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Abstract—We propose a new technique which allows to es-
timate any random signal from a large set of noisy observed
data on the basis of information on only a few reference signals.
The conceptual device behind the proposed estimator is a linear
interpolation of an optimal incremental estimation applied to
random signal pairs interpreted an extension of the Least Squares
Linear (LSL) estimator. We consider the case of observations
corrupted by an arbitrary noise (not by an additive noise only)
and design the estimator in terms of the Moore-Penrose pseudo-
inverse matrix. Therefore, it is always well defined. The proposed
estimator is justified by establishing an upper bound for the
associated error and by showing that this upper bound is directly _
related to the expected error for an incremental application of : P
the optimal LSL estimator. It is shown that such an estimator is
possible under quite unrestrictive assumptions. (a) Observed signals from the sft,.
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A. Motivation PU

We write z,, = @, (t) for a stochastic vectar,, (¢) associ- .
ated with a random outcome and timet € T' = [a,b] C R. o5 : I i
A rigorous notation is given in the section that follows. L

In many applications associated with a difficult environ-
ment,a priori information on a large set of signals of interest, 53 I L
K, = {z.(t)}, can only be obtained for a few signals
{z,(t;)}] C K, wherep is a small number. Typical exam-  (b) Samples of reference signal&?) at timest; for j = 1,...,11.
ples are devices and equipment exploited in the stratosphere,
underground and underwater such as those in defence and the
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Fig. 1. Signals and samples considered in Example 1.

mining industry. Signalse,,(t1), ...,z (t,), are associated
with given timesty, s, ..., t,, respectively, such that wherer, = 0 and rsy = 74 + 0.05, for k = 1,...,120,
a=t <tg<---<t,,<t,=h (1) Attime 7, for k =1,..., N, the observed signak(r, -), is
i ] ] represented by its realizations ad & 4 matrix
A choice of signalse,,(t1), . .., z.(t,) might be beyond our
control (in geophysics and defence tasks, for instance). At the y(*) — {ygj?};ir:l = [y(Te,w1)s -+, ¥ (7o, wa)]. )

same time, it is required to estimate each reference signal in

the setk, from the corresponding set of noisy observation# column of matrixY *), y(t,,w;) € R*, represents the real-
Thus, all we can exploit to develop an associated filter ization of the signaly (¢, w;) at timet = 7, generated by the
observed noisy data and a sparse information on referemaadom event;, for eachi = 1,2,...,4. Thus, all observed

signals. signals are given by thex 484 matrix Y = [Y(1) ... y(121)]
Example 1:Suppose we need to process afSgtof N = represented in Fig. 1 (a).
121 random signals over s@t = [r1, 72, ...,7n] SO that each ~ Suppose that, foj = 1,...,p, information on the refer-

