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Abstract—In this paper, we study by means of Complexity Science
the topological structure of the subway network of Madrid.
Different statistic features are analyzed: Degree of a Node i
(Ki), Degree Probability Distribution P(K), Nearest Neighbour
Degree Knn(k), Clustering Coefficient, Average Path Length < l >,
Mean Service Efficiency ρ, Global Network Efficiency Eglob,
Correlation Coefficient rD and robustness of the network. This
analysis will allow to obtain a deeper knowledge of this network
and it will also help to improve its management: insight about
connectivity, most relevant stops, efficiency, vulnerability and way
of growth.

Keywords-Network Science; Transport Network; Statistical
Analysis

I. INTRODUCTION

This paper calculates different mathematical parameters
in the subway network of Madrid. Our research will allow to
increase the current knowledge about this network. Structural
properties of a subway network are very relevant for an
effective transportation management in the urban cities. There
are several works that analyze the characteristics of the
transport networks:

Chen et al. [1], present an empirical investigation about the
urban bus networks of four major cities in China: Hangzhou,
Nanjing, Beijing and Shanghai.

Chen et al. [2], investigate the evolution of the dynamic
properties in bus networks of Hangzhou, Nanjing, Beijing
and Shanghai. New measurements of the average sum of the
nearest-neighbors degree−degree correlation Dnn(K) and the
degree average edges among the nearest-neighbors L(K) are
proposed. The obtained results reflect that the considered
transport network are organized randomly.

Chang et al. [3], study the subway network of Seoul,
Tokyo, Boston and Beijing, by using the global and local
efficiency. It is found that the Seoul subway network has a
smaller global and local efficiency than the Tokyo network.
The authors suggest that the Tokyo subway system is better
for an overall distance trip but is weaker regarding incidents
of disconnection. It is also shown for the subway networks
of Boston, Seoul, Tokyo and Beijing, the global efficiency
is inversely proportional to the length of the network. The
Boston and Beijing local efficiencies are very low which
means that these are somewhat deficient in some routes.

The rest of the paper is organized as follows: Section 2
describes the subway network of Madrid, in Section 3 the
method of analysis and the results are presented, and finally

in Section 4 we end with some conclusions.

II. THE SUBWAY NETWORK OF MADRID

Madrid is one of the most populous cities in the world. It
has a population of 3,254,950 dwellers on an area of 60,683
hectares, and a high developed public transportation network.
The subway network of Madrid is one of the largest subway
networks in the world, rivalling other networks such as the
Shanghai, Guangzhou, Beijing or Delhi. In 2007, this network
became the second largest subway network in Europe after
London. The subway network of Madrid has 16 routes and
322 stops. The first route of the network began its operation
in 1919.

The subway network of Madrid is operated with more
than 2,400 trains and its yearly ridership was 628 millions in
2012. This network has been tranformed by means of several
improvement plans since 2011. Generally, the subway is open
to the public from 6:00 AM to 1:30 AM every day of the year.

III. MATHEMATICAL ANALYSIS

We can map this network in three Topological Spaces:
Space P, Space L and Space R. In these Spaces, the network
is abstracted in a graph G = (E;V ), in which E is the
set of nodes and V is the set of links between them. An
adjacency matrix of N x N dimension A(G) can be built as
a bidimensional representation of the relationships between
nodes, where Ai j = 1 when a connection between nodes i and
j exists and Ai j = 0 otherwise. N is the number of nodes in
E.

In the Space L, one node represents one stop, and one link
symbolizes an union between two nodes if one stop is the
successor of the other on a subway route. Space L is named
Stop Geographical Space. In the Space P, one node represents
one stop, and one link joins a pair of stops if at least one
route provides direct service. A link means that passengers can
take at least one route for a direct travel between two stops.
If passengers have to exchange routes then the pair of stops
is linked by more than one link. Space P is called Subway-
Transferring Space. In the Space R, nodes are defined as routes
and common stops determine the links. Space R is called Route
Space.

