
Evaluation of Visual structure for Industrial size Software Product Line Architecture
Abeer Khalid, Salma Imtiaz
Department of Software engineering

International Islamic university

Islamabad Pakistan

abeer.msse234@iiu.edu.pk, salma.imtiaz@iiu.edu.pk

Abstract-Information visualization helps in facilitating

comprehension of conceptual information. Information

visualization plays a powerful role in software product line

architecture. Much work has been done for variability

representation, but little consideration has been given to

scalability, visualization of traceability links, evolution of

variance, etc. There is a greater need for a suitable visual

structure that can illustrate “industrial sized” software

product line architecture in managing these highlighted

factors. There is also a need to perform an evaluation of the

visual structures used for visualization of product line

architecture, finding out their suitability for visualization of a

large and complex software product lines. Our results show

that hyperbolic trees are best suited for visualization of

product line architecture due to their multiple attributes such

as: Exponential growth, scalability, interaction without

hindering the structure and clearer (un-complex) perception.

Keywords-software product line architecture; information

visualization; visual structure

I. INTRODUCTION

A software product line is a cluster of software intensive
systems, ―sharing a common‖, administered set of features,
resulting from the ―core assets‖, in an agreed upon way [2].
Software product line is hierarchal in nature, with intense
complexity immersed in it, with increase in size, to
industrial level; the intense complexity has increased
exponentially.

The focus, on information visualization has increased,
during the last decade; due to advanced information
processing technology. Its essence is to augment
―cognition‖ with the help of interacted visual illustrations
[4], keeping in mind that ―visual display provides the
highest bandwidth channel from the computer to the human
mind‖ [9].

The representation of software product line architecture
in visualized form promotes understanding variation and
reduces complexity of the data [1].

The incentive behind representation of software product
line data in visual form is to provide an increased perception
of data with highest interaction capability.

The benefit of mapping of software product line data to
visual structure is best consummated if the visual structure
preserves the specified data. There is a need for performing
an evaluation of visual structure to identify their strengths
and weaknesses. Information visualization has not been able
to make much progress in software product line area.

The focus of this paper is to evaluate the existing visual
structures for software product line architecture. The scope
of the evaluation includes general visual structure along
with ones specifically made for software product line

visualization. The evaluation criterion are Scope [5],
Abstraction [32], Hierarchy [18], Traceability [14][15],
Scalability [16], Evolution [17], General visual content
[4][8] and Perception [4]. These criterion are carefully
chosen from literature, keeping in mind the attributes of
software product line architecture and the attributes
necessary for good visual structure
[4][5][8][14][15][16][17][18][32].

This paper is organized in seven sections: Section I gives
a brief introduction to the concerned problem. Section II is
concerned with the related work. Section III defines the
significance of conducting this evaluation. Section IV
defines the visual structures chosen for evaluation. Section
V presents and defines the metrics used for evaluation
purpose. Section VI presents the evaluation of the visual
structure. Section VII presents the conclusion and direction
for future work.

II. RELATED WORK

Current visualization techniques in the literature are
presented with a different focus: software visualization
techniques in general, code visualization techniques, tools
and techniques for software architecture visualizations, and
visualization of static characteristic of software.

Price et al. [5] proposed a principled systematic
approach for categorization of characteristics to be
visualized, stating six main categories (scope, context, form,
method, interaction, effectiveness) leading to further
subcategories, which are further extended to other
categories. These categorizations, helped in construction, as
well as selection, of visualization techniques, but they
lacked in specifying the domains for visualization. In short,
visualization techniques, specific to some specialized area,
were not considered, but they were reflected upon as an
individual entity.

Bassil and Keller [10] evaluated qualitatively and
quantitatively, software visualization tools using Price’s
proposed framework. Maletic et al. [11] proposed a task
oriented-approach wherein they incorporated Price’s [5]
proposed framework, taking into consideration development
and maintenance tasks of large scale software’s. Gallanger
et al. [12] took Price’s [5] and Maletic’s [11] approaches
and proposed their own, focusing on stakeholder
perspectives for evaluation of SAVT (Software Architecture
visualization tool).

Roman and Cox [6] and Storey et al. [7] emphasized the
need for evaluation, and proposed their own taxonomies.

