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Abstract— The lack of scientific approaches in estimatinghte
remaining useful life (RUL) of various components ad devices
used in complicated systems, such as airplanes reimao be
addressed. Regardless, there has been some prograss
demonstrating feasible and viable techniques so fathat are

relevant to ‘integrated system health management’ ISHM).

ISHM entails a series of techniques and scientifimeasures
that have collaborative self-awareness features tocrease the
overall reliability of systems. However, these redting systems
were often too expensive and time consuming, as Wwels
requiring a lot of resources to develop. This papepresents a
radically novel approach for building prognostic malels that
compensates and improves on the inconsistencies gmblems
witnessed in current prognostic models. Essentiallyt proposes
a state of the art technique that utilizes the physs of a system
rather than the physics of a component. An advantagto this
approach is; the prognostic model can be generalidesuch that
a new system could be developed on the basis andngiples of
the prognostic model of another systems. Simple eteonic

circuits are to be used as an experiment to exemfli the

potential success that can be discovered from theedelopment
of a novel prognostic model that can efficiently ésnate the
RUL of one system based on the prognostics of anethsystem.
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function related to a system’s aircraft, regardielse/hether
the adverse event was caused by the subsysterpsoperly

address this problem, it is critical to develophtemogies
that can integrate large, heterogeneous distribsietem
[2], asynchronous data streams from multiple subsys to
detect a potential adverse event. The technologiesld

later be used to diagnose the cause of the eveagde what
consequences the event will have on the remaingejuli
life of the system (i.e., how it would jeopardizestentire
system), and lastly take appropriate precautionsitigate

the event, if necessary [1].

Furthermore, effective estimation of the remainiisgful
life of devices and systems rely on development of
prognostic models. This in turn requires extensffort
being made towards accelerating ageing mechanisms f
each component, which ultimately enables us to greea
sufficient amount of degradation profiles. This réfere
makes it necessary to obtain the degradation psofif every
subsystem, including their individual componentsisTieads
to a new degradation profile being devised evemetia
component is upgraded. The following degradatiafileris
calculated from either the accumulated damage @rdtta
driven. Consequently, any changes made in the mefithe
system will both consume time and incur additiocasts,
considering that the prognostics model will needbéore-
upgraded. It is thus apparent that the proposasudsed
above are all expensive and time consuming prosebse

Integrated System Health Management (ISHM) [1his t Suffer from unreliability, noise, inaccuracies, 8¢

next evolutionary step in condition based assetagament,
endeavoring to build automated prognostic and disimn

To effectively overcome these problems, at the dsgh
system level, a System- Level Reasoning (SLR) can b

systems to preserve and enhance the safety anthesad developed to at least provide the system with Sigmit

obtained from legacy Health and Usage Monitoringt&ws.

capabilities that can potentially decrease costadsigning

ISHM is to detect, diagnose, predict, and mitigatethe system prognostics with a System Integratedrieistic

undesirable events caused by degradation, fatigdefalts

Reasoner (SIPR) [1][4]. A Vehicle Integrated Progjito

in components over a certain period of time. Fetance, the R€asoner (VIPR), for instance, is a NASA fundedreffor

presence of such problems may occur during an i@por
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developing the next generation VLRS. A typical fiiowal
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module within the SLR is a System Reference Modlkis
System Reference Model divides the system intatiwens;
and provides the necessary relationships betwdesystems
for the inference process. This partitioning ensbthe

analyses, early detection of aging signs, and damag
propagation models. Failure mechanisms are ofted irs
conjunction with system lifecycle management toatzxe
prognostics and health management (PHM) disciplines

inference engine to reuse and link the same prdignos PHM is also sometimes referred to as system health

models to multiple subsystems and further
certification and qualification costs [1][4].

minimizemanagement (SHM) or within the field of transpoadat

applications; it is either referred to as vehiclealth

In summary, various techniques and methods, such asanagement (VHM) or engine health management (EHM).

neural network, fuzzy, statistics, semantic comqytigraph
theory etc. have been utilized for the developnoénSHM.