input signal from this sety(¢, -), enters a filter at timé = 7,  ences signals can only be obtained at some times T,
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tjiy1 = Ti2j+41 Wherej = 1,...,10 (see (1)) in the form of semiblind and blind techniques [2]-[5], [19]-[22].Indeed, at
samples given byt x 4 matrices each particular time € T, the input of thealmost blind
o . N (k estimatorF(*—1) developed below in this paper, is a random
X0 = [(tj,w1), .. & (g, wa)] = {2 o () vectory,(t). Thus, for different € T, the input is a different
Fig. 1 demonstrates a typical situation with noisy observéandom vectow,(t) but we wish to keegthe same estimator
signals and sparse information on the reference signals.fiif~%) for anyt € T, i.e., for any observed signaj,(t) in
Example 2 below we show that, under certain conditions, tiee setC,. The literature on these subjects is very abundant.
proposed technique allows us to estimate the signals of interdére, we listed only some related references.
with an acceptable accuracy. By known techniques in [2]-[16] and [19]-{22], an esti-
o mator (here, we choose the united term ‘estimator’ to denote
B. Formalization of the problem an equalizer or a system) is specifically designed dach
To formalize the problem, we writ¢Q2, ¥, u} for a proba- particular input—output pair represented by random vectors.
bility space where is the set of all experimental outcomesThat is, for different inputs (observed signatg) (¢), known
¥ C Q2 is a sigma-algebra of measurable sets known as tleghniques require different specified estimators and the num-
event space angd is a non-negative probability measure wittber of estimators should be equal to a number of processed
n(©2) = 1. We denote by, = {z, | w € Q} a set of signals. In the case ofarge signal setssuch approaches
reference stochastic signals and By = {y,, | w € 2} a set become inconvenient because the number of sighalsan
of observed signals. be very large as it is supposed in this paper. For example, in
In an intuitive way,y can be regarded as a noise-corruptegroblems related to DNA analysiy = O(10*). Therefore,
version ofx. For exampley can be interpreted as = x+n the inconvenient restriction of using priori information on
wheren is white noise. We do not restrict ourselves to thienly p reference signals, with < IV, is quite significant. At
simplest version ofy and assume that the dependenceyof the same time, beside difficulties that this restriction imposes
on x andn is arbitrary. Note that, theoreticallyC, andC, on the estimation procedure, we use it in a way that allows
are infinite signal sets. In practice, however, s€fsandXC, us to avoid the hard work associated with known techniques
are finite and large, each with, say, signals. applied to large signal sets. To the best of our knowledge, the
To each random outcome € 2 we associate a unigueexception is the methodology in [17], [18], where, for estima-
signal pair(x,,y,) wherez,, : T — C%'(T,R™) andy,, : tion of a set of signals, the single estimator is constructed. The
T — C%Y(T,R"). The spac&’ (T, RP) is the set of vector- estimation techniques in [17], [18] exploit information in the
valued Hblder continuous functiong of order1 with f(¢) € form of a vector obtained, in particular, from averaging over
R? and || f(s) — f(t)|| < K|s —t| (see [1], p. 96.) Write  signals in{".
. . Further, the semiblind techniques are not applicable to the
P=K;, xKy={(zu,y,) |weQ} ) considered problem because they require a knowledge of some
for the set of all such signal pairs. For each € ), ‘parts’ of each reference signal i6,. (e.g., see [3], [5], [19])
the componentse,, = =z.(t),y, = y,(t) are Lipschitz but it is not the case here. Although the blind techniques
continuous vector-valued functions @h[1]. allow us to avoid this restriction, it is known that they have
We wish to construct an estimatd?®—1) that estimates difficulties related to accuracy and computational load. In the
each reference signal, (¢) in P from related observed input problem under consideration, the advantage is a knowledge of
y,,(t) under the restriction that priori information on only a some (small) part of the set of reference signals. It is natural
few reference signalse,, (1), ..., z.(t,), is available where to use this advantage in the estimator structure and we will do
p << N. it in Section II.
In more detail, this restriction implies the following. Let us Nonblind estimators [6]-[16] are not applicable here be-
denote bylcé”) a set ofp signalsz,, (t1), . . ., ., (t,) for which cause they requir@ priori information on each reference
a priori information is available. A set of associated observegignal inkC,, (e.g., a knowledge of covariance matfi¥x,,y?|
signalsy,,(t1), ..., y,(t,) is denoted byICZ(/p), Then for all whereFE is the expectation operator). In particular, it is known
y,,(t) that do not belong tdC", y_(t) ¢ K, estimator that there are significant advantages in adaptive or recursive
F®=1 js said to be thélind estimator [2], [3], [4], [5] since estimators (e.g., associated with Kalman filtering approach

no information one., (t) ¢ kP is available. Ify,,(t) € ICyp) [23]) and it may well be possible to embed our estimator into
then F(»=1) becomes aronblind estimator since information Such an environment—but that is not our particular concern

on z,(t) € k) is available. Thus, depending om,(t), here. Further, we note that much of the literature on piecewise
estimator F(*~1) is classified differently. Therefore, such dinear estimators [24]-[28] seems to bet directly relevant
procedure of estimating reference signalsip is here called to the estimator proposed here. In the first instance papers

the almost blindestimation. such as [24]-[28] are mostly concerned with the theoretical
] ] problems of approximation by piecewise linear functions on
C. Differences from known techniques multi-dimensional domains which isot the case here.