While carrying out a topological study of the network for
these three Spaces, some parameters are estimated:

Degree of a Node Ki and Degree Probability Distribution
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P(K): The degree of a node i is the number of links connected
to it:

Ki = Σ jAi j (1)

Not all nodes in the subway network have the same number
of links: how the degree is distributed among the nodes is an
interesting property which can be analized by estimating the
Degree Probability Distribution P(K).

Nearest Neighbour Degree Knn(k), which is defined as:

Knn(K) = Σ
./
K′=0K′p(K′/K) (2)

where p(K′/K) is the conditional probability that a link
belonging to a node with degree K links to a node with degree
K′. Therefore Knn is the average degree of those nodes that
are found by following the links originating from a node of
degree K. The evolution of Knn(K) is related to the assortativity
of the network, which indicates the tendency of a node of
degree K to associate with a node of the same degree K. In an
assortative network, Knn(K) increases with increasing K but,
in a dissassortative network, Knn(K) decreases with increasing
K while in a neutral network, Knn(K) does not depend on K.

Clustering Coefficient: given three actors i, j and w with
mutual relations between j and i as well as between j and w,
Clustering Coefficient is supposed to symbolize the likelihood
i and w are also related. This parameter was used by Watts
and Strogatz [4] for social networks analysis.

This concept can be explained by defining for j ∈ V ,

m( j) = |{i,w} ∈ E : { j, i} ∈ E and { j,w} ∈ E}| (3)

and

t( j) =
K j(K j−1)

2
(4)

We named m( j) the number of opposite links of j, and t( j)
the number of potential opposite links of j.

For a node j with K j > 2, the Clustering-Coefficient is
defined as:

C( j) =
m( j)
t( j)

(5)

and Clustering-Coefficient of a graph G = (V,E) is denoted
as:

C(G) =
1
|V ′|

Σ j∈V ′C( j) (6)

where V ′ is the set of nodes i with Ki > 2.
The Clustering Coefficient of a node ranges between 0 and

1.
Average Path Length < l >, which is the average shortest

path between all nodes of the network. We denote by l(i, j)
the distance between i and j, i.e., the number of links on a
shortest path between them.

< l(i)>=
1
n

Σ jl(i, j) (7)

represents the average distance from i to all nodes. The average
distance in G is defined as:

< l >=
1
n

Σi < l(i)>=
1
n2 Σi, jl(i, j) (8)

We denote by D = maxi, jl(i, j) the diameter (D) of G, i.e., the
largest distance between two nodes of the network.

Mean Service Efficiency (ρ) [9], which can be defined for
the subway network as:

ρ =
Ns
Mφ

0 6 ρ 6 1 (9)

Where Ns , M, and φ are the total of stops, the number of
routes and the mean number of stops per route respectively.
For a specific number of subway stops, a larger magnitude
of ρ implies fewer subway routes that the transport company
should maintain to satisfy the travel demand.

Global Network Efficiency (Eglob) [9], which may be
described as:

Eglob =
Σi 6= j∈Gl−1

i j

Ns(Ns−1)
0 6 Eglob 6 1 (10)

Global efficiency is a measure of the performance of the
network, under the assumption that the efficiency for sending
information between two nodes i and j is proportional to the
reciprocal of their distance l(i, j).

Correlation Coefficient, the degree-degree correlation was
analized as the correlation function between the remaining
degrees [5] of the two nodes on each side of an link. Re-
maining degree means the degree of that nodes minus one.
The normalized Correlation Coefficient is defined as:

rD =
1

σD(q)2 Σu,vuv{eD(u,v)−qD(u)qD(v)} (11)

where:

• eD(u,v) is the joint probability that the two vertices
on each side of a randomly chosen link have u and v
remaining degrees, respectively.

• qD(v) is the normalized distribution of the remaining
degree [6].

qD(v) =
(v+1)P(v+1)

ΣuuP(u)
(12)

σD(q)2 = Σvv2qD(v)−|ΣvvqD(v)|2 (13)

This quantitity was named by Newman [6] the Degree
Assortative Coefficient. In an assortative network, rD is
positive but, in a dissortative network, rD is negative while in
a neutral network rD = 0.

