figures, and code fragments
and samples, not in any formal description.

To solve this problem, aspect-oriented [2] implementa-
tion of patterns for component reuse has been proposed
[3][4][5][6][7]. Patterns for component reuse, or sometimes
called GoF (Gang of Four) design patterns, were patterns
promoting component reuse in object-oriented software [1].
Aspects are a technique to modularize codes which are scat-
tered to several modules [2].

In this paper, we propose aspect-oriented implementation
of concurrent processing design patterns [8][9][10]. Differ-
ent from GoF design patterns, most concurrent processing
patterns use other concurrent processing patterns related to
them, namely, they are not independent to each other. We
implement them by a combination of the implementation of
related concurrent processing pattern. This approach can be
applied also to aspect-oriented implementation of other design
patterns where there are some mutual dependency among them.

This paper is organized as follows: Section 2 gives an
overview of design patterns. Section 3 presents an overview
and some functions of aspect-orientated implementation. Sec-
tion 4 introduces an example of aspect-oriented implementa-
tion of GoF design patterns. Section 5 and Section 6 explain
aspect-oriented implementation of concurrent processing de-
sign patterns. Section 7 gives some considerations, and Section
8 contains some concluding remarks.

II. DESIGN PATTERNS

Design patterns are a catalog of typical solutions for some
typical problems in designing and programming in software
development. Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, so-called the Gang of Four (GoF), in-
troduced 23 design patterns for reuse (so-called the GoF
design patterns) [1]. Design patterns have been getting widely
accepted as a technique to improve software development
processes. Many researchers have proposed various design
patterns for concurrent processing, real-time processing, and
web applications, etc.

A. Benefits

Design patterns accelerate software productivity and im-
proves qualities in the following regards.

• A workload for programming and verification can be
reduced reusing codes in design patterns.

• A development beginner can use it as a guide in which
development experts’ know-how is accumulated.

• A developer can tell a software design to another
developer concisely and precisely by describing the
name of a design pattern.

B. Problems

A design pattern has the following problems because its
codes are scattered to more than one module.

• A developer must understand the structure of a design
pattern to apply, extract some necessary codes from
its sample codes, and apply to a program.

• It is difficult to maintain or extend the program with
design patterns because codes relating the patterns are
scattered across several modules, and a developer must
keep all of them in mind correctly.

146Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

C. Concurrent Processing Design Patterns

Besides GoF design patterns, concurrent processing design
patterns [8][9][10] have been proposed. A concurrent process-
ing design pattern offers a typical solution to the following
problems in concurrent processing.

• There are problems, such as race conditions and
deadlocks, that do not happen in single threaded
processing. A race condition happens when more than
one thread read and write a shared resource without
mutual exclusion control. A deadlock happens when
more than one thread lock more than one object and
wait for unlocking with each other.

• Verification is difficult because any problem may or
may not occur, but possibly not always.

Different from the GoF design patterns for component
reuse, most design patterns for concurrent processing have
relations with each other, i.e., they are not independent to each
other, and most patterns use other patterns related to them. In
other words, there is an hierarchy among them. We explain
concurrent processing design patterns below. Figure 1 shows
the hierarchical relation among them. An arrow denotes that
a design pattern on the head side uses a design pattern on the
tail side.

Single Threaded Execution (or Critical Section)
It ensures safety by exclusive control. Only a
single thread can access a thread-unsafe object at
a time.

Immutable
It improves throughput by eliminating changing a
state of an object and exclusive control.

Guarded Suspension (or Guarded Waits or Spin Lock)
It ensures safety by blocking a thread until a state
of an object changes if a precondition is not met.

Balking
It ensures safety and improves responsibility by
not executing a processing if a precondition is not
met.

Producer-Consumer
It ensures safety and improves throughput by
passing an object indirectly.

Read-Write Lock (or Readers and Writers)
It ensures safety and improves throughput by
allowing concurrent access for read and requiring
exclusive access for write.

Active Object

Single Threaded Execution

Read-Write Lock

BalkingGuarded Suspension

Producer-Consumer

FutureWorker Thread

Figure 1. Inclusive relation of concurrent processing design patterns.

Thread-per-Message (or Thread-per-Method)
It improves responsibility by creating a thread ev-
ery processing request, and leaving the processing
to the thread.

Worker Thread (or Thread Pool)
It improves responsibility, throughput, and capac-
ity by leaving a requested processing to another
thread, and reusing the thread.

Future
It improves responsibility by enabling a thread
to receive a result when it is needed, instead of
waiting for a result.