There are three main technical approaches relatbdilding
prognostic models which are broadly categorized ddta-

However, ISHM still suffers from problems related t driven approaches, model-based approaches, anddhybr

inefficient models, uncertainties and inadequadseaing. In
addition, the development of prognostic model$ gihains

to be very costly and time consuming. These problem

however still exist, mainly because the prognosti€sa
system heavily relies on the physics of failure aisdand
degradation profiles that are known to be eithecdaurate,
inconsistent or very noisy. We believe that the NMBslstem
will greatly benefit if the prognostic of a componeand a
system is perceived as a feature rather than @reyst

approaches [1][4][5].

A. Data-Driven Prognostics

Data-driven prognostics [6] are mainly based ortepat
recognition and machine learning approaches inrotde
identify and detect changes and trends in systata phases.
In regards to predicting trends in nonlinear systethe
classical data-driven methods include stochasticatso
such as an autoregressive model, the bilinear mdtel

component, which allows us to develop the progossti projection pursuit, etc. Soft computing techniquibst

based on this specific feature of the system idstédnaving
to worry about the physics of the components. Avaathge
of this approach is that it will enable SLR to depe
prognostics for a new subsystem based on a calledf
features (encompassing various models/pattern®adjr
known from the previous prognostics of subsystémsrder

involve using various types of neural networks (INldad
neural fuzzy (NF) systems have also been commonly
adopted to deal with data-driven forecasting ofstesn state
[7l. The following prognostic approach concerns
applications that have a complicated system; meatiiat
developing an accurate prognostic model of suclstes

to fulfill this task, SLR may need to employ varou Will be expensive. So by using this particular amzh to

techniques, such as those that involve Soft ComgytsC)
including (fuzzy and neural network) in its InfecenEngine
and System Reference Model units, so that the stdisg
properties can be linked to one another. In thippsal, we
expect that there may be a duality connection fdagtdreen

deal with complex systems will allow the prognostaf a
system to be frequently set up much faster andpeheas
compared to other approaches. On the contrary, diaten
approaches may have a wider confidence intervals dther
approaches which mean it will require a substamtimbunt

the prognostics of dual systems, assuming that thef data for training purposes [8].

prognostics of the dual systems are also seen eis th

parameters and features.

Various strategies that are used to develop daterdr
prognostics involve the analysis of either (1) niode

The next section shall describe in more detail theumulative damage and then extrapolating out t@araade

prognostics in systems. The principles of duatitglectrical
systems, along with brainstorming the duality cqcef
system’s prognostics, are covered in Section 3ti®ed
covers the prognostics of Cuk converter and itd direuit
via developed algorithms and simulations with detef test
approaches in Section 5. Lastly, the conclusiaroigered in
section 6.

1. PROGNOSTICS

In condition-based maintenance, prognostics can
defined as a controlled engineering discipline thatises on
the estimation and prediction of the future coufa system
or component that attempts to workout at what pivistarts
to slowly develop irregularities and faults to haint where
it eventually malfunctions. As a result of such fmattions,
a system or component can hence no longer meedetied
performance expectation. The predicted lifecycla sf/stem
or component is referred to as the Remaining Uskifiel
(RUL). RUL is an important concept that is usedl@tision
making for contingency mitigation and maintenantbe
prognostics of a system or component are constiifoben
various scientific techniques including: failure deo
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threshold, or (2) learning directly from the dagdating to
the remaining useful life.

Since individually failing systems is a lengthy anather
costly process, we thus seek to obtain a run-torfaidata
which is the main fundamental setback, especialtynew
systems. In order to retrieve adequate data-driven
prognostics, the accelerated aging data shouldabsfutly
extracted from a number of similar products by ahlé
measuring tools. This means that both quality amantty

paspects of the data driven prognostics will adéxpenses;
especially since the data sources may have beeweder
from a wide range of factors including temperatpressure,
oil debris, currents, voltages, power, vibratior atoustic
signal, spectrometric data, as well as calibratiamd
calorimetric data. It is therefore important toljube aware
of what parameters and signals are necessaryrtebsured,
and which features must be extracted from noisgh-hi
dimensional data [6][7][8].