We would like to note that thelmost blind estimation Also, unlike many known techniques, we consider the case
is different from known methods such as nonblind [6]-[18]f observations corrupted by an arbitrary noise (not by an
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additive noise only) and design the estimator in terms ahd construct the optimal linear estimate
the Moore-Penrose pseudo-inverse matrix [29]. Therefore it

. . D — ) .
is always well defined. 0;(w) = Evjw; By, w,; w; (W) (8)
. THE MAIN RESULTS \(l)\;‘riEZe incrementv;(w) for eachj = 1,...,p — 1. We will
In this section, we outline the rationale for the proposed B; = Evjijunjwj c RM*" 9)

estimator and state the main results.
Define the estimate at point, by settingz(t;41,w) =

A. Some preliminaries Z(tj,w) + v;(w). Thus we have
The proposed estimatdr®—1) is adaptive to a sparse set - ~
o2 Prop P P T(tjy1,w) = 2(t,w) + Bjly(t41,w) —y(t),w)]

The conceptual device behind the proposed estimator is = &)+ Bjytj+1,w) (10)

a linear interpolation of an optimal incremental estimayhere we write
tion applied to random signal pairge,(¢;),y,.(t;)) and
(xo(tjs1), Yy, (tit1)), for j = 1,....p — 1, interpreted an €j(w) = z(t;,w) — Bjy(t;,w). (11)
?(;(rteenxsall(r):plz f' t[r;’ L[ii]s t [ig]u)éf;htlggs rtr(]li‘ssge?trlnrg?tzreé;%me that this definition can be rewritten more suggestively as
reasonable, the detailed justification of the new estimator is Z(tj,w) = €j(w) + Bjy(t;,w) (12)
not straightforward and requires careful analysis. We shall do
this by establishing an upper bound for the associated erféf €achj =1,....p— 1.
and by showing that this upper bound is directly related to the The formula (10) shows that on each subintervalt; 1]
expected error for an incremental application of the optimdle estimate of the reference signaltat, is obtained from
LSL estimator. In Section 1I-B below, we will show that suctihe initial estimate at; by adding the optimal LSL estimate
an estimator is possible under quite unrestrictive assumptiofthe increment.

Since the estimator proposed below is based on an extensioNlow, consider a signal estimation at anye [a,b]. The
of the LSL estimator it is convenient to sketch knowdirst step is simply to extend the formulee (10) and (12) to all
related results here. Considersingle random signal pair ¢ € [t;,t;+1] by defining
z(w),y(w)) wherex ¢ L2(Q,R™) andy € L%(Q,R" - B
\(Nit(h )zerE) Zzean(E[:c],E[y]) (: (0,0)), where 0 is t(he zezo 2(t,w) = &) + Byy(t,w). (13)
vector. Note that herexz andy do not depend om as above. Thus, the incremental estimation across each subinterval is
The estimater of the reference vectat by the optimal least extended to every point within the subinterval. Because of
squares linear estimator is given by determining estimatex(¢;,1,w) in the form (8)—(10) we
interpret this procedure as thé&L piecewise interpolation

T — T
(W) = Bay By y(@) ©) The incremental estimations are collected together in the
where Egyy = E[zy”] and Ey, = Elyy”] are known following way. For eachj = 1,2,...,p — 1, write
covariance matrices anfly,, is the Moore.—Penrose pseudo- Fily(t,w)] = €;(w) + Bjy(t,w) (14)
i
inverse ofEy,,. By the LSL estimator, matriceB,, and Ey,, _ _ _
should be specified for each signal péir(w), y(w)). for all ¢t € [t;,t;41] and hence define thpiecewise LSL

Further, for a justification of our estimator, we need sonigterpolation estimatoby setting
more notation as follows. It is convenient to denefg, w) = p—1

z,(t) and y(t,w) = y,(t) so thatz(t,w) € R™ and  pe-Dy ¢ w)) = ij [y (t, w)|[u(t — t;) — u(t —tj41)]
y(t,w) € R™. =

(15)
for all ¢ € [a,b] whereu(t) = (1) ?{Lér\?vige is the unit

step function. Thus we can now use the estimate

B. The piecewise LSL interpolation estimator

For each signal pair (or vector function pair) in the %t
(ﬂ?(t,W),y(t,W)), we assume tha(E[.’B(t,)],E[y(t,)]) =
_(0_,_0). Tq beg@ the estimation process we need to find an E(t,w) = FP D[y (t,w)] (16)
initial estimatex(¢1,w). It is assumed this can be found by _ . .
some known method. Further, let us consider a signal estinf@c all (t,w) € 7 x Q. The idea of a piecewise LSL
tion procedure at, - - -,t,. We use an inductive argument tointerpolation estimator ofi’ seems intuitively reasonable for
define an incremental estimation procedure. Consider a typigignals with a well defined gradient ovét

interval [t;, ;1] and define incremental random vectors We note that by (9)-(16), the estimatél”~") is adaptive
to a variation of signals ic{”’. A change of signals irc{”’
vj(w) = a(tj11,w) —z(t),w) €R™, (6) implies a change of determinations of sub-estimatBgsin
w;(w) =y(tjs1,w) —y(t;,w) ER? (7) (9) and keep the same structure of th&—1).
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C. Justification of the LSL interpolation estimator

We wish to justify the proposed estimator by establishing
an upper bound for the associated error.

