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Abstract— The lack of scientific approaches in estimating the 
remaining useful life (RUL) of various components and devices 
used in complicated systems, such as airplanes remain to be 
addressed. Regardless, there has been some progress in 
demonstrating feasible and viable techniques so far that are 
relevant to ‘integrated system health management’ (ISHM). 
ISHM entails a series of techniques and scientific measures 
that have collaborative self-awareness features to increase the 
overall reliability of systems. However, these resulting systems 
were often too expensive and time consuming, as well as 
requiring a lot of resources to develop. This paper presents a 
radically novel approach for building prognostic models that 
compensates and improves on the inconsistencies and problems 
witnessed in current prognostic models. Essentially, it proposes 
a state of the art technique that utilizes the physics of a system 
rather than the physics of a component. An advantage to this 
approach is; the prognostic model can be generalized such that 
a new system could be developed on the basis and principles of 
the prognostic model of another systems. Simple electronic 
circuits are to be used as an experiment to exemplify the 
potential success that can be discovered from the development 
of a novel prognostic model that can efficiently estimate the 
RUL of one system based on the prognostics of another system. 

Keywords-Prognostic Model, Integradted System Health 
Management (ISHM), Degradation, Duality, Cuk Converter. 

I.  INTRODUCTION 

Integrated System Health Management (ISHM) [1] is the 
next evolutionary step in condition based asset management, 
endeavoring to build automated prognostic and diagnostic 
systems to preserve and enhance the safety and readiness 
obtained from legacy Health and Usage Monitoring Systems. 
ISHM is to detect, diagnose, predict, and mitigate 
undesirable events caused by degradation, fatigue and faults 
in components over a certain period of time. For instance, the 
presence of such problems may occur during an important 

function related to a system’s aircraft, regardless of whether 
the adverse event was caused by the subsystems. To properly 
address this problem, it is critical to develop technologies 
that can integrate large, heterogeneous distributed system 
[2], asynchronous data streams from multiple subsystems to 
detect a potential adverse event. The technologies would 
later be used to diagnose the cause of the event, foresee what 
consequences the event will have on the remaining useful 
life of the system (i.e., how it would jeopardize the entire 
system), and lastly take appropriate precautions to mitigate 
the event, if necessary [1]. 

Furthermore, effective estimation of the remaining useful 
life of devices and systems rely on development of 
prognostic models. This in turn requires extensive effort 
being made towards accelerating ageing mechanisms for 
each component, which ultimately enables us to prepare a 
sufficient amount of degradation profiles. This therefore 
makes it necessary to obtain the degradation profiles of every 
subsystem, including their individual components. This leads 
to a new degradation profile being devised every time a 
component is upgraded. The following degradation profile is 
calculated from either the accumulated damage or the data 
driven. Consequently, any changes made in the design of the 
system will both consume time and incur additional costs, 
considering that the prognostics model will need to be re-
upgraded. It is thus apparent that the proposals discussed 
above are all expensive and time consuming processes that 
suffer from unreliability, noise, inaccuracies, etc [3]. 

To effectively overcome these problems, at the highest 
system level, a System- Level Reasoning (SLR) can be 
developed to at least provide the system with significant 
capabilities that can potentially decrease costs by assigning 
the system prognostics with a System Integrated Prognostic 
Reasoner (SIPR) [1][4]. A Vehicle Integrated Prognostic 
Reasoner (VIPR), for instance, is a NASA funded effort for 
developing the next generation VLRS. A typical functional 
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module within the SLR is a System Reference Model. This 
System Reference Model divides the system into partitions; 
and provides the necessary relationships between subsystems 
for the inference process. This partitioning enables the 
inference engine to reuse and link the same prognostic 
models to multiple subsystems and further minimize 
certification and qualification costs [1][4]. 