Caserta and Zendra [8] presented a literature review on
the static features of visualization techniques and then
assessed them on the basis of three points of evolution

152Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

criteria ―changes over versions‖, ―relationship between
components‖ and ―evolving of metrics with releases‖ [8].

The focus and scope of all of the above mentioned
papers is different from ours in the sense that, first, our
focus is towards evaluating only visual structures. Second,
evaluation is done exclusively for software product lines.
The scope of this work only includes structures, which are
common and most favorable for software product lines.

III. SIGNIFICANCE OF EVALUATION OF VISUAL

STRUCTURE FOR SPL ARCHITECTURE

Evaluation of visual structure for software product line
architecture has major implications. Its importance is gained
from the fact that if visual structure is not aligned with the
needs of the concerned data, all the patterns may not be
visible; a lot of data may be obscured, and context may not
be correctly perceived. In short, departure towards a debacle
takes place, if the right representation mechanism for data
presentation is not selected [3].

Architecture of the development software is a cause of
major apprehension for the stakeholders, and a proper
depiction of architecture is raised in priority, therefore,
software product line architecture has increased the stakes
even more. ―By its very nature, architecture is a statement
about what we expect to remain constant and what we admit
may vary‖ [13]. This, in short, is the motto of software
product line.

The visual structure has a major hold in the visualization

of software product line architecture, in the sense, that if

visual structure is not up to mark then as many visual

interaction techniques are placed; it would never confer a

complete image. As stated by Tufte [3], we considered, that

―There are right ways and wrong ways to show data; there

are displays that reveal the truth and displays that do not‖

[3]. For this complication to be overcome; there is a major

need for evaluation of software product line architecture.

Our contribution is on evaluation of visual structures, for the

sole purpose of finding a formfitting structure for software

product line architecture, which would depict the essence of

SPL architecture, with minimum of visual manipulation or

interaction techniques needed for stakeholder task

completion.

IV. VISUAL STRUCTURES

We have chosen visual structures based on the fact that
some of them are already being implemented in SPL and
others are more suited for representing Software Product
Line Data.

A. Matrix Tables (MT)

B. Cone Tree (CT)

C. Tree Maps (TM)

D. Conventional Trees (CNT)

E. UML Notations (UMLN)

F. Textual Form (TXF)

G. Use Case Map notations (UCM)

H. Hyperbolic Trees (HBT)

Matrix Tables (MT) are a form of representation
mechanism used for illustration of SPL architecture data
[20][21]. Advantage of this system of demonstration is that
it plainly depicts the number of variables linked with an
assortment of data [4]. MT are used in the context of
hierarchal as well as network data. Additionally,
―visualization of data tables is used for detection of data‖
[4].

Cone Trees (CT) are another form of representation of
SPL data. They are favorable in nature because of the fact
that they are in essence set in 3D surface space; also, they
are a good form of representation for hierarchal data. Their
visual structure has a significant effect on the perceptive of
the viewer [4].

Tree Maps (TM) are favorable for software product line
data representation simply for the fact that they are a space
filling technique with a true visual format for representation
of hierarchal data [31]. Its essence is to optimize utilization
of full window space with a rectangular region mapping the
hierarchal structure resulting in a ―space filling manner‖
[31].

Conventional Trees (CNT) either being it be a vertical
tree or horizontal tree [32][31] are another established form
of representation of SPL data [32]. It is a popular form of
depicting hierarchal data using link and containment, with
the links being used to connect nodes (containment
notation). Convention tree structures are based on the fact
that there are no cycles in it and only one axis is used for
division of levels in the tree, making it easy to map and
extrapolate data [4].

UML notations are probably the most utilized form of
representation of architectural data
[27][28][26][24][29][25]. Specifically, UML class diagrams
are among the most cited in UML representation. Some
used natural language with UML based notations for
representation purpose. This is a relatively common form of
representation for showing generalization, association,
composition, inheritance and it is also used for providing
platform independence.

Textual Form (TXF) is also used for representation of
software product line data [23][22]. This form is useful as
software product line data is extremely large in size, and
folded axis is used to fit the data in the height of the window
and Seesoft [30] form is used in stating file as columns and
line of code as colored strip. These are some forms which
focus on textual representation of SPL data.

Use case map path notations (UCM) are also used for
representation of SPL. It is a concept which is used for
capturing ―requirements‖ at a reasonable level of detail. Its
use in SPL is focused towards capturing of requirement for
construction of architecture [19].

