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Abstract—Sub-pixel image registration is an important part
of many image processing and computer vision applications.
We propose a computationally simple direct (i.e., non-iterative)
method for sub-pixel registration of translated images. To register
two images, first a global space-invariant resampling filter is
computed that is a least-squares optimal predictor of one image
from the pixel values of the other image. Then, the coefficients of
this filter are linearly combined to compute the offset between the
two images. The computational cost of this algorithm is linear in
the number of pixels. The accuracy and efficiency of the proposed
algorithm is demonstrated to be better than a range of existing
methods for images with various levels of high-frequency detail
and at various noise levels.

Keywords—image registration; sub-pixel; direct; least-
squares optimal; linear computational complexity.

I. INTRODUCTION

Image processing often requires processing of data from
multiple images of the same scene captured from different
viewpoints with one or multiple cameras or maybe even
with completely different types of sensors. Before this can
be achieved, the pixel data in the images must be somehow
’synchronised’ and this is achieved using registration. Image
registration is the problem of finding a geometric transforma-
tion that maps the coordinate plane of one image to another
using the image data itself. It is an important problem in image
processing and computer vision, required as part of many
applications in areas such as medical imaging, remote sensing
and consumer electronics [1].

What makes this problem challenging is the fact that many
applications require fast, yet accurate, registration. For some
applications, such as image super-resolution or image fusion
(see Figure 1 for an example), it is critical to register input im-
ages with accuracy down to sub-pixel level. But, unfortunately,
speed or computational complexity and accuracy are generally
trade-offs and can be hard to achieve simultaneously. Sub-pixel
registration can also be hampered by the fact that the images
may be contaminated by noise and aliasing, both of which
may have a considerable effect, as well as possible lack of
conformity of the image data to the proposed transformation
model.

Even for applications that do not require precise sub-pixel
registration, it is still very important, because registration of
images with larger integer offsets is often achieved using a
multi-resolution image pyramid [2] for efficiency reasons (for
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examples see [3]-[5]). Ignoring the high-resolution detail at
higher levels of the pyramid is not only more computationally
efficient, but also necessary, because of aliasing of high spatial
frequency components undergoing large motion. The use of a
multi-resolution framework helps to alleviate this problem [6].

The typical approach to solving the registration problem
is to place it into an optimisation framework [7], with the
objective function defined by some metric that measures
similarity (or alternatively distance) between one image and
a transformed version of the other. The objective function is
then optimised with respect to the transformation parameters.
This approach was popularised by Lucas and Kanade [8] in
1981 and has seen many variants proposed since, such as
using different optimisation methods and similarity metrics.
A summary of some common similarity metrics and search
strategies can be found in [1] and [9]. While many of
these approaches are theoretically sound, they are generally
computationally expensive and require a number of iterations
to achieve convergence, due to the non-linear nature of the
problem. This is highly inadequate for some applications that
require the results to be computed in a timely manner. An
example of such applications, which is becoming increasingly
popular, is image processing (High Dynamic Range (HDR)
[10], panorama stitching, etc.) on smartphone and tablet de-
vices that posses only limited computing resources.

We are interested in a special case of image registration,
where the geometric transformation is constrained to pure
translation. The desire for fast registration of translated images
with sub-pixel accuracy has led to the development of a
number of direct approaches that attain lower complexity

Fig. 1: High Dynamic Range image produced from registered
images with varying exposures.
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(a) face

(d) beach

Fig. 2: Test images

by making various simplifying assumptions. Fourier phase
correlation [11]-[14], for example, assumes that the images
obey the Nyquist criterion [15], while interpolation of the
cross-correlation function [16] makes assumptions about the
shape of the scene’s autocorrelation function. Unfortunately,
when the real data deviates from the assumptions made in the
model the accuracy can suffer.

We present a new direct technique for sub-pixel registration
of translated images. Even though this method does not require
iteration, its formulation has more similarities with the iterative
methods than the direct, although it does not require the choice
of an appropriate interpolation function for the resampling
filter. Instead, it computes the optimal resampling filter from
the image data itself using linear least-squares. The relative
shift between the images is then computed in a novel way
from the filter coefficients.

In Section II, we introduce the theory of image registration
in the optimisation framework and present the new direct
approach. In Section III, we describe the experimental method
for sub-pixel accuracy evaluation. Section IV presents the
experimental results and their discussion, followed by conclu-
sions in Section V.

II. THEORY

In this section, we provide a mathematical definition for the
image registration problem and show how it is formulated in
the optimisation framework, which requires a computationally
intensive iterative solution. We then consider an alternative
formulation, which results in a direct solution.

Let us consider the problem of registering a discrete refer-
ence image f (kT,lT') and an offset target image g (k7T,(T) =
f (kT + ug, 1T 4 uy), where k and [ are integer pixel indices,
T is the pixel pitch (which we will assume to be equal to
one) and ug, u, are some unknown and possibly non-integer
offsets between the two images. The goal of sub-pixel image
registration is to estimate u, and u, with as much accuracy
as possible. A conventional way of doing this is to iteratively
minimise the difference (usually sum of squared differences)
between f (k + 4,0+ 4y) and g (k,1):

argminZ(g (k,1) —f(k+ﬁx,l+ﬁy))2 (M
Kl

Uy , Uy
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In practice, since the image f(k,) is only known on an integer
grid, some sort of interpolation must be applied to f(k,1) to
get the shifted image f (k+ 4y,!+ ). For computational
reasons, only the values located on the shifted grid are in-
terpolated and this procedure is generally performed using a
resampling filter [17]. The filtering operation can be expressed
as

Mt Nt
Y. Y ftmltn)ha, g, (mn) )
m=M—n=N—

where m,n € Z and hg, 4, (m,n) is a resampling filter,
based on some predetermined interpolation basis function (see
[18], [19] for some common examples), with a window span
between M~ and M in x direction and between N~ and N+
in y direction. The resampling filter coefficients are samples of
the interpolation basis function offset by (u,,u,) and are gen-
erally non-linear in u, and u,, making expression (1) a non-
linear least-squares problem. Choosing a different interpolation
basis function would result in a slightly different interpolated
image, in turn affecting the results of minimisation.