In summary, various techniques and methods, such as 
neural network, fuzzy, statistics, semantic computing, graph 
theory etc. have been utilized for the development of ISHM. 
However, ISHM still suffers from problems related to 
inefficient models, uncertainties and inadequate reasoning. In 
addition, the development of prognostic models still remains 
to be very costly and time consuming. These problems 
however still exist, mainly because the prognostics of a 
system heavily relies on the physics of failure models and 
degradation profiles that are known to be either inaccurate, 
inconsistent or very noisy. We believe that the ISHM system 
will greatly benefit if the prognostic of a component and a 
system is perceived as a feature rather than a system or 
component, which allows us to develop the prognostics 
based on this specific feature of the system instead of having 
to worry about the physics of the components. An advantage 
of this approach is that it will enable SLR to develop 
prognostics for a new subsystem based on a collection of 
features (encompassing various models/patterns) already 
known from the previous prognostics of subsystems. In order 
to fulfill this task, SLR may need to employ various 
techniques, such as those that involve Soft Computing (SC) 
including (fuzzy and neural network) in its Inference Engine 
and System Reference Model units, so that the subsystems 
properties can be linked to one another. In this proposal, we 
expect that there may be a duality connection found between 
the prognostics of dual systems, assuming that the 
prognostics of the dual systems are also seen as their 
parameters and features. 

The next section shall describe in more detail the 
prognostics in systems. The principles of duality in electrical 
systems, along with brainstorming the duality concept of 
system’s prognostics, are covered in Section 3. Section 4 
covers the prognostics of Cuk converter and its dual circuit 
via developed algorithms and simulations with details of test 
approaches in Section 5. Lastly, the conclusion is covered in 
section 6. 

II. PROGNOSTICS 

In condition-based maintenance, prognostics can be 
defined as a controlled engineering discipline that focuses on 
the estimation and prediction of the future course of a system 
or component that attempts to workout at what point it starts 
to slowly develop irregularities and faults to the point where 
it eventually malfunctions. As a result of such malfunctions, 
a system or component can hence no longer meet the desired 
performance expectation. The predicted lifecycle of a system 
or component is referred to as the Remaining Useful Life 
(RUL). RUL is an important concept that is used in decision 
making for contingency mitigation and maintenance. The 
prognostics of a system or component are constructed from 
various scientific techniques including: failure mode 

analyses, early detection of aging signs, and damage 
propagation models. Failure mechanisms are often used in 
conjunction with system lifecycle management to create 
prognostics and health management (PHM) disciplines. 
PHM is also sometimes referred to as system health 
management (SHM) or within the field of transportation 
applications; it is either referred to as vehicle health 
management (VHM) or engine health management (EHM). 
There are three main technical approaches related to building 
prognostic models which are broadly categorized into data-
driven approaches, model-based approaches, and hybrid 
approaches [1][4][5]. 

A. Data-Driven Prognostics 

Data-driven prognostics [6] are mainly based on pattern 
recognition and machine learning approaches in order to 
identify and detect changes and trends in system state phases. 
In regards to predicting trends in nonlinear systems, the 
classical data-driven methods include stochastic models, 
such as an autoregressive model, the bilinear model, the 
projection pursuit, etc. Soft computing techniques that 
involve using various types of neural networks (NNs) and 
neural fuzzy (NF) systems have also been commonly 
adopted to deal with data-driven forecasting of a system state 
[7]. The following prognostic approach concerns 
applications that have a complicated system; meaning that 
developing an accurate prognostic model of such a system 
will be expensive. So by using this particular approach to 
deal with complex systems will allow the prognostics of a 
system to be frequently set up much faster and cheaper as 
compared to other approaches. On the contrary, data driven 
approaches may have a wider confidence intervals than other 
approaches which mean it will require a substantial amount 
of data for training purposes [8]. 

Various strategies that are used to develop data-driven 
prognostics involve the analysis of either (1) modeling 
cumulative damage and then extrapolating out to a damage 
threshold, or (2) learning directly from the data relating to 
the remaining useful life. 