Hyperbolic Trees (HBT) are a unique way of
representing structures. Its nature is that parallel lines
deviate away from each other, ―making the circumference of
the circle to grow exponentially with its radius‖ [18]; thus,
resulting in space being accessible with mounting distance.

153Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

V. EVALUATION CRITERIA

The evaluation criteria are singled out from the literature
on the merit that a visual structure would be most suited for
use in illustrating architecture of a software product line if it
has these features in its essence rather than having them
incorporated externally. Based on the fact that a visual
structure is made on the truth that its impact would amplify
the ―cognition‖ of the stakeholder, in short increase their
perceiving power.

A. Scope

Here, scope defines the intake (visual scope) of all the
structure in one window and does not require the viewer to
scroll or shift windows to see the whole structure. This
means that the whole context is depicted in one window and
a viewer does not have to rotate between different views
[18].

B. Abstraction

This metric is chosen for the fact that at an architecture
level of SPL, the structure is at an abstract level it is not
concerned with the minuscule details such as LOC. Its mean
concern is that it can see what ―decisions‖ present are
leading to which ―features‖, which further lead to
―component‖, whose code is used for implementation, is not
its concern at that level. This is a major metric, in a sense
that fine grain detail (are needed in implementation phase
are not its concern) are not need of the time at this level.

C. Hierarchy

This is one of the major metrics chosen based on the fact
that hierarchy is embedded in the nature of software product
line. If some structure does not pander towards the hierarchy
then its use as part of software product line architecture is
not required, also keeping in mind that those structures that
do not show hierarchy of the SPL architecture data are of no
importance, those structures can be good illustrations for
some task, but are not good representation of the whole SPL
architecture structure. Hierarchy is subdivided into complex
hierarchy and clear hierarchy. Clear hierarchy is a structure
that shows hierarchy of data clearly, whereas complex
hierarchy makes, perception of data complex.

D. Traceability

This is another major metric taken into consideration.
Basically the concept behind it is the fact that the
comprehension of ―what‖ is affected by some ―particular
change‖ is known if ―traces‖ are present [14, 15]. Not just
the fact that they are present, but they should be visible as
well. This fact is favorable in a sense that it gives viewer the
power to not just mentally perceive but visually; see, e.g.,
forward and backward traceability [32]. This metrics is
further subdivided into complex viewer traceability and easy
viewer traceability. These sub factors state the fact that if a
structure is supporting traceability but that it’s not shown
clearly results in ―complex factor‖ and a structure which
shows trace links clearly falls in ―easy factor‖.

E. Scalability

This metrics is drawn because of the simple fact that we
are evaluating ―industrial size‖ SPL architecture, which
clearly stats the fact that the structure is not going to be
small or medium by any standard. This is a major issue and
is highlighted by [16], but the literature suggests, that the
present techniques might resolve other issues in SPL, but
they are not scalable for ―industrial size‖ SPL architecture
[16].

F. Evolution

This metric is a simple and well cited one in SPL
architecture in a sense that evolution happens in ―space‖ and
―time‖ and the structure should be such that it can support
evolution and the changes which occur because of it should
be traceable back to its source. If not then even if you add
changes to its architecture it would bear no consequence
because SPL architecture evolution has ―dependencies,
mismatching of variance, high cognitive complexity etc‖
incarcerated in it [17].

G. Perception

This metrics is extracted from the fact that visual
structure is always considered to be ―good‖ if what the data
wants to convey is clearly presented, helping in perceiving
patterns, association, and relationship and so on. In short, a
structure is more effective if the data mapped to it is faster
to understand, can express more peculiarity and tend to be
less error prone than other mapping techniques [4]. Also, it
is a well-known fact [9], that a visual image clearly depends
upon the properties of human perception; so a structure is
said to be considered good, if it conveys, only the mapped
data and not something which is not required.

H. General visual content

This general metric contains three sub headings known
as overlapping components, overlapping links and data
obscuring. These, being chosen on the basis that the
obscuring of data is a critical flaw which can lead to
disasters results, overlapping links, tend to be misleading in
evolution handling matter, overlapping of components can
lead to wrong assumption and complexity and shorten the
power of perception considerably. These points combined
together result in disaster if not taken into view when
considering a visual structure for software product line.