Two-Phase Termination
It ensures safety by terminating another thread
indirectly.

Thread-Specific Storage (or Thread-Specific Data)
It enables a thread to execute the thread-specific
processing by providing the thread-specific stor-
age.

Active Object (or Actor)
It improves responsibility and enables more than
one thread to request a processing to a thread-
unsafe object at a time by leaving the processing
to a single thread.

III. ASPECTS

Object-oriented programming is a technique that modu-
larizes a concept and a concern as an object, and improves
maintainability and extensibility. However, modularization by
objects has a limitation because codes of a crosscutting concern
related to more than one module are scattered on them. A
crosscutting concern is a functionality of the system whose
definition appear in several classes. Examples of crosscutting
concerns include logging and caching.

Aspect-oriented programming [2] is a technique that com-
pensates the above-mentioned limit in object-oriented pro-
gramming and modularizes crosscutting concerns.

A. Overview

In object-oriented programming, a module calls a method
in another module to execute. When a module is added or
removed, it is necessary to adjust all the method calls related
to it in all the other modules. Figure 2 shows a class diagram
depicting this scheme. An arrow between methods expresses
a processing flow.

In aspect-oriented programming, a method or a code frag-
ment specifies positions in other method definitions in any
module where it must be called. This method or code fragment
runs when execution reaches the position. The specification of
the position is called a pointcut. The code fragment is called
an advice. This module composed of pointcuts and advices is
called an aspect.

When a module is added or removed, it is not necessary to
adjust other modules that call it because there are no explicit
method calls related to it. Figure 3 shows a class diagram
depicting this scheme. A pointcut and an advice are described
at the bottom part of boxes which represent aspects. A dashed
line expresses a specification by a pointcut.

147Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

B. AspectJ

AspectJ is an aspect-oriented language extension adding
the aspect-oriented features to the object-oriented language
Java. Java and AspectJ are used in a related study [3] and
this study. We explain some functions of AspectJ here.

Pointcut
A position that can be specified by a pointcut is
limited to a position where a method is called and
executed, and where a field value is retrieved or
assigned.

Advice
An advice includes a before advice, an after
advice, and an around advice. A before advice
is executed just before processing of the position
specified by a pointcut. An after advice is exe-
cuted just after it. An around advice is executed
instead of it. In an around advice, proceed which
means execution of the original method can be
specified.

Aspect
Like a class, an aspect can include fields and
methods, and can be defined as an abstract aspect
or a concrete aspect. An aspect can also inherit
another aspect.

IV. RELATED WORKS

A design pattern includes several classes in general, there-
fore a pattern itself is a crosscutting concern. Aspects are
expected to enable modularization of the design pattern as a
crosscutting concern. Aspect-oriented implementation of the
GoF design patterns has been proposed in related studies [3].

In this section, we explain aspect-oriented implementation
of the observer pattern which is one of the GoF design patterns
as an example of the related study [3]. The Observer is to
execute a method whenever a state of another object changes.

Calls

Calls

ClassB

classA

methodB

ClassC

classA

methodC1
methodC2

ClassA

methodA

Figure 2. Modularization using objects.

《aspect》
Aspect

pointcut
advice : methodA

ClassB

methodB

ClassC

methodC1
methodC2

Figure 3. Modularization using aspects.

A. Aspect-Oriented Implementation of Observer

In object-oriented implementation, the observer is imple-
mented as follows: a method notifyObservers is called just after
any change of a state, and calls linked methods. The following
codes of observer are defined in more than one module. Figure
4 shows a class diagram of this scheme.

• NotifyObservers and method calls to execute it.

• A field and methods to manage linked objects.

• A super-class of linked objects.

In aspect-oriented implementation, observer is imple-
mented as follows: the code to execute is defined as an after
advice instead of notifyObservers, and the codes of observer
is modularized in a single aspect. Figure 5 shows a class
diagram of this scheme. Observer is actually implemented as
an abstract aspect and a concrete aspect. The abstract aspect
defines an advice which does not depend on a target program
where a design pattern is applied. The concrete aspect defines
a pointcut which depends on it. This improves reusability of
the abstract aspect.

B. Benefits

There are the following benefits because codes of a design
pattern are modularized.

• A developer can apply a design pattern to the position
in any target system specified by a pointcut even if he
or she does not understand its structure.

• A developer need to update only one module regarding
the design pattern when the target system to which the
pattern is applied is updated.