Since individually failing systems is a lengthy and rather 
costly process, we thus seek to obtain a run-to-failure data 
which is the main fundamental setback, especially for new 
systems. In order to retrieve adequate data-driven 
prognostics, the accelerated aging data should be carefully 
extracted from a number of similar products by suitable 
measuring tools. This means that both quality and quantity 
aspects of the data driven prognostics will add to expenses; 
especially since the data sources may have been derived 
from a wide range of factors including temperature, pressure, 
oil debris, currents, voltages, power, vibration and acoustic 
signal, spectrometric data, as well as calibration and 
calorimetric data. It is therefore important to fully be aware 
of what parameters and signals are necessary to be measured, 
and which features must be extracted from noisy, high-
dimensional data [6][7][8]. 

B. Model-Based Prognostics 

The attempts made to incorporate a physical model of 
system which is (either accomplished via micro or macro 
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levels) into the estimated remaining useful life (RUL) is 
known as model-based prognostics [5]. The micro level (also 
known as material level) is often referred to as damage 
propagation model which is a physical model that is 
integrated with a series of dynamic equations. These 
dynamic equations define the very relationships between 
damage and degradation of a system or component. They 
further define how the system or component is operated 
under environmental and operational conditions. As it’s 
almost impossible to measure many critical damage 
properties, an alternative solution is to use sensed system 
parameters instead. However, there may be a possibility that 
the level of uncertainty and inaccuracy are increased. In spite 
of the uncertainty and inaccuracy added as a result of sensed 
system parameters, uncertainty management must be 
considered with the proper assumptions and simplifications, 
which may overcome the significant limitations caused by 
that approach [4][5][9]. 

In contrast to physical expressions used in micro-levels, 
macro-level models alternatively use mathematical models at 
a system level in order to define the relationship among 
system input, system state, and system measure variables. 
The mathematical model is often a simplified representation 
of the system. Simplification may help make prototyping 
faster; but the trade-off to this is that the coverage of the 
model is increased at the expense of reducing accuracy of a 
particular degradation mode. In addition, within a complex 
application, such as a gas turbine engine, there would be a 
lack of knowledge in attempting to develop the proper 
mathematics for all subsystems or components. Again, this 
adds uncertainty and inaccuracy, similar to micro-level 
models; which means simplifications would need to be 
accounted for by performing uncertainty management 
procedures [1][4][9]. 

C. Hybrid Approaches 

In reality, having a purely data-driven or purely model-
based approach is almost impossible. However, both models 
do include some aspects of one another mechanisms. Hybrid 
approaches intend to bring the strength of both ‘data-driven’ 
approaches and ‘model-based’ approaches into one 
prognostics strategy. The two well known categories of 
Hybrid approaches are, 1) Pre-estimate fusion and 2.) Post-
estimate fusion. The first technique applied, hardly has any 
‘ground truth’ data or ‘run-to-failure’ data available. The 
second technique is more suitable in situations where 
uncertainty management is required. This means that the 
second technique helps to narrow the uncertainty intervals of 
data-driven or model-based approaches while also improving 
accuracy [10][11]. 

III.  PROGNOSTICS OF DUAL SYSTEMS 

Duality is one of the fundamental properties of systems, 
so that it can be consistently seen in systems that have any 
kind of physics [12][13]. It has a captivating history in 
mathematics, engineering and science. Duality relations have 
been established between geometric objects, algebraic 
structures, topological constructs and various other scientific 
constructs. In electrical systems, duality relations have 

appeared in the core principles for any theorem in electrical 
circuit analysis in situations where there is a dual theorem 
that replaces one of the quantities with dual quantities; 
examples of dual quantities are current and voltage, 
impedance and admittance, meshes and nodes (shown in 
Table 1) [14]. 

TABLE I.  DUALITY PRINCIPLES IN ELECTRICAL SYSTEMS 

System Dual of System 
Voltage of nodes or across device Current of branch or mesh 
Current of branch or mesh Voltage of nodes or across device 
Resistor (R) Conductivity (1/R) 
Conductivity (1/R) Resistor (R) 
Capacitor (C) Inductance (C) 
Inductance (L) Capacitor (L) 
Voltage Source (Vs) Current Source (Vs) 
Current Source (Is) Voltage Source (Is) 
Kirchhoff’s Current Law Kirchhoff’s Voltage Law 
Kirchhoff’s Voltage Law Kirchhoff’s Current Law 
Mesh/Loop Node 
Node Mesh/Loop 
 