A. Registration through Optimal Interpolation

Now, let us consider an alternative formulation of this
problem. First, reformulate (1) to minimise with respect to the
filter coefficients i(m, n) instead of the offsets u, and u,. This
removes any dependence on an interpolation basis function and
results in filter coefficients being optimised in a least-squares
fashion. The resulting filter is optimal — no other resampling
filter can do a better job of predicting image g (kT,!T) from
f(ET,IT).

argininz (g (k1) = >3 f (k+m,l+n)h(m, n)) 3)
k,l m n

The next step is to determine the relative offsets wu,
and u,. Given a set of filter coefficients, computed from an
interpolation basis function, we could compute the offset by
which this particular filter would shift the image through a
linear combination of the filter coefficients. Consider the Keys’
cubic convolution interpolation kernel:

Sa® — 2z2 41 0<lz| <1
—2lzP + 3z —4lz[+2 1<|z|]<2 &
0 2 < |z

CC(z) =
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(b) Image ’'face’. Noise std: 4.6, 12.3, 20.0

Fig. 3: Effect of noise strength on test images. Noise std stated in grayscale levels.

and a one-dimensional resampling filter A, (m), based on this
kernel, defined as

hy(m) = CC(—u+m),

It can be shown algebraically (see Appendix) that the offset u
can be recovered from the filter coefficients through a weighted
sum combination thereof:

U= Z mhy, (m) 6)

m e Z. )

This is also true for the optimal filter coefficients, which do
not depend on any explicit interpolation function, but are still
related to the offset between the images through the image data
itself. The offset estimate between the images can be computed
in the same way as:

M+t Nt
Uy = Z Z mh (m,n) @)
m=M—n=N—
+ Nt
iy, = Z Z nh (m,n) (®)
m=M—n=N—

and we show that this works experimentally, in Section IV.

B. Global Illumination Invariance

Cameras with automatic exposure setting will meter the
scene prior to taking a picture. Capturing multiple images
of the scene, even in quick succession, can result in global
illumination variations due to the metering algorithm calcu-
lating slightly different exposure settings. This difference can
be fairly large in some cases — for example when capturing
different parts of the scene, such as when panning the camera
to capture a panorama. Using different exposure settings may
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also be intended, for example, when capturing images to
produce a high-dynamic range reproduction of a scene. The
image processing algorithms, including registration, must be
able to cope well with these situations.

Global illumination difference between the two images un-
der registration can be accounted for in the model by including
gain A and offset S: g (KT,1T) = Af (KT + uy, IT + uy)+5S.
Because the filter coefficients in optimisation expression (1)
are not constrained to sum to one, this optimisation would
automatically account for gain A, resulting in

ZZh(m,n):l/A ()]

The relative offsets u, and u, can still be recovered from
h(m,n) by normalising expressions (7) and (8) by the sum of
filter coefficients:

S>> mh(m,n)

b= S h () o
27:” Zn: nh (m,n)

= S ) v

The illumination offset .S’ can be accounted for by including
an additional variable S into the optimisation procedure (1),
subtracted from g(k,l). This does not change the equations
(10) and (11), by which the offset is estimated from the filter
coefficients.

III. METHOD

To validate the proposed method and assess its sub-pixel
accuracy, we have performed an experiment using synthetically
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generated images with known sub-pixel offsets.

A. Test Image Generation

A high-resolution image (10 times higher resolution than
the test images) was taken as the source scene. A number of
test scenes (shown in Figure 2) that contain different combi-
nations of texture, sharp detail and smooth areas at a range of
different scales were selected for this performance evaluation.
These scenes vary in high-frequency content, resulting in
different amounts of aliasing in the test images, from little
aliasing in image ’beach’ to a lot of aliasing in image ’bird’.

A simple model of the imaging process was used to
simulate the capture of lower resolution test images. The
imaging model consisted of area-sampling (any blurring due
to the optics’ Point-Spread Function (PSF) was assumed to be
insignificant in comparison to the degradation from the sensor
PSF — this assumption is not unrealistic for many consumer
cameras) and additive white Gaussian noise [20]. Creation of
test images in this way allowed for aliasing to occur providing
the opportunity to test the algorithms on aliased data, rather
than just with band-limited signals.

The 1300 x 1300 pixel grayscale source images with 8-bit
precision were filtered using a 10 x 10 box average to simulate
blurring during area-sampling, and then down-sampled by a
factor of 10 in each dimension to result in 124 x 124 pixel
test images (low-resolution images were cropped to avoid
edge effects from the filtering operation). Shifting the high-
resolution image by an integer number of pixels prior to
downsampling allowed for generation of low-resolution test
images shifted by fractional (in steps of 0.1) amounts of a
pixel.

Here, we test the ability of the method to register offsets
smaller than one pixel by registering a set of one hundred im-
age pairs with relative offsets ranging from (0, 0) to (0.9,0.9).

B. Measurements

The uncertainty in estimating the relative offsets is not
constant across the sub-pixel range. Registering image pairs
that relate by a small sub-pixel translation (