Some statistical parameters are available in Table I: Total
of Stops (Ns); Number of Subway Routes (M); Clustering
Coefficient (<C >), showing the subway routes density near
each stop; Network Diameter (D), providing the maximum
number of stops (or routes) on the shortest paths between
any pair of stops (or routes); and finally, Average Shortest
Path Length < l >, denoting the average number of stops (or
routes) on all the shortest paths between any two stops (or
routes).

Clustering Coefficient is considered to be a measure of
the local connectivity of a graph. High clustering is associated
with robustness of a network, that is resilience against random
network damage. Considering this parameter the subway
network shows moderate resilience.

A node with high K controls the traffic flow, acting as
gatekeeper. A node with high k can also act as a link between
two distant sectors of the network. The average path length
¡l¿ can be interpreted as a measure of efficiency in the flow
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TABLE I: Empirical data corresponding to the Subway Net-
work of Madrid

Space Parameter Value

M 16
Ns 322

Space L < k > 2.42
Kmax 7
<C > 0.01
< w > 2.03
wmin 2.00
wmax 4.00

D 30
< l > 10.19

Space P < k > 29.39
Kmax 99
<C > 0.90
< w > 2.08
wmin 2.00
wmax 6.00

D 4
< l > 2.26

Space R < k > 6.00
Kmax 13
<C > 0.65
< w > 4.88
wmin 1.00
wmax 14.00

D 4
< l > 1.62

of the network.
Several researches have estimated the efficiency and

vulnerability in networks [7][8]. We analyze the robustness
of subway network by calculating the value of the average
shortest path length (< l′ >) and the distribution of the number
of pairs of nodes N p separated by the shortest distance, in
the original network and in the same network but with the
highest K degree nodes removed for the tree Spaces. In the
Space L, < l′ >= 10.93; in the Space P, < l′ >= 2.27 while
in the Space R, < l′ >= 2.00. In Figures 1, 2 and 3 we
observe that the distribution of distances changes drastically
in the Spaces L and R after the gatekeepers elimination. The
network shows low robustness in both spaces (removal of a
route or a stop elimination in a route occurs). This feauture
is due to the current subway network design which, can be
improved by means of optimization tasks. We can also notice
that the most frequent short path length is 7 in the Space L
(passangers should cross 7 stops without changing their route
to get a destination in most cases), 2 in the Space P and 1 in
the Space R (most routes are linked by a stop).

We also calculate Eglob and ρ in the Space P since these
parameters lack clear meaning in the other Spaces. Eglob
represents the total ability of the network to minimize the
spatial resistance (or travel impediment), Eglob = 0.298 and
ρ = 0.847.

The node degree and its distribution are very important
properties for a network. From Figures 4, 5, 6 and Table I
several conclusions can be obtained:

• In the Space L, we observe that the number of nodes
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Figure 1: N p - l(i, j) in the original network (black line) and in the same
network but with the highest degree nodes removed (red line) in Space L
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Figure 2: N p - l(i, j) in the original network (black line) and in the same
network but with the highest degree nodes removed (red line) in Space P
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Figure 3: N p - l(i, j) in the original network (black line) and in the same
network but with the highest degree nodes removed (red line) in Space R

with degree K = 2 are the higher quantity, which
means that a typical stop is directly connected to
two other stops. In the Spaces P and R there are no
nodes with a connectivity degree significantly different
from the other nodes; the connectivity distribution is
close to an uniform distribution. This happens because
the company responsible for the urban transport in
the city must ensure the uniform distribution of local
equipment so that they are accessible to the entire
population. In the Space R, we notice that routes with
9 common stops are the most frequent.