In regards to duality concepts, there will be a duality 

relationship between two electrical circuits if the parameters 
values and topologies of these two circuits are linked to one 
another based on details in Table 1. From a mathematical 
point of view, dual circuits have the same mathematical 
model except for having different parameters. Thereby we 
want to fully comprehend that if one was to consider that the 
prognostic of a system or component were to be seen as a 
parameter, it will thus mean that the prognostics of a system 
that have different topologies can be assigned to one another, 
while considering that the systems have the same 
mathematics model but with dual parameters as shown in 
Table 1. This provides us with the required facilities to 
develop the prognostics of a system based on the prognostics 
of its dual system. 

From graph theory [12], it is well established that the 
behavior and function of a system can be recognized from 
knowing the topology of a system without the need of 
knowing the components and devices that are used in the 
system, considering that the nodes voltages and currents of 
branches in the circuit are known. Hence, it can be expected 
that graph theory provides us with the capability to construct 
the prognostic of a system based on its topology rather than 
concentrating on the devices and components that are 
integrated within the system. It is also expected that systems 
that have the same topology and mathematical models will 
also share the same prognostics no matter what components 
are included in the system. Therefore, it is possible to 
investigate how prognostic models can be designed from the 
topology of system rather than having to know physics of 
failure of a system. This makes the process of modeling the 
prognostics of a system much more ideal and realistic by 
saving a substantial amount of resources and time, since you 
wouldn’t have to individually test each system to identify its 
prognostics. 

Figure 1 shows an example of dual circuits. Using 
Kirchhoff’s laws, it is evident that both circuits have the 
same form of mathematical model as shown in (1) for circuit 
in Figure 1-a; and (2) for circuit in Figure 1-b: 
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 Va . (1/R1 + 1/R2 + 1/R3) = 0 (1) 

 Ia . (R1 + R2 + R3) = 0 (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  a) Cuk Converter, b) Dual circuit for Cuk converter in 2-a. 

If for instance a degradation mechanisms is added, R2 in 
circuit of Figure 1-b is aged as short circuit (R2 → 0), this is 
turned as (1/R2 → ∞) in circuit of Figure 1-a. This actually 
represents the duality principles shown in Table 1 in which 
the resistor is a dual of a conductive; or in regards to this 
example, it can be known as the short circuit being a dual of 
an open circuit. 

The same rules can be used in more complex circuits 
where various components including capacitors and 
inductances are also used. The most critical point that needs 
to be worried about is the fact that degradation and failure 
mechanisms of dual components are not truly related to one 
another. Degradation mechanism of capacitor, for instance, is 
not related to degradation mechanisms of inductance, at all.  

In order to deal with this problem, we rely on the well 
known physics principles, such as Ohm’s and Kirchhoff’s 
laws. In reference to these two laws, it’s obvious that any 
electric component can be formulated by using voltage 
across the component and current through the component. 
Alternatively, in regards to basic principles in graph theory 
of circuit and system design, it is well known that the 
behavior of a system is fully formulated if voltage of all 
nodes and current through all branches in the circuit are also 
known. This means that no matter what components are used 
in the circuit, as long as all the voltages and currents are 
known, the behavior and function of circuit can be fully 
formulated. Figure 1-c and 1-d, respectively show the graph 
of the equivalent circuits in Figure 1-a and 1-b. 

From a circuit level point of view, the components details 
do not necessarily need to be known in order to develop a 
prognostics model for a circuit. Practically, sensors are used 
to measure voltages, currents, temperature etc. This allows 
the experiences of a degraded circuit or system of any form, 
to be interpreted as a circuit not functioning properly, on the 
basis of the sensed values meaning. Although this principle 
can be applied for greater purposes, i.e., to design a device 
independent prognostic model, this paper will mainly aim to 

present a realization of duality principles for the 
development of prognostics for dual circuits. 

In addition, duality concept has already been 
recommended for diagnosing faults. Reference [15] proposes 
a fault diagnoser based on the duality principle and the 
optimal control theory for linear systems. However, this 
paper will present duality applications in system prognostics. 