• The design pattern is defined separately from the target
system, therefore it is easier to maintain and reuse the
system.

V. ASPECT-ORIENTED IMPLEMENTATION OF
READ-WRITE LOCK

We implemented all the concurrent processing design pat-
tern mentioned earlier as an abstract aspect and a concrete
aspect like observer, and confirmed that this implementation
works correctly.

In this section, we explain aspect-oriented implementation
of read-write lock as an example of our study. A set of locking

Notifies

update

getSubjectStatus
notifyObservers
addObserver
deleteObserver

ConcreteObserver

update

Subject

observers

Observer

ConcreteSubject

getSubjectStatus
setSubjectStatus

Figure 4. Observer implemented using objects.

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

and unlocking is a typical example of crosscutting concern,
and they are to be done before and after read and write in
read-write lock.

A. Read-Write Lock Defined Using Objects

In object-oriented implementation, read-write lock is im-
plemented by testing a precondition and locking just before
read and write, and unlocking and notifying a change just after
reading and writing under exclusive control. Figure 6 shows a
class diagram of this scheme.

Locking and unlocking are done by counting reading
and writing threads, and the counters are used for testing a
precondition. The precondition for read is that there is no
writing thread. The precondition for write is that there is no
reading and writing thread. A thread waits until the state of
the counter changes if the precondition is not met. Exclusive
control is done by an instance lock that is a feature of Java. The
instance lock is also necessary to execute wait and notifyAll.

B. Read-Write Lock Defined Using Aspects

Guarded suspension is used for testing a precondition and
notifying a change of the state in read-write lock, and single
threaded execution is used for exclusive control in guarded
suspension. This inclusive, or hierarchical relation is shown in
Figure 1.

In aspect-oriented implementation, we implement the read-
write lock including aspect implementations of single threaded

《aspect》
Observer

call，target
after : notifyObservers

addObserver
deleteObserver

getSubjectStatus

ConcreteSubject

getSubjectStatus
setSubjectStatus

ConcreteObserver

update

Subject

Notifies

observers

Figure 5. Observer implemented using aspect.

SharedResource

readWriteLock

read
write

Reader

sharedResource

Writer

ReadWriteLock

sharedResource

readLock
readUnlock
writeLock
writeUnlock

Uses

Reads

Writes

Figure 6. Read-Write Lock using objects.

execution and guarded suspension. Figure 7 shows a class
diagram of read-write lock.

It is necessary to apply the aspect of single threaded
execution before the aspect of guarded suspension. The first
reason is that testing a precondition and notifying a change in
state are done under exclusive control. The second reason is
that wait and notifyAll are used. An abstract aspect of guarded
suspension defines a precedence of concrete aspects by adding
+ after names of the abstract aspects because if a name of a
concrete aspect is used, the abstract aspect need to be updated
when adding, deleting, or changing it.

In object-oriented implementation, because a class manages
a lock and counters, an instance of the class is created
for every object to be read and written. In aspect-oriented
implementation, because the aspect manages the lock and
counters. A test of preconditions for reading and writing is
defined in two concrete aspects, and the aspects are defined as
privileged to access to the counter which is a private field in
another aspect.

VI. ASPECT-ORIENTED IMPLEMENTATION OF OTHER
CONCURRENT PROCESSING DESIGN PATTERNS

In this section, we present brief summaries of aspect-
oriented implementation of the other concurrent processing
design patterns. If a design pattern uses other concurrent
processing design patterns, we implemented the design pattern
by including the aspects for them as shown in the read-write
lock.

We are not successful yet in implementing thread-specific
storage in aspects. The Thread-specific storage is a design
pattern to re-implement an object as an object with the
same API, and such a major structural change is difficult to
implement using aspects.

Immutable
Immutable cannot be implemented by an ad-
vice because the pattern does not execute any
code. Instead, We implemented a checking feature
whether a field of a target object is assigned from
outside the object or not.

call
before : readLock
after : readUnlock

call
before : writeLock
after : writeUnlock

《aspect》
ReadWriteLock

SharedResource

read
write

Reader

sharedResource

Writer

sharedResource

Reads

Writes

call，target
around
: proceed

{ guarded }

《aspect》
SingleThreaded

Execution

call，target
before : wait

call，target
after : notifyAll

《aspect》
Guarded

Suspension1，，，，2

Figure 7. Read-Write Lock using aspects.

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

Balking
The pattern needs a feature to terminate a method
execution, however an advice has no feature to
do it. Therefore, we implemented balking using
an around advice. Proceed (i.e. the original code
in the target object) is executed if a precondition
is met. The around advice is terminated if a
precondition is not met.