B. Model-Based Prognostics

The attempts made to incorporate a physical mofiel o
system which is (either accomplished via micro acro
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levels) into the estimated remaining useful lifeUR is
known as model-based prognostics [5]. The micrelléaiso
known as material level) is often referred to asnage

propagation model which is a physical model that isexamples of dual

appeared in the core principles for any theorereléatrical
circuit analysis in situations where there is aldhaorem
that replaces one of the quantities with dual qtiest

quantities are current and voltage

integrated with a series of dynamic equations. &hesimpedance and admittance, meshes and nodes (shown i

dynamic equations define the very relationshipswbenh

damage and degradation of a system or componeety Th

further define how the system or component is dpdra
under environmental and operational conditions. s
almost impossible to measure many critical
properties, an alternative solution is to use strsetem
parameters instead. However, there may be a plitystbat
the level of uncertainty and inaccuracy are ineda spite
of the uncertainty and inaccuracy added as a refsknsed
system parameters, uncertainty management must
considered with the proper assumptions and siroptifins,
which may overcome the significant limitations czaiy
that approach [4][5][9].

In contrast to physical expressions used in miexels,
macro-level models alternatively use mathematicadels at
a system level in order to define the relationsaipong
system input, system state, and system measurablesi
The mathematical model is often a simplified repngation
of the system. Simplification may help make propityg
faster; but the trade-off to this is that the cager of the
model is increased at the expense of reducing acgwf a
particular degradation mode. In addition, withic@mplex
application, such as a gas turbine engine, thenddvoe a
lack of knowledge in attempting to develop the pmrop
mathematics for all subsystems or components. Adhis
adds uncertainty and inaccuracy, similar to mienel

models; which means simplifications would need ® b mathematics model but with dual parameters as stiown

damage_Voltage of nodes or across de

Table 1) [14].

TABLE I. DUALITY PRINCIPLES INELECTRICAL SYSTEMS

Systen Dual of Systen
Current of branch or me

Voltage of nodes or acrosevice

Current of branch or me

Resistor (R Conductivity (1/R
Conductivity (1/R Resistor (R
Capacitor (C Inductance (C

Inductance (L
beévoltage Source (V:

Current Source (I

Kirchhoff's Current Lav

Kirchhoff's Voltage Lav

Mesh/Looy}

Node

Capacitor (L

Current Source (V
Voltage Source (I:
Kirchhoff's Voltage Law
Kirchhoff's Current Lav
Node

Mesh/Looy

In regards to duality concepts, there will be alitiua
relationship between two electrical circuits if th@rameters
values and topologies of these two circuits arkelihto one
another based on details in Table 1. From a mattiestha
point of view, dual circuits have the same mathéaht
model except for having different parameters. Theree
want to fully comprehend that if one was to consitiat the
prognostic of a system or component were to be ssea
parameter, it will thus mean that the prognostica system
that have different topologies can be assignech&amother,

while considering that the systems have the same

accounted for by performing uncertainty managemenyaple 1. This provides us with the required faeiit to

procedures [1][4][9].

C. Hybrid Approaches

In reality, having a purely data-driven or purelpdel-
based approach is almost impossible. However, inattiels
do include some aspects of one another mechani$yhsid
approaches intend to bring the strength of botla‘daiven’
approaches and ‘model-based’ approaches
prognostics strategy. The two well known categorids
Hybrid approaches are, 1) Pre-estimate fusion an&ast-
estimate fusion. The first technique applied, hattks any
‘ground truth’ data or ‘run-to-failure’ data avdile. The

second technique is more suitable in situations revhe

uncertainty management is required. This means ttiat
second technique helps to narrow the uncertaingyials of
data-driven or model-based approaches while alpoawng

accuracy [10][11].

Ill.  PROGNOSTICS OFDUAL SYSTEMS

Duality is one of the fundamental properties ofteyss,
so that it can be consistently seen in systemstileg any
kind of physics [12][13]. It has a captivating loist in
mathematics, engineering and science. Dualityiogisathave

structures, topological constructs and variousrasbentific
constructs. In electrical systems, duality relatiohave
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into o

develop the prognostics of a system based on tgnpstics
of its dual system.