IV.  PROGNOSTICS OF CUK CONVERTER 

This section shows how duality concept can be used to 
develop prognostic models for Cuk converter [16] and its 
dual circuit. The following simulations were all conducted 
with Matlab and Orcad. Schematic of Cuk converter and its 
dual circuit are shown in Figure 2-a and 2-b. We use certain 
values for Cuk converter devices as well as all the equations 
depicted in reference [16] for all the simulations in this 
paper. Cuk is a step-down/step-up converter that shares a 
similar switching topology with boost-buck. Thus, it presents 
the voltage ratio of a buck-boost converter: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  a, b) Resistive circuit with duality relationship, c,d) Graphs for 

circuits 1-a and 1-b. 

 vo/vs =Ds / (1- Ds). (3) 

where vo is output voltage, vg is the input voltage, Ds is 
the duty cycle of the switch ton/(ton+toff); and ton and toff are 
durations for when the switch is on and off. Equation (3) is 
calculated from the principle of conservative energy and the 
fact that the inductor currents relate to the input and output 
currents. This equation shows that the output voltage can be 
controlled by maintaining the duty cycle of the switch. 
Depending on the switching scheme, output voltage can be 
higher or lower than the input voltage. The state equations 
for Cuk converter are: 

 x’ = Ax + Bvg + Bcd (4) 

 vo = Cx  

 x = [v2 v1 i2 i1]’   
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The Cuk converter has two inputs, a control input (Vc) 
and an input from the power supply (vs) and one output (vo). 
Therefore, matrix [A B C D] relates to ‘state space matrices’ 
for the open-loop model from the vs to the vo. Similarly, [A 
Bc C D] is the state space matrices from the control input d to 
the output vo. Values for A, B, Bc, C, and D are given in [16]. 
The same equation can be extracted for dual circuit of Cuk 
converter in Figure 2-b; however, parameters are used in a 
dual form as shown in Table 1. Switches in Figure 2 are 
IGBT with a control voltage Vc. Yin and Zin are input 
admittance and input impedance of Cuk circuit and its dual 
circuit. 

In converters, components that are mainly damaged are 
IGBTs and capacitors. IGBT experience numbers of failure 
mechanisms, such as bond wire fatigue, bond wire lift up, 
corrosion of the wires, static and dynamic latch up, loose 
gate control voltage, etc. The resulting affects mentioned are 
too complex, but we assume that these failure mechanisms 
can cause IGBT to behave as either an open circuit on a 
collector-emitter or a device encountering malfunction on its 
gate-emitter control. For instance, IGBTs thermal junction is 
increased due to solder crack which turns to wire bond lift 
off that increases the resistor relating to the collector-emitter. 
On the other hand, hot carrier injection is increased due to 
electrical stress. This causes short circuit on the IGBTs gate-
emitter junction. As a result of this failure, IGBT’s gate 
controllability is missed (loose gate control voltage) that 
causes IGBT to malfunction. The result of this effect is an 
increase in current through collector-emitter which means 
that the resistor of collector emitter is decreased. Therefore, 
it can be realized that wire bond lift off and loose gate 
control voltage are failure mechanisms that presents some 
kind of duality relationship. While one of them increases the 
resistor, the other one decreases the resistor. Generally, we 
assume that IGBT’s failure and malfunction mechanisms are 
parameters with duality relationships. 

Figure 3 shows IGBT run to failure data for four different 
IGBTs. This data is too noisy and needs to be filtered, but 
still there are a number of states that can be seen in the data. 
These states refer to cracks or wires that were lifted up due to 
degradation mechanisms. The resulting effects are changes 
in the IGBT’s function; and changes in the channel resistor 
of that IGBT. We assume that degradation is processed in a 
form of duality for Cuk and its dual circuit, so that if IGBT 
of Cuk experiences degradation towards its open circuit, 
IGBT of dual circuit of Cuk is degraded towards short 
circuit. By the time that the IGBTs are damaged, Cs and Ls 
are fully charged as well as the other energy storage 
components lose energy, so Vo would be 0. It is however 
impossible to have a real short circuit in IGBT, thus we 
assume that it may have happened when the current through 
the collector-emitter exceeds over its limit just before the 
IGBT is burned out. 