VI. EVALUATION OF VISUAL STRUCTURES

The evaluation of visual structures on the basis of
criteria mentioned above is depicted in the below mentioned
table. The () mark states that the structure supports it, the
() mark states that the structure does not support it, and the
() mark states that the concerned feature is not in
contention. Evaluation criteria are a combination of SPL
and visual structure attributes. As indicated before, this
evaluation does not cover general visual structure (physical
data); it only covers, those visual structures which are
accounted for, by abstract data, plus they are already in use,
in SPL architecture.

154Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

TABLE I. TABULAR EVALUATION OF VISUAL STRUCTURES

Evaluation criteria Visual structure

MT CNT TM CT UMLN TXF UCM HBT

CNT-V CNT-H UMLN-CD UMLN-NL

Scope          

Abstraction          

Hierarchal Clear hierarchy          
Complex

hierarchy
         

Traceability Complex viewing

traceability
         

Easy viewing

traceability
         

Scalability          

Evolution          

Perception          

General

visual content

Overlapping

components
         

Overlapping links          
Data obscuring          

The evaluation suggests that the current techniques
(UMLN, TXF UCM) which have been used, for
representation of software product line architecture are
not favorable. They, as a whole, are falling short in all
areas, except in evolution handling; the point to be
highlighted here is that even evolution handling is not
feasible, because they do not support traceability. The
only technique in use for SPL, which to some extent, is
feasible, is MT. But, that too totally lacks in Scope,
Scalability and Perception features. MT partially
satisfies hierarchal and traceability features.

Conventional Trees (CNT) are then quite favorable
as compared to other visual structures, but, they too
also lack in area of scope and scalability.

Cone Tree (CT) falls short in the area of scope,
scalability, and perception (affected because of falling
short in general visual context).

Tree Maps (TM) are quite good visual structures but
the area in which they fall short is hierarchal and
traceability feature because, though they support it, they
fall in the complex area of the above mentioned
features. TM also falls short in the area of perception
because of the fact that there structure is so crowded
that overlapping of component, overlapping of links,
and data obscuring due to component overlapping
makes it hard to perceive.

Hyperbolic Trees (HBT) are the ideal structure,
which falls, in all the right categories. It is a good
structure, for scalability, perceiving, evolution, scope,
abstraction, traceability, hierarchy. In short, they are
―good‖ for representation of Software product line
architectures.

VII. CONCLUSION AND FUTURE WORK

This paper identified the best suited visual structure
and its need, through evaluation of visual structures for
software product line architecture. Initially, visual
structures were extracted, and then evaluated on the
basis of a defined criterion. The result showed that
those techniques used by SPL architectures lack a lot of
features, only one technique was identified HBT, which
was found to be good for use, by software product line
architecture.

There is a need for interactive techniques, to be
incorporated with HBT for the construction of full
information visualization technique for SPL
architecture, which is seen as part of our future work.

ACKNOWLEDGMENT

We would like to thank all our teachers and
colleagues who helped. A.K, thanks MR. Mushtaq and
MR. Abdullah for their endearing support.

REFERENCES

[1] K. Berg, J. Bishop, and D. Muthig, ―Tracing Software

Product Line Variability — From Problem to Solution

Space,‖ In Proceedings of the 2005 annual research

conference of the South African institute of computer

scientists and information technologists on IT research in

developing countries (SAICSIT '05). South African

Institute for Computer Scientists and Information

Technologists, South Africa, pp. 182-191, 2005.

[Retrieved: June, 2013].

155Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

[2] D. John. McGregor, ―Software product lines‖. Journal of

Object Technology, vol. 3, no. 3, pp. 65–74,

April/March, 2004. [Retrieved: June, 2013].

[3] R. Edward. Tufte. ―Visual explanation:Images and

Quantities, Evidence and Narrative‖. Cheshire, CT:

Graphics Press, 1997.

[4] S. Card, J. Mackinlay, and B. Shneiderman. ―Readings

in Information Visualization - Using Vision to Think‖,

Morgan Kaufmann, 1999.

[5] A. Blaine. Price, R. Baecker, and S. Ian. Small, ―A

Principled Taxonomy of Software Visualization,‖ J.

Visual Languages and Computing, vol. 4, no. 3, pp. 211-

266, September, 1993. [Retrieved: June, 2013]. doi:

10.1006/jvlc.1993.1015.