From graph theory [12], it is well established thia¢
behavior and function of a system can be recognimad

knowing the topology of a system without the nedd o

knowing the components and devices that are usdtiein
system, considering that the nodes voltages anerasrof

anches in the circuit are known. Hence, it caeXpmected
that graph theory provides us with the capabititgdnstruct
the prognostic of a system based on its topolotherahan
concentrating on the devices and components that
integrated within the system. It is also expectet systems
that have the same topology and mathematical modé#ls
also share the same prognostics no matter whatauwengs
are included in the system. Therefore, it is pdssito
investigate how prognostic models can be desigrad the
topology of system rather than having to know pte/sif
failure of a system. This makes the process of tiagl¢he
prognostics of a system much more ideal and realist
saving a substantial amount of resources and 8inee you
wouldn’t have to individually test each systemderitify its
prognostics.

ar

) ) L Figure 1 shows an example of dual circuits. Using
been established between geometric objects, algebracjrchhoff's laws, it is evident that both circuitsave the

same form of mathematical model as shown in (1ifi@uit
in Figure 1-a; and (2) for circuit in Figure 1-b:
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V,. (UR + 1/R, + 1/Ry) = 0 1)

Ia.(R+R2+R3):0 (2)

V2
R2

R1

R3
(b)
V2

By @ V3

© (@

Figure 1. a) Cuk Converter, b) Dual circuit for Cuk converite-a.

I Iz

If for instance a degradation mechanisms is adRgdh
circuit of Figure 1-b is aged as short circuit (R 0), this is
turned as (1/R— o) in circuit of Figure 1-a. This actually
represents the duality principles shown in Table Which
the resistor is a dual of a conductive; or in rdgao this
example, it can be known as the short circuit beirtyal of
an open circuit.

The same rules can be used in more complex circuits
including capacitors and

where various components
inductances are also used. The most critical ghattneeds
to be worried about is the fact that degradatiod failure
mechanisms of dual components are not truly reltiezhe
another. Degradation mechanism of capacitor, fstamce, is
not related to degradation mechanisms of inductaatcal.
In order to deal with this problem, we rely on thell

known physics principles, such as Ohm’s and Kirdfho
laws. In reference to these two laws, it's obvidhiat any

electric component can be formulated by using wgelta

across the component and current through the coempon
Alternatively, in regards to basic principles iragh theory
of circuit and system design, it is well known thae
behavior of a system is fully formulated if voltagé all
nodes and current through all branches in the itiece also
known. This means that no matter what componeetsised
in the circuit, as long as all the voltages andrants are
known, the behavior and function of circuit can fodly
formulated. Figure 1-c and 1-d, respectively shba graph
of the equivalent circuits in Figure 1-a and 1-b.

From a circuit level point of view, the componedgails
do not necessarily need to be known in order tceldgva
prognostics model for a circuit. Practically, sessare used
to measure voltages, currents, temperature ets. dllows
the experiences of a degraded circuit or systeangfform,
to be interpreted as a circuit not functioning gndy on the
basis of the sensed values meaning. Although tiigiple
can be applied for greater purposes, i.e., to desigevice
independent prognostic model, this paper will maaim to
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present a realization of duality principles for the
development of prognostics for dual circuits.

In addition, duality concept has already been
recommended for diagnosing faults. Reference [i&p@ses
a fault diagnoser based on the duality principlel aéime
optimal control theory for linear systems. Howev#iis

paper will present duality applications in systemmgmostics.

IV. PROGNOSTICS OFCUK CONVERTER

This section shows how duality concept can be tsed
develop prognostic models for Cuk converter [164 ats
dual circuit. The following simulations were all raducted
with Matlab and Orcad. Schematic of Cuk convertat &s
dual circuit are shown in Figure 2-a and 2-b. We cesrtain
values for Cuk converter devices as well as alletipgations
depicted in reference [16] for all the simulatioims this
paper. Cuk is a step-down/step-up converter thatesha
similar switching topology with boost-buck. Thuspresents
the voltage ratio of a buck-boost converter:

agn
va—/ [|ve
+
+
[Yin (a)
I
Is Ve 12
Cs— N\ Ill T Vo
[ Zin ‘

(b)

Figure 2. a, b) Resistive circuit with duality relationshgd) Graphs for
circuits 1-a and 1-b.