Based on the level of accuracy, there are number of 
models for a real capacitor and an inductance. To simplify 
simulation, we assume that the capacitor and the inductance 
can both be modeled like Figure 4 for the purposes of this 
paper. These models will present duality relationship 
between capacitance and inductance while also presenting 

the energy lost by the resistors. R1 typically has had very 
large values, while R2 has a small value; but due to 
degradation, these resistors are changed towards either open 
or short circuits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Run to failure data for four different IGBTs. 

 
 
 
 
 
 
 
 
 
 

Figure 4.  Real model for a) Capacitor, b) Inductance. 

Figure 5 illustrates the proposed algorithm devised to 
develop this prognostics model. The same process that is 
possessed with different sets of run to failure degradation 
and malfunction profiles is repeated for both Cuk and its dual 
circuit. The components of the circuits are initially set to be 
in a good condition. Then as soon as the time step for the 
circuit is increased, the values of the components are 
changed by using a series of values provided in the 
degradation profile for the new time step. Signals, such as v1, 
v2, vo, i1, i2, io, are measured at each time step phase. These 
signals are used for calculating systems properties, such as 
transfer functions, input and output impedances and 
admittances. Subsequently, the system degradation is turned 
according to changes encountered in the transfer functions 
(Zc(d,t), Yc(d,t), Zdc(d,t), Ydc(d,t)). So where d is an index of 
a selected degradation profile, c is Cuk and dc is the dual 
circuit of the Cuk converter. Whenever d is altered, time step 
(t) is reset to zero which will reset the process of the circuit 
to a healthy condition for the new degradation scheme. By 
measuring the mentioned signals and parameters, it would be 
possible to realize how energy is transferred between 
capacitances and inductances; and how that transferred 
energy is lost when the system is also degraded. 

We realized that if a degradation profile is used for Cuk, 
such that it’s converted to a malfunction profile for its dual 
circuit so that the IGBTs in both circuits are always remained 
in dual forms; then a duality relationship would be seen 
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between the transferred functions of these two circuits. For 
instance, Zc(t) is equal to Ydc(t). This is because as the 
degradation profile changes the IGBT of Cuk towards an 
open circuit; its malfunction profile also changes the IGBT 
of dual circuit towards a short circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Algorithm used to develop prognostic model. 

If the malfunction profile for dual circuit of Cuk is not 
extracted from the degradation profile of a Cuk circuit, then 
Zc(t) is not identical to Ydc(t). However, we come to a 
conclusion that if the whole process is repeated for number 
of different degradation and malfunction profiles and that the 
mean value of Zc(t) and Ydc(t) are used for comparison; leads 
to meaningful similarity patterns to be found between Zc(t) 
and Ydc(t). Zmc(t) can be used for the mean value of Zc(d,t) 
and Ymdc(t) can be used for the mean value of Ydc(d,t), in 
situations where m refers to the mean value. Zmc(t) and 
Ymdc(t) can be both used as prognostic models for Cuk and 
its dual circuit. However, these two transfer function are not 
exactly identical, but they would be more similar to one 
another if the process that is required to be executed to 
obtain the functions is repeated for various numbers of 
degradation and malfunction profiles for both circuits. By 
implementing more intelligent algorithms that use stochastic, 
neural network, fuzzy and other techniques instead of a 
simple mean value function will increase the accuracy of this 
prognostic model. Implementing such intelligent algorithms 
also reflects the future aim and direction of our research. 
Additionally, we should be aware that prognostics have 
always been a way to estimate the life time of devices and 
systems within different confidence levels. Confidence levels 
provide assurance, so that we can comfortably rely on the 
performance of an aged system. The point is the accuracy of 
prognostic models has always been under doubt and remains 
to be under margins of confidence levels. So in summary, by 
using the prognostic model of a system for other systems 
where similarities in their properties (like duality) are found, 
would give us a more accurate and reliable representation of 
the state and condition of the system or component. This is 

assuming that the prognostics are developed from adequate 
number of degradation profiles, and that they also have the 
right minimum and maximum confidence levels. 