To explain the technical details we introduce some further o
terminology.

Let us denote|x(t, )| = [, =(t,w)|*du(w). Assume

13

that for allt € T, we have 05|

lz(t,)a < oo and |y(t, )3 <oo, (A7) - | :
where ||z(t,w)|| and [|y(t,w)|| are the Euclidean norms for “3-——— T —
x(t,w) and y(t,w) for each(t,w) € T x , respectively. D e e
Thus we will say that the signals are square integrable in (a) Training reference signals.

and writex(t,-) € L?(Q) andy(t, ) € L?(Q) for each fixed
tefT.

Foreacht e T, let F = {f : T xQ — R™ | f(¢,-) €
L?(Q,R™)} and define

1
£l =52 [ 15w dtdu)
1
- = | Bl

for each f € F where || f(t,w)] is the Euclidean norm of
f(t,w) on R™ for all (¢t,w) € R™. Suppose that for all
(z,y) € P there exist constantg;, §; > 0 such that

(b) Their estimates by filtef"(10),

H:B(s,w)—:c(t,w)H g’Yj|3_t|7 (18)
Hy(S, w) _ y(t,w)” < 5j|8 i t| (19) Fig. 2. Training signals and their estimates considered in Example 2.
for all (s,w), (t,w) € [tj,tj+1] % €, i.e. we suppose that the
Lipschitz constants in (18) are independent.of the values ofxf’). The observed signals in Example 1 were
The error bound for the piecewise LSL interpolation estpimulated fromX by adding random noise.
mator is established in Theorem 1 below. The estimates of the reference signals by filér—b, for

Theorem 1:If condition (18) is satisfied then the errorp = 11, obtained on the basis of the information represented
&= |z — F(”_l)[yHIT,Q associated with the piecewise LSLIn Fig. 1 (b) are given in Fig. 2 (b). The covariance matrices

interpolation estimator satisfies the inequality are estimated from samplés’) and X ) taken at timeg;,
for j =1,...,11 (see Example 1). The averaging polynomial
&< max 1{(%' + [1Bjll20;)[tj4+1 — t;] (20) filter [16] gives much worse accuracy.
J=1,..,p—
1/2
1B, = 11 B, (Eag)) ] (20) Il ConeLusion

The piecewise least squares linear (LSL) interpolation esti-
where|| B;|» denotes th&-norm given by the square root ofmator was developed to estimate a large set of random signals
the largest eigenvalue @7 B; and||-|| denotes the Frobenius of interest from the set of observed data. The distinctive feature
norm. is thata priori information can be obtained on only faw

Example 2: The time intervall’ is the same as in Examplereference signals in the form of samples. Since no information
1. At each timery, for £ = 1,..., IV, the training reference of the major part of the set of reference signals is known, such
signal x(7x, ) is represented by its realizations asta< 4  a procedure is calledimost blindestimation.
matrix The proposed estimator mitigates to some extent the diffi-

k) (k)4 culties associated with existing estimation approaches such as
X = [e(me,wn)s o x(7,wa)] = (@0 Yorm (22) the necessity to know informgtion (in the foprpm of a sample,
where xgkl) _ 0-91877(k) (k)  _ 1_0277516) (k) _ for instance) oneach random reference signal; invertibility

1 2T = T N - . - ] .
1.12277&)’%%12 _ 0.918775“%775“ — _cos(2k), nék) of the matrices used to define the estimators; and demanding
i ") *) ) . computational work.
sin(cos(k)),ny ~ = —cos(k),n, ’ = cos(sin(k)). All training
reference signals are simulated ast & 484 matrix X = REFERENCES
1 121 H i i
[X( . ¢ )] shown in Fig. 2 ({il) )NOte that in (3), due[1] E. Zeidler, Applied Functional Analysis, Applications to Mathematical
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