Producer-Consumer
Codes for a producer and a consumer must specify
codes for send and receive. However, it is difficult
for a pointcut to specify an advice because an
advice has no name. In our implementation of
producer-consumer, an advice executes a method
to send or receive an object. An pointcut specifies
the name of the methods.

Thread-per-Message
When applying thread-per-message to a program
afterward, in object-oriented implementation, a
developer needs to modify the program so that
another thread may execute a requested process-
ing. In aspect-oriented implementation, a devel-
oper need not modify the program. An around
advice handles the processing, and another thread
executes the original code.

Worker Thread
In aspect-oriented implementation, an around ad-
vice is executed instead of a requested processing,
and an abstract aspect defines an inner class
that executes the original code using the proceed
feature.

Future
In aspects implemented thread-per-message and
worker thread, an advice returns the same instance
as a return value of a requested processing. The
instance and the processing result are related using
a map feature.

Two-Phase Termination
In aspect-oriented implementation, a thread termi-
nates itself executing stop at a safe position. It is
because an advice cannot terminate the execution.

Active Object
When adding a method to a thread-unsafe object,
in object-oriented implementation, a developer
must implement a new task to execute the method,
and add a method to create the task. In aspect-
oriented implementation, a developer need only
to implement a new concrete aspect of worker
thread.

In any implementation summarized above, an abstract
aspect only defines the abstract structure, and a concrete aspect
defines the number and the type of an object to be created. The
types of an argument and a return value of the advice are not
specific but general Objects. These disciplines are to improve
reusability of the abstract aspects.

VII. CONSIDERATION

We express the inclusive relations among concurrent pro-
cessing design patterns as a combination of aspects. Regarding
this, we had to do some refactoring on aspect implementations
of the patterns.

For example, when including an aspect for single threaded
execution in an aspect for guarded suspension, first implemen-
tation did exclusion control using an instance lock of the aspect
for single threaded execution, and the aspect for guarded
suspension could not execute wait and notify. Therefore, we
modified the aspect for single threaded execution so that an
instance lock of an object can be used.

However, when including the aspects in an aspect of read-
write lock, a change in state could not be notified between
concrete aspects because wait and notify are instance methods
of the aspect of guarded suspension. Therefore, we modified
the aspect of guarded suspension moreover so that an instance
method of a target object can be used.

This approach can be applied also to other aspect-oriented
implementations where a design pattern includes other design
patterns, as well as concurrent processing design patterns.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose aspect-oriented implementation
of concurrent processing design patterns, and if a design
pattern uses other concurrent processing design patterns, we
implemented the design pattern by including aspects imple-
menting them.

We are still at the starting point in this research, and there
is still much to do. Below are some future research directions:

• Refinement of aspect-oriented implementation of con-
current processing design patterns.

• Methodology of aspect-oriented implementation and
refactoring in inclusion of aspects.

• Categorization of concurrent processing design pat-
terns from the point of aspect-oriented implementa-
tion.

REFERENCES

[1] E, Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
Addison-Wesley, 1994.

[2] R. Laddad, AspectJ in Action, Manning, 2003.
[3] J. Hannemann and G. Kiczales, “Design Pattern Implementation in Java

and AspectJ”, Proc. ACM OOPSLA, 2002, pp. 161–173.
[4] M.L. Bernardi and G.A. Di Lucca, “Improving Design Pattern Quality

Using Aspect Orientation”, Proc. IEEE STEP, 2005, pp. 206–218.
[5] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and

A. von Staa, “Modularizing Design Patterns with Aspects: a Quantita-
tive Study”, Proc. ACM AOSD, 2005, pp. 3–14.

[6] M. Bynens and W. Joosen, “Towards a Pattern Language for Aspect-
Based Design”, Proc. ACM PLATE ’09, 2009, pp. 13–15.

[7] Z. Vaira and A. Caplinskas, “Case Study Towards Implementation of
Pure Aspect-Oriented Factory Method Design Pattern”, Proc. IARIA
PATTERNS ’11, 2011, pp. 102–107.

[8] D. Lea, Concurrent Programming in Java, Addison-Wesley, 1999.
[9] A. Holub, Taming Java Threads, Apress, 2000.

[10] M. Grand, Patterns in Java, Volume 1, Wiley, 2002.

150Copyright (c) IARIA, 2014. ISBN: 978-1-61208-346-9

ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