V. TEST APPROACH 

The resulting prognostic model is tested with an 
additional degradation profile which is used as a test data to 
estimate the remaining useful life time for the converter. 
During the testing process, the prognostic model is 
stimulated via the samples derived from the test data. This 
causes the parameters of the prognostics model to change, 
which therefore leads to the degradation of the system. The 
accuracy of the degradation depends on the number of 
delayed and differentiated samples that are used to simulate 
the prognostic model as well its time step t sample.  

The tests would be inaccurate, if the model was 
stimulated one sample at a time, despite there being 
durations in the test data where the samples remain almost 
the same. A more accurate testing is achieved, if 
differentiated samples are also used for stimulation. This 
thereby allows the prognostics model to follow the test data 
trend rather than only following one sample at a time. 

Therefore to estimate the life time of system at each time 
interval, the model is stimulated with the sample at t and a 
set of differences. Once the life time of the system is 
estimated for that specific sample, it then selects the next 
sample from the test data provided for simulation, while also 
updating the differences. In addition to the system degrading 
at each time step, the next sample test (let’s call it S+) is also 
calculated from using the model’s system. The simulation is 
then continued by stimulating the prognostic model using a 
calculated sample (S+) which in turn degrades the model 
again and updates the calculated sample (S+) with a new 
value. The same process is continued until S+ reaches a 
threshold which refers to a specific class in the test data 
where the device is no longer in good condition for 
operation. We set the threshold to 7 based on the 
degeneration profile that we had available, Figure 3. Once S+ 
reaches the threshold, the simulation continues with the next 
sample provided by the test data. This also requires the 
differences to be updated, accordingly. The life time for each 
sample of test data depends on the time that it takes for the 
model to reach the threshold from the time a new sample of 
test data has been selected for stimulation to the time that the 
calculated sample test reaches the threshold. This means that 
the stimulation for each time step starts with a new sample 
obtained from the test data. As this process is repeated with 
the sample calculated, the model also eventually degrades. 
Figure 6 shows a real and estimated RUL with %10 and %90 
confidence levels. 

VI. CONCLUSION 

In conclusion, this paper shows that the prognostics of a 
system can be applied to other systems that share similar 
properties in the form of duality. A prognostic model is 
developed in the form of a time dependant transfer function 
where values are altered over a certain period of time based 
on the degradation mechanisms of a system’s components. 
By having the prognostics assigned to a system’s property 
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reflects the duality connection of degradation and 
malfunction of system. This means that if the components of 
a system are aged, their dual components in the dual circuit 
will be faced with malfunction. The accuracy of the 
developed prognostic model is dependent on the number of 
available degradation profiles; and the method that is used to 
train the time dependant transfer function. The accuracy of 
this model is guaranteed and expressed within the minimum 
and maximum confidence levels. However, we presented our 
approach just for Cuk converter and its dual circuit, but it 
seems that the same technique can be used for systems that 
have slightly similar topologies, degradation mechanisms, 
and properties. Thereby, further research needs to be 
conducted for systems that are not in dual forms, especially 
for the purposes of exploring how the prognostic model of a 
system could be mapped to the prognostic model of another 
system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Resulting RUL after testing prognostic model with data test. 

The advantage and usage of such a technique is 
emphasized in the implementation stage of the inference 
engine for System- Level Reasoning (SLR) and System 
Integrated Prognostic Reasoner (SIPR). In addition, it 
provides us with the facility to transfer degradation 
knowledge and experiences between systems. This means 
that the development of prognostics for huge systems, such 
as heterogeneous distributed systems used in applications 
like aircraft is much faster, while the cost assigned to 
accelerated aging tests and preparing degradation profile is 
decreased. We essentially intend on pushing forward with 
our research, in order to apply this technique to the 
development of the prognostic inference engine and reasoned 
for aircraft. 
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