[6] G. Catalin. Roman and C. Kenneth. Cox. ―A Taxonomy

of Program Visualization Systems,‖ Computer, vol. 26,

no. 12, pp. 11-24, December, 1993. [Retrieved: July,

2013]. doi: 10.1109/2.247643.

[7] M. Storey, F. Fracchia, and H. Muller. ―Cognitive

Design Elements to Support the Construction of a Mental

Model During Software Exploration,‖ J. Systems and

Software, vol. 44, pp. 171-185, January, 1999.

[Retrieved: June, 2013]. doi: 10.1016/S0164-

1212(98)10055-9.

[8] P. Caserta and O. Zendra. ―Visualization of the static

aspects of software: A survey,‖ IEEE Transactions on

Visualization and Computer Graphics, vol. 99, no.

RapidPosts, August, 2010. [Retrieved: July, 2013]. doi:

10.1109/TVCG.2010.110.

[9] C. Ware. ―Information visualization:Perception for

design‖. Morgan Kaufman Publishers, 2nd ed, 2004.

[10] S. Bassil and R. Keller. ―A Qualitative and Quantitative

Evaluation of Software Visualization Tools,‖ Proc. 23rd

IEEE Int’l Conf. Software Eng. Workshop Software

Visualization, pp. 33-37, 2001. [Retrieved: July, 2013].

[11] J. Maletic, A. Marcus, and M. Collard. ―A Task Oriented

View of Software Visualization,‖ Proc. IEEE Workshop

on Visualizing Software for Understanding and Analysis

(VISSOFT 2002), Paris France, pp. 32-40, June. 2002.

[Retrieved: July, 2013]. doi:

10.1109/VISSOF.2002.1019792

[12] K. Gallagher, A. Hatch, and M. Munro. ―Software

Architecture Visualization: An Evaluation Framework

and Its Application,‖ IEEE Trans. Visualization and

Computer Graphics, vol. 34, no. 2, pp. 260–270,

March/April, 2008. [Retrieved: June, 2013]. doi:

10.1109/TSE.2007.70757.

[13] L. Bass, P. Clements, and R. Kazman. ―Software

Architecture in practice‖, Second Edition, Publisher:

Addison Wesley. 2003.

[14] A. Luis. Sequeira. Sousa. ―Traceability Support in

Software Product Lines‖. Thesis report, Lisboa, 2008.

[15] A. Samuel. Ajila and B. Ali. Kaba. ―Using Traceability

Mechanisms to Support Software Product Line

Evolution‖ Information Reuse and Integration, 2004. IRI

2004. Proceedings of the 2004 IEEE International

Conference on , vol., no., pp.157-162, 8-10 November,

2004. [Retrieved: July, 2013]. doi:

10.1109/IRI.2004.1431453.

[16] L. Chen, M. Ali. Babar, and N. Ali. ―Variability

Management in Software Product Lines: A Systematic

Review‖.In Proceedings of the 13th International

Software Product Line Conference, SPLC ’09, pp. 81–

90, Pittsburgh, PA, USA, August, 2009. Carnegie

Mellon University. [Retrieved: June, 2013].

[17] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Henk.

Obbink, and K. Pohl. ―Variability Issues in Software

Product Lines‖. Springer. LNCS 2290, pp. 13–21,

October, 2002, [Retrieved: June, 2013]. doi: 10.1007/3-

540-47833-7_3.

[18] J. Lamping and R. Rao. ―Hyperbolic Browser:A

focus+context Techniques for visualizing large

hierarchies‖. Journal of visual languages and computing,

vol. 7, no. 1, pp. 33-55, March, 1996. [Retrieved: July,

2013]. doi: 10.1006/jvlc.1996.0003

[19] T. John. Brown, R. Gawley, R. Bashroush, I. Spence, P.

Kilpatrick, and C. Gillan. "Weaving behavior into

feature models for embedded system families‖. Software

Product Line Conf. pp. 52-61, August, 2006. Baltimore,

Md [Retrieved: July, 2013]. doi:

10.1109/SPLINE.2006.1691577

[20] H. Ye and H. Liu. ―Approach to modelling feature

variability and dependencies in software product lines‖.

IEEE. vol. 152, pp. 101-109, June, 2005. [Retrieved:

June, 2013]. doi: 10.1049/ip-sen:20045007.