Vo/Vs :Ds/ (1' Ds) (3)

where y is output voltage, gis the input voltage, Dis
the duty cycle of the switchf(t,n+or); and t, and ¢y are
durations for when the switch is on and off. Equat{3) is
calculated from the principle of conservative egesgd the
fact that the inductor currents relate to the inpod output
currents. This equation shows that the output geltzan be
controlled by maintaining the duty cycle of the ki
Depending on the switching scheme, output voltaage e
higher or lower than the input voltage. The stajaations
for Cuk converter are:

X' = Ax + B,g + Bd 4
Vo = Cy
X =[VaVyipiq]
34
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The Cuk converter has two inputs, a control inpty) (
and an input from the power supply)(and one output (Y.
Therefore, matrix [A B C D] relates to ‘state spacatrices’
for the open-loop model from the to the y. Similarly, [A
B. C D] is the state space matrices from the coimmit d to
the output y. Values for A, B, B, C, and D are given in [16].
The same equation can be extracted for dual ciofufuk
converter in Figure 2-b; however, parameters aesl s a
dual form as shown in Table 1. Switches in Figurar@
IGBT with a control voltage ¥ Y, and %, are input
admittance and input impedance of Cuk circuit @aaddual
circuit.

In converters, components that are mainly damaged a

IGBTs and capacitors. IGBT experience numbers ibfirea
mechanisms, such as bond wire fatigue, bond wiireut,
corrosion of the wires, static and dynamic latch lnose
gate control voltage, etc. The resulting affectsitioaed are
too complex, but we assume that these failure nmesims
can cause IGBT to behave as either an open ciocui
collector-emitter or a device encountering malfiorcon its
gate-emitter control. For instance, IGBTs therroakgion is
increased due to solder crack which turns to woadblift
off that increases the resistor relating to théectbr-emitter.
On the other hand, hot carrier injection is incegadue to
electrical stress. This causes short circuit on@®&Ts gate-
emitter junction. As a result of this failure, IGBTgate
controllability is missed (loose gate control vgka that
causes IGBT to malfunction. The result of this efffis an
increase in current through collector-emitter whitieans
that the resistor of collector emitter is decreagdwerefore,
it can be realized that wire bond lift off and leogate
control voltage are failure mechanisms that presenime
kind of duality relationship. While one of them irases the
resistor, the other one decreases the resistorerélgn we
assume that IGBT'’s failure and malfunction mechasisire
parameters with duality relationships.

Figure 3 shows IGBT run to failure data for fouffelient
IGBTs. This data is too noisy and needs to beréitte but
still there are a number of states that can be isettre data.
These states refer to cracks or wires that waesllifip due to
degradation mechanisms. The resulting effects hemges
in the IGBT’s function; and changes in the chamesistor
of that IGBT. We assume that degradation is prazkss a
form of duality for Cuk and its dual circuit, scathif IGBT
of Cuk experiences degradation towards its opeauitjr

the energy lost by the resistors; fgpically has had very
large values, while Rhas a small value; but due to
degradation, these resistors are changed towatds eipen
or short circuits.

24— i6BT1
— IGBT2

- IGBT3
— IGBT4

Vce(Volts)

T"' ikt
1 i

I 1 1 1
Cycle Times

Figure 3. Run to failure data for four different IGBTSs.

R1

(@) (b)

Figure 4. Real model for a) Capacitor, b) Inductance.

Figure 5 illustrates the proposed algorithm devised
develop this prognostics model. The same proceasish
possessed with different sets of run to failureraeation
and malfunction profiles is repeated for both Cod &s dual
circuit. The components of the circuits are inijialet to be
in a good condition. Then as soon as the time ftephe
circuit is increased, the values of the componemts
changed by using a series of values provided in the
degradation profile for the new time step. Signsigh as v

Vo, Vo, i1, In, Io, @are measured at each time step phase. These

signals are used for calculating systems propersigsh as
transfer functions, input and output impedances and
admittances. Subsequently, the system degradatitinried

IGBT of dual circuit of Cuk is degraded towards $ho according to changes encountered in the transfestins

circuit. By the time that the IGBTs are damagegad Ls

(Zo(d,1), Y(d,1), Zy(d,1), Ygdd,1)). So where d is an index of

are fully charged as well as the other energy g®ra 3 selected degradation profile, ¢ is Cuk and dthésdual

components lose energy, sg Would be 0. It is however
impossible to have a real short circuit in IGBTughwe

assume that it may have happened when the cumentgh

the collector-emitter exceeds over its limit justfdre the

IGBT is burned out.

Based on the level of accuracy, there are number @f

models for a real capacitor and an inductance. ifplgy
simulation, we assume that the capacitor and ttectance
can both be modeled like Figure 4 for the purpaxfethis

circuit of the Cuk converter. Whenever d is altetede step
(t) is reset to zero which will reset the procekthe circuit
to a healthy condition for the new degradation swheBy
measuring the mentioned signals and parametavsyitd be
possible to realize how energy is transferred betwe
apacitances and inductances; and how that traedfer
energy is lost when the system is also degraded.

We realized that if a degradation profile is usedGuk,
such that it's converted to a malfunction profite fts dual

paper. These models will present duality relatigmsh circuit so that the IGBTs in both circuits are ajwaemained

between capacitance and inductance while also mtiege
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in dual forms; then a duality relationship would been

35



ICCGI 2014 : The Ninth International Multi-Conference on Computing in the Global Information Technology

between the transferred functions of these twouitgc For
instance, 4t) is equal to Y(t). This is because as the
degradation profile changes the IGBT of Cuk towaatis
open circuit; its malfunction profile also changhs IGBT
of dual circuit towards a short circuit.

| Set the first degradation(d)/malfunction(m) profile

Set time step (t) to 0

Set components with
values from d/m
profiles for the new
time step

Set circuit with
initial values

i

‘ Measuring state of circuit, ‘
(V1,¥2, do, iy, b, s, To)as

Transfer function Calculation
(Z(d,t) & Y(d,t))

Change d/m profile

estimation

Figure 5. Algorithm used to develop prognostic model.

If the malfunction profile for dual circuit of Cuis not
extracted from the degradation profile of a Cukuit, then
Z(t) is not identical to ¥(t). However, we come to a
conclusion that if the whole process is repeatechionber
of different degradation and malfunction profilesldahat the

assuming that the prognostics are developed froeguaate
number of degradation profiles, and that they &laee the
right minimum and maximum confidence levels.

V. TESTAPPROACH

The resulting prognostic model is tested with an
additional degradation profile which is used as« tlata to
estimate the remaining useful life time for the \center.
During the testing process, the prognostic model
stimulated via the samples derived from the tesh.dBhis
causes the parameters of the prognostics moddhange,
which therefore leads to the degradation of théesys The
accuracy of the degradation depends on the number o
delayed and differentiated samples that are useidriolate
the prognostic model as well its time step t sample

The tests would be inaccurate, if the model was
stimulated one sample at a time, despite there gbein
durations in the test data where the samples realainst
the same. A more accurate testing is achieved,
differentiated samples are also used for stimuiatibhis
thereby allows the prognostics model to follow test data
trend rather than only following one sample atzeti