• The subway network constrained in different Geo-
graphical Spaces leads to different values of the node
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Figure 4: Degree Distribution in Space L
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Figure 5: Degree Distribution in Space P
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Figure 6: Degree Distribution in Space R

degree: low magnitudes in the Spaces L and R (<K >
is 2.42 and 6 respectively) but very high value in the
Space P (< K > is 29.39). This is because there are
few common stops to different routes, although, from
one origin stop many final stops can be reached. In
the Space L, the most connected stops exist: Alonso
Martı́nez and Avenida de América; in the Space P,
the most connected node is also Alonso Martı́nez
(this stop can be reached through most of the routes),
finally, in the Space R, the most connected route is the
route number 10. This happens because these elements
are relevant communications centers in the city.

Regarding Knn we can observe in Figures 7 and 8
that in some intervals it is difficult to establish whether
the correlations are positive, negative or uncorrelated. The

statistical variations in Knn can be supressed by estimating its
cumulated value. This magnitude decays with increasing K as
it is showed in Figures 9 and 10; therefore we conclude that
the network is assortative, that is the nodes in the subway
network that have many connections tend to be connected to
other nodes with many connections. This characteristic is also
supported by the positive value of rD in the spaces L and P
(i.e., rD = 0.270223 and rD = 0.092046 respectively). This
happens because during the tasks of design and planning to
satisfy the traffic needs, was established that the new stops or
new routes would be linked to other stops or routes that had
similar connectivity in the network.
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Figure 7: Left side: Knn-K in Space L. Right side: Knn-K in Space P
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Figure 8: Knn in Space R
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Figure 9: Left side: Cumulated Knn-K in Space L. Right side: Cumulated
Knn-K in Space P
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Figure 10: Cumulated Knn-K in Space R

The interactions between nodes is higher in the Space
R (nodes have a larger average weight). In the Spaces L
and P the interaction magnitudes are very similar (2.03 and
2.08 respectively). Link weights in the network represent
multiplicity of connections between stops (Spaces L and P)
and between routes (Space R). Passengers have one route (one
link in each direction) in terms of average to move from one
stop to another.

IV. CONCLUSION

This research uses the Network Science as a mathematical
method to translate networks into graphs, from which impor-
tant properties are collected. The underlying structure of a
network has relevant consequences for its performance.

The subway network of Madrid is studied in three topo-
logical Spaces: Space L (stop geographical space), Space P
(subway-transferring space) and Space R (Route space). We
can conclude:

The study of Space R allows to know the average number
and maximum value of the subway routes that a stop joins.
These magnitudes are 6 and 13, respectively. The number of
shared stops by two specific routes is defined as the weight of
the link joining them. The average weight of a link is 4.88.
The Degree Probability Distribution shows that there are no
routes with a connectivity degree significantly different from
the other routes; the connectivity distribution is close to an
uniform distribution. Due to assortativity property routes that
have many connections tend to be connected to other routes
with many connections.

The analysis of Space P allows to know more precisely
the accessibility and convenience of the network. The degree
of a node symbolizes the number of stops a passenger can go
to directly without any change, while the distance between
two nodes represents the shortest path between them. The
average degree and maximum degree of a node is 29.39 and 99
respectively; the average distance between nodes is 2.26. The
average clustering coefficient of a node is high, 0.9, which
means that there is high probability that the neighbours of
this node (all other nodes to which it is joined by an link)
are also connected to each other. In this Space, the Degree
Probability Distribution also shows that there are no stops
with a connectivity degree significantly different from the other
stops. Nodes with many links tend to join other nodes with
many links.

In the Space L, one link between two stops exists if they
are consecutive on at least one route. The average degree of

a node is 2.42. In this Space, the network is assortative. The
Degree Probabibility Distribution shows that many nodes have
degree equal to 2.

Regarding robustness, we observe that the network is more
robust in Space P than in the Spaces L and R. That is, if a
failure occurs in one stop, those stops linked to it will be easily
reachable by means of routes that provides a direct service
between them, although the following stop on that route will
be difficult to reach through one direct link; this network is
more sensitive to problems in a route than in a stop.

Global efficiency can be an useful parameter for the as-
sessment of the centrality before and after alterations to the
network structure; these alterations can be caused by failures
or planning changes.

Our future works will investigate deeper the vulnerability
of subway network. We will also build a mathematical model
that explains the growth of this network.
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