[21] S. Ferber, J. Haag, and J. Savolainen. "Feature

Interaction and Dependencies: Modeling Features for

Reengineering a Legacy Product Line". Software

Product Lines (SPLC2): Springer. pp. 235-256, August,

2002. [Retrieved: July, 2013]. doi: 10.1007/3-540-

45652-X_15

[22] K. Chul. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M.

Huh. ―FORM: A feature-oriented reuse method with

domain specific reference architectures‖, Annals of

Software Engineering, vol. 5, pp. 143-168, 1998.

[Retrieved: July, 2013]. doi: 10.1023/A:1018980625587

[23] A. van Deursen, M. de Jonge, and T. Kuipers. "Feature-

Based Product Line Instantiation Using Source-Level

Packages". Software Product Lines (SPLC2): Springer.

pp. 217-234, August 2002. [Retrieved: June, 2013]. doi:

10.1.1.16.6376.

[24] D. Muthig and C. Atkinson. "Model-Driven Product

Line Architecture". Software Product Lines (SPLC2):

Springer. pp. 110-129, August, 2002. [Retrieved: June,

2010]. doi: 10.1007/3-540-45652-X_8

[25] D. Fey, R. Fajta, and A. Boros. "Feature Modeling: A

Meta- Model to Enhance Usability and Usefulness".

Software Product Lines (SPLC2): Springer. pp. 198-216,

August, 2002. [Retrieved: June, 2013]. doi: 10.1007/3-

540-45652-X_13

[26] S. Salicki and N. Farcet. "Expression and Usage of the

Variability in the Software Product Lines". Software

Product-Family Eng (PFE-4): Springer. pp. 304-318,

October, 2002. [Retrieved: July, 2013]. doi: 10.1007/3-

540-47833-7_27.

[27] G. Halmans and K. Pohl. ―Communicating the variability

of a software-product family to customers‖. Software

and Systems Modeling, vol. 2, pp. 15-36, March, 2003.

[Retrieved: June, 2013]. doi: 10.1007/s10270-003-0019-

9.

[28] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,

B. Ramesh, and A. Vilbig. "A Meta-model for

Representing Variability in Product Family

Development". Software Product-Family Eng (PFE-5):

156Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

http://dx.doi.org/10.1006/jvlc.1993.1015
http://dx.doi.org/10.1109/2.247643
http://dx.doi.org/10.1016/S0164-1212(98)10055-9
http://dx.doi.org/10.1016/S0164-1212(98)10055-9
http://dx.doi.org/10.1109/TVCG.2010.110
http://dx.doi.org/10.1109/VISSOF.2002.1019792
http://dx.doi.org/10.1109/TSE.2007.70757
http://dx.doi.org/10.1109/SPLINE.2006.1691577

Springer. pp. 66-80, November, 2004. [Retrieved: July,

2013]. doi: 10.1007/978-3-540-24667-1_6.

[29] D. Lyn. Webber and H. Gomaa. ―Modeling variability in

software product lines with the variation point model‖.

Sci. Comput. Program., vol. 53. pp. 305-331, December,

2004. [Retrieved: June, 2013]. doi:

10.1016/j.scico.2003.04.004.

[30] S. G. Eick, J. L. Steffen, and E. E. Sumner, "SeeSoft –a

Tool for Visualizing Line Oriented Software Statistics".

IEEE Transactions on Software Engineering, vol. 18, pp.

957-968, November, 1992. [Retrieved: June, 2013]. doi:

10.1109/32.177365.

[31] B. Johnson and B. Shnedierman. "Tree-maps: a space-

filling approach to the visualization of hierarchical

information structures," Visualization, 1991.

Visualization '91, Proceedings, IEEE Conference on,

vol., no., pp. 284-291, 22-25 October, 1991. [Retrieved:

July, 2013]. doi: 10.1109/VISUAL.1991.175815.

[32] D. Nestor, L. O'Malley, A. Quigley, E. Sikora, and S.

Thiel, "Visualisation of Variability in Software Product

Line Engineering," in 1st International Workshop on

Variability Modelling of Software Intensive Systems

(VaMoS-2007), Limerick, Ireland, 2007. [Retrieved:

July, 2013]. doi: 10.1.1.136.9399.

157Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

http://dx.doi.org/10.1016/j.scico.2003.04.004
http://dx.doi.org/10.1109/32.177365