Therefore to estimate the life time of system ahdénme
interval, the model is stimulated with the sample¢ and a
set of differences. Once the life time of the gystes
estimated for that specific sample, it then seléloés next
sample from the test data provided for simulatighile also
updating the differences. In addition to the systigrading
at each time step, the next sample test (let'sitcgl) is also
calculated from using the model’'s system. The satioh is
then continued by stimulating the prognostic magghg a
calculated sample {B which in turn degrades the model

is

if

mean value of {t) and Ys(t) are used for comparison; leads again and updates the calculated sampl@ {@#h a new

to meaningful similarity patterns to be found bedweZ(t)
and Ygdt). Zn(t) can be used for the mean value gfdZ)
and Ynqdt) can be used for the mean value gf(d;t), in
situations where m refers to the mean valuge(ty and
Y madt) can be both used as prognostic models for Guk a
its dual circuit. However, these two transfer fumctare not
exactly identical, but they would be more similar dne
another if the process that is required to be dxectio
obtain the functions is repeated for various numbef
degradation and malfunction profiles for both citguBYy
implementing more intelligent algorithms that usechastic,
neural network, fuzzy and other techniques instefd
simple mean value function will increase the accyiat this
prognostic model. Implementing such intelligentcaithms
also reflects the future aim and direction of oesearch.
Additionally, we should be aware that prognostiaveh
always been a way to estimate the life time of ckviand
systems within different confidence levels. Confide levels
provide assurance, so that we can comfortably oelythe
performance of an aged system. The point is theracg of
prognostic models has always been under doubteandins
to be under margins of confidence levels. So inreany, by
using the prognostic model of a system for othestesys
where similarities in their properties (like dugliare found,
would give us a more accurate and reliable reptagen of
the state and condition of the system or comporgns is
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value. The same process is continued untilré&ches a
threshold which refers to a specific class in thst tdata
where the device is no longer in good condition for
operation. We set the threshold to 7 based on the
degeneration profile that we had available, Figur&nce S
reaches the threshold, the simulation continuels thi¢ next
sample provided by the test data. This also reguihe
differences to be updated, accordingly. The lifieetifor each
sample of test data depends on the time that éstédr the
model to reach the threshold from the time a newpéa of
test data has been selected for stimulation tdirtie that the
calculated sample test reaches the threshold.riééns that
the stimulation for each time step starts with & sample
obtained from the test data. As this process ieatu with
the sample calculated, the model also eventualfyadkes.
Figure 6 shows a real and estimated RUL with %1D%A0
confidence levels.

VI. CONCLUSION

In conclusion, this paper shows that the prognesifca
system can be applied to other systems that slisuitars
properties in the form of duality. A prognostic nebds
developed in the form of a time dependant tranfsfiection
where values are altered over a certain perioéha based
on the degradation mechanisms of a system’s comjgne
By having the prognostics assigned to a systenopeuty
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reflects the duality connection of degradation and
malfunction of system. This means that if the congots of [1]
a system are aged, their dual components in theciteait
will be faced with malfunction. The accuracy of the
developed prognostic model is dependent on the aumib
available degradation profiles; and the method ithased to
train the time dependant transfer function. Theueaxy of
this model is guaranteed and expressed within tihémam
and maximum confidence levels. However, we preseote
approach just for Cuk converter and its dual ctrcoit it
seems that the same technique can be used fomsythat
have slightly similar topologies, degradation metsas,
and properties. Thereby, further research needsbeo
conducted for systems that are not in dual forrapgeially
for the purposes of exploring how the prognostidei®f a

(2]

(3]

(4]

system could be mapped to the prognostic modehothar [5]
system.
: (6]
— IGBT 1
4500 — IGBT2| |
M =
o Real
I \ oo
’ [ %10£fL \ %90CL 1
2 -
i 1 8]
I \ ] [9]
Cycles (Times) = 4500
Figure 6. Resulting RUL after testing prognostic model wititaltest.
[10]

The advantage and usage of such a technique is
emphasized in the implementation stage of the énies
engine for System- Level Reasoning (SLR) and System

Integrated Prognostic Reasoner (SIPR). In additiin, [11]
provides us with the facility to transfer degradati
knowledge and experiences between systems. Thissmea
that the development of prognostics for huge systesuch
as heterogeneous distributed systems used in applis  [12]
like aircraft is much faster, while the cost asemnto
accelerated aging tests and preparing degradatufilepis
decreased. We essentially intend on pushing forweth [13]
our research, in order to apply this technique he t
development of the prognostic inference engineraadoned [14]
for aircraft.
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