
Temporal Data Management
Uni-temporal Table Modelling Update

Michal Kvet
Department of Informatics

Faculty of Management Science, University of Zilina
Zilina, Slovakia

Michal.Kvet@fri.uniza.sk

Anton Lieskovský
Department of Informatics

Faculty of Management Science, University of Zilina
Zilina, Slovakia

Anton.Lieskovsky@fri.uniza.sk

Abstract— Today, it is necessary to store not only actual data –
data that are valid at this moment, but also historical data, by
which the progress and frequency of changes can be
monitored. Managing historical data offers creating future
prognoses and analyses. Temporal tables (mostly modelled
using uni-temporal and bi-temporal tables) in comparison with
conventional tables can process and retain the information of
the validity in the past. Using procedures, functions, triggers,
cursors – snapshot of the database object or whole database at
any time point can be reconstructed easily. Thus, each
database object is not represented by only one row, but by the
set of rows representing the same object during a different
period of time. This paper deals with the principles of temporal
data modelling and offers the solution based on uni-temporal
table model. It contains the implementation methods based on
changes monitoring and deals with the problem of managing
undefined states of the objects. Operations implemented in
temporal system is compared with the conventional model.

Keywords-conventional table; temporal table; uni-temporal
model; valid time;

I. INTRODUCTION

Massive development of data processing requires access
to extensive data using procedures and functions to provide
easy and fast manipulation. The basis is the database
technology.

Database systems are the root of any information system
and are the most important parts of the information
technology. They can be found in standard applications, but
also in critical applications such as information systems for
energetics, industry, transport or medicine.

Most of the data in the database represent actual states.
However, properties of objects and states are changed over
time - customer changes its status, address, products are
modified and updated. If the object state is going to be
changed, data in the database are updated and the database
will still contain only currently applicable object states. But
everything has time evolution, thus, history and future that
can be useful to store. History management is very important
in systems processing very important or sensitive data;
incorrect change would cause a great harm or in the systems
requiring the possibility of restoring the previous states of
the database. Therefore, it is necessary to store not only the

current state, but also the previous states and progress. It can
also help us to optimize processes or make future decisions.

Historical data are now possible to be saved using log
files and archives. Thus, the historical data can be obtained,
but it is complicated process. In addition, management
requires quick and reliable access to data defined by any time
point, but also getting information about the attributes
changes in the future without significant time delays [10]
[11].

Temporal data processing is not a new problem. Early in
the development of the databases transaction, log files were
created and database was regularly backed up. Log files were
usually deleted after the backup, because all transactions
were recorded in the production database. Thus, it was
possible to obtain an image database at any time point.
However, these data were in the raw form (raw material) and
handling them was difficult, lasted too much time.
Nowadays, historical data management is easier than in the
past, requires less processing time, but there is still need to
make significant progress in temporal database processing
research to create a complex module allowing to run existing
applications without modifying source code and settings.

Fundamental paradigm of database systems used since
the beginning of the data processing focuses on the actual
data processing [10] [11] [12].

The situation in the computer field changed significantly
in the early 80-ies of the 20th century- price of the disk
storage space decreased allowing greater and easier way to
save backups. So, there was an opportunity to compare
multiple images (backup) from different time periods.

Each backup is a snapshot of the database table or the
whole database. However, if the values do not change (or it
is not necessary to store historical values of them), too much
duplicities are stored. Later, the first concept of the data
warehouse based on the database table level was created by
Barry Devlin and Paul Murphy [6].

Recent history shows the potential opportunities of
historical data processing, which could be faster and more
efficient than managing backups or log files. The main
disadvantage of the above-mentioned ways is the need of the
administrator intervention (operation manager). An
administrator must manage not only the running applications
but also requirements for accessing historical backups.
Decisions are based on historical data and the progress, so it
was necessary to load historical backup to get the database

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

snapshot in the historical time point. Operational decisions
could not be based on the historical data because of the time
consumption (sometimes even days to load all needed
snapshots). In addition, the granularity of the data is still
growing, so number of backup was above the acceptable
level. An important task for administrators was to define the
time frame between two backup of the database. If the
interval is too large (assuming backups without using their
own log files - they are too large for more images), not all
operations are stored there, e.g. the insert and also delete of
the record could be between two images, so user has no
information about the existence of the object in the database.
Another example is multiple updates of the same record; see
Figure 1. The opposite way, if the interval was too small,
large images containing a lot of the same attribute values
were created, which include high demands on disc storage.
Interval between two backups can also be defined
dynamically, but the problem with uncaught of some
changes remains unresolved. Another solution is to delete
old images, which is unacceptable because of the
management requirements [8].

Figure 1. Backup problem - possible loss of data

It is not enough to find a faster solution for historical data

processing. What does the term “faster” mean? To order
shorten the processing time from days to hours, from tens of
hours to a couple of hours? The usage of that solution is
unacceptable and inapplicable. The aim is to create support
for the temporal data, that the difference between the
processing in the currently valid data and historical data is
minimized. Thus, it is necessary to create a system with easy
data. However, historical data management is not a complete
temporal system, because it must be allowed to process
values, the validity of which begins in the future. If the begin
time of the validity of the object occurred, the database
system must be able to update the data without user
intervention.

System requirements can be divided into two parts with
special aspects [6] [13] [14]:

1. aspect of usability (easy methods) – the aim is to
provide access to outdated information as easily and quickly
as to the actual values. Transactions for managing temporal
data must be as simple as for current data processing.
Moreover, it is necessary to define a way to combine the past
and present.

2. aspect of performance (speed and correctness of
results) requires results in the same form as when accessing
the actual data with adequate processing time. The difference
in accessing the object at any point in time should be
minimal.

Following the history of computer systems for data
management, we come to the conclusion that the databases
have been developed and deployed for the current values
administration - currently valid data processing. None of the
above-mentioned solution does not have the structure to
represent objects and their states during the time, support for
managing attribute value changes in the temporal dimension.
However, developers require those functionality and data
access.

Temporal databases define a new paradigm for selecting
one or more rows based on the specified criteria, for
projecting of one or more columns to the output sets and for
joining the tables by specifying relationship criteria. Rows
with the different values of the primary key (PK) can
represent one object at different times. Transactions for
inserting, updating and deleting the rows must therefore
specify not only the object itself, but also processed period.
If the valid time of the object is defined by time interval, the
transaction must include time period - 2 time point values -
begin and end timestamps (dates). This means that the
update query does not cause only update of existing data, but
also insert of the new row based on the validity intervals [2]
[6] [8].

This paper consists of five sections. The second deals
with the structure of conventional and temporal table, the
third describes the implementation techniques and methods.
The section named “Experiments” deals with the
improvements of the model and the current performance.
The last one is the conclusion.

II. CONVENTIONAL AND TEMPORAL TABLE

Row in a relational database table can be defined in three
different ways using time (Figure 2). "ID" is a unique
identifier, "PK" refers to a primary key. "BD1" and "ED1"
are a pair of columns defining the beginning and end value
of the period, "BD2" and "ED2" define the second time
interval. The primary key can be defined composite without
changing the functionality of the methods used. The first
model does not use time for definition. This is a standard
model used today, called the conventional model. The
primary key is defined by the attribute "ID". All not key
attributes in the table, regardless of their number, are merged
into a common block called "data" [1] [3] [4] [5].

Figure 2. Conventional and temporal table

In this paper, we use the standards used in scientific

articles, the names of the attributes forming the primary key
are underlined. The following table shows the object
identified by an attribute value ID = 1 in the time period
<September 2012 - December 2013>. We can see that the
attribute "data" has the value “123” at the time <September

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

2012 - June 2013>, in the second part of the interval,
attribute "data" has the value of the “234”. The
representation of the time interval is the closed-closed type.

TABLE I. UNI-TEMPORAL

ID BD1 ED1 data
1 September 2012 June 2013 123
2 January 2013 November 2014 555
1 July 2013 December 2013 234

The problem occurs, if the end date of the time period is

unknown. There are two opportunities, in general. The first
is to deal with undefined values - NULL. In this case, if there
is a request to obtain the current state of the object,
respectively overall database, we cannot use standard
methods to manipulate time and we have to add more
conditions. The second solution is to replace an undefined
time with the maximal value that can be used - "December
9999", or other variants depending on time granularity. If we
need to update the state of the object, the attribute value
defining the end of the validity (attribute "ED") is replaced
by the actual time value.

The last - third basic model – bi-temporal model - is
based on the concept of uni-temporal tables, but uses two
time intervals. Thus, it allows not only defining several lines
for one object, but also multiple rows for a particular object's
state at the time. The reason for this model is the need to
record an updated status in the past.

Figure 3. Time representation

The method for transformation uni-temporal model to bi-

temporal is based on the same principle as the conversion of
the conventional model (conventional model) to uni-
temporal model - two additional attributes defining a
timestamp (begin and end time of the validity) are added to
the primary key. The values of the new attributes after the
transformation can be identical to the first time interval
defined by attributes “BD1” and “ED1” (Figure 4).

The transformation from bi-temporal model to uni-
temporal model is also possible, but there is possibility of the
loss of the updated data [6] [7] [8].

Figure 4. Transformation of the uni-temporal table to bi-temporal table

Figure 4 shows the principle of bi-temporal modelling.
Primary key of this model consists of three logical units:

• The object identifier (ID).
• Interval (BD1, ED1) - the time during which the object

has been describing the characteristics of the row, e.g. the
period during which a customer has the characteristics -
name, address, status, etc.

• The last component of the logical primary key is a pair
of dates (or timestamps according to the representation of a
time granularity of data). These dates limit the period during
which we believe the value of the row is correct. This
component limits the time interval defined by the second
component (BD1, ED1).

Figure 5. Bi-temporal table

Figure 5 shows the principle of bi-temporal table
modelling.

III. UNI-TEMPORAL TABLE IMPLEMENTATION

Transformation of the conventional table to temporal
model is not trivial problem and needs special structures and
resources. In addition, the requirement of the users is to
provide compatibility, easy manipulation and proper time
consumption. Therefore, the triggers, procedures and
functions must be declared, the original tables can be
transformed to views (if necessary). Each database record is
defined by the primary key. In most cases, it is the unique
identifier (ID), sometimes, we use composite primary key.
Conventional database tables transformation recommends
single attribute primary key in every table to create a
common temporal table for all tables containing temporal
attributes. Thus, ID is suitable; each record can be clearly
defined and referenced. Moreover, the ID does not have
special denotation and the need for its change is irrelevant,
e.g. personal identification number contains the birthdate and
if the mistake in time of insert occurs, the record must be
updated. Thus, the best way is to create sequence for ID;
trigger before insert sets the correct value.

Information of any change of temporal column is
recorded in the table managing changes - temporal_table.
However, it contains information only about table containing
temporal column. This table consists of these attributes (see
also Figure 5) [7]:

• ID change
• ID previous change – references the last change of

an object identified by ID. This attribute can also
have NULL value that means, the data have not
been updated yet, so the data were inserted for the
first time in past and are still actual.

147Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

• ID_tab – references the table, record of which has
been processed by DML (Data modelling
language) statement (INSERT, DELETE,
UPDATE).

• ID_orig - carries the information about the
identifier of the row that has been changed.

• ID_column, ID_row – hold the referential
information to the old value of attribute (if the
DML statement was UPDATE). Only update
statement of temporal column sets not null value.

• BD – validity of the new state of an object starting.

Figure 6. Update trigger

The following figure shows the data representation and
manipulation.

Figure 7. Temporal_table model [7]

A. Insert trigger

New record containing information about the change of
the temporal column is inserted into the temporal table after
inserting into conventional table. These operations are
provided by insert trigger. The new value for attribute
“ID_change” is set using the sequence. Value of
“ID_previous_change” attribute is null, which means, the
new data have been inserted (for the first time). There is no
reference to old value of the attributes, so the “ID_row” and

“ID_column” also contain null value (example for TAB1)
(see also Figure 5) [7]:

Figure 8. Temporal table insert

B. Update trigger

Updating existing data requires saving old data – not the
whole row, but only changed temporal attribute values. The
original table consists of the actual data, so the data
manipulation – actual snapshot is easy to get. Historical data
– the snapshot of the whole database, database table or only
object – must be also accessible, but are obtained by passing
historical conditions defined by insert, delete or update
statement. Thus, the update trigger is started before update.
First of all, the data that will be changed are stored in the
table consisting only of the ID of the record and the value
itself [7].

Figure 9. Updating column "z"

Then, the reference to the change is stored in the temporal
table (Figure 5) [7]:

• ID_change is set using the sequence and trigger.

• ID_previous_change is maximum of “ID_change
“used for those ID original and ID table (select
max(ID_change) INTO cislo from temporal_table
where ID_orig=:old.ID AND ID_tab=1;).

• ID_column references the temporal column, data
of which is going to be changed.

• ID_row associates the table with historical values.

C. Delete trigger

The task of the trigger starting before delete is to save
old data to the table for deleted objects. The information
about delete is also inserted to the temporal table; “ID_tab”
now has the negative value. The relevance of it will be
described later [7].

148Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Figure 10. Body of the trigger - delete

D. RestoreData

Deleted data recovery is a further problem. If the object
data in the main table are not valid or we do not know the
correct value in this moment, the object must be deleted,
respectively relocated to table of deleted data. However, if
the object attributes are again valid, we need to restore data
to the original table. The problem causes a trigger which
sets the new value of ID before inserting, so the old value of
ID cannot be used. However, the database structure should
have information, that the ID has been changed, but the
object is the same. In addition, if the user is still using the
old identifier, the methods working with original (old) ID
would not work correctly. There can be used more solutions,
one of them is to disable temporary the trigger for ID,
restore the data and enable it. This solution is absolutely
incorrect.

Figure 11. Principle of data restoration [7]

Figure 12. Data restoration

Our solution uses the new ID (Figure 11, Figure 12), old
and new object is connected together. Thus, these steps must
be done [7]:

• Data relocation from „deleted objects table“ to
main table (insert + delete).

• Insert info about data restoration into temporal
table.

• Update old „ID_orig“ (temporal table) to actual.

• Insert into „change_ID_table“ new values –
„ID_tab“, „ID_old“, „ID_new“.

• Update „the change_ID_table“ - if necessary. The
point is that the data could be relocated several
times and therefore the old reference (but stored in
the attribute „ID_new“) is not actual. Figure 12
describes the problem.

IV. EXPERIMENTS

The overall adjustment and optimization of the
procedures, functions, triggers and the model itself, we got
very good values of the processing time; the worst result
(update and delete statement) is a slowdown of 34% in
comparison with conventional table model. It should be
noted, however, that the traditional model does not retain
any information about changes of the database. Our
designed solution stores also old (historical) values - any
snapshot of the database (database object) defined by time
point can be got easily using programmed methods.

149Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

Figure 13. Principle of model 3

Figure 14 shows the total execution time of DML

operations (insert, delete and update) for conventional and
temporal tables. The total number of operations is 10 000.
The experiments were provided using Oracle 11g instance.

Figure 14. Research results

Model 1 does not use the table with maximal values of

changes, data are inserted into historical tables only if they
have not been there yet. Model 2 uses table with maximal
values of changes and historical data are always saved.

Model 3 stores the value of the identifier of the last
change of the object directly in the main production table.
This is due to a reduction in the number of records.
Specifically, the table “Change_ID_tab” stores values for all
temporal objects, and also contains data about deleted
objects. If the number of deleted objects is great, the
reduction of processing time is significant.

The overall slowdown of this model is:

• insert operations – 3%,

• delete operations – 34%,

• update operations – 34%.

As it was already mentioned, the results of the
experiments can be considered satisfactory, because of the
storing the entire history of temporal columns.

V. CONCLUSION

Each instance in the conventional database is represented
by one row. Temporal database concept offers new
opportunities by adding additional time attributes limiting
the validity of the object.

Temporal support brings new possibilities by extending
the primary key with time interval. Two different time
period defining the same object validity cannot be valid at
the same time – cannot overlap. The aim of the temporal
databases is to store information about all states of the
objects during their life cycle, even after DELETE
operation.

 Comparison of the processing time of the conventional
methods and temporal model is the root for the further
research. Experiments, that have been made, show that the
operation UPDATE is the critical factor. If we update the
row, we need to save old value (insert it into historical
table).

Proposed methods can be extended by the special
attribute defining the end of the validity. This will create
possibility of defining period during which the state of the
object is not valid without the necessity of deleting it.

The begin time of the validity can be also in the future. In
the future development, we are going to create methodology
for future states management. Data valid in the future will
be stored in special tables. New record will be automatically
inserted into the database at the time of the beginning of the
validity.

VI. ACKNOWLEDGMENT

This contribution is the result of the project implementation:
Centre of excellence for systems and services of intelligent
transport II., ITMS 26220120050 supported by the Research
& Development Operational Programme funded by the
ERDF.

This work was supported by the project "Creating a new
diagnostic algorithm for selected cancers," ITMS project
code: 26220220022 co-financed by the EU and the
European Regional Development Fund. The work is
supported by the project VEGA 1/1116/11, Adaptive data
distribution.

REFERENCES
[1] C. J. Date, “Date on Database”. Apress, 2006.

[2] C. J. Date, H. Darwen, and N. A. Lorentzos, “Temporal data and the
relational model”, Morgan Kaufmann, 2003.

[3] Ch. S. Jensen, “Introduction to Temporal Database Research”

[4] Ch. S. Jensen and R. T. Snodgrass, “Temporally Enhanced Database
Design”

[5] P. N. Hubler and N. Edelweiss, “Implementing a Temporal Database
on Top of a Conventional Database”

[6] T. Johnson and R. Weis, “Managing Time in Relational Databases”,
Morgan Kaufmann, 2010.

[7] M. Kvet, A. Lieskovský, and K. Matiaško, “Temporal data
modelling”, 2013.(IEEE conference ICCSE 2013, 4.26. – 4.28.2013),
pp. 452 - 459

150Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

[8] M. Kvet and K. Matiaško, “Conventional and temporal table”, EDIS,
2012. (virtual conference ARSA, 12.3. – 12.7.2012), pp. 1948-1952

[9] N. Mahmood, K. Rizwan, and S. A. K. Bari, “Fuzzy-Temporal
Database Ontology and Relational Database Model”, 2012.

[10] K. Matiaško, M. Vajsová, M. Zábovský, and M. Chochlík, “Database
systems”, EDIS, 2008.

[11] K. Matiaško, M. Vajsová, M. Zábovský and M. Chochlík, “Database
systems and technologies”, STU, 2009.

[12] G. Ozsoyoilu and R. T. Snodgrass, “Temporal and Real-Time
Databases: A Survey”, 1995.

[13] R. T. Snodgrass, “Developing Time- Oriented Database Applications
in SQL”, Morgan Kaufmann, 1999.

[14] R. Snodgrass, “Adding Valid Time to SQL/Temporal”

151Copyright (c) IARIA, 2013. ISBN: 978-1-61208-283-7

ICCGI 2013 : The Eighth International Multi-Conference on Computing in the Global Information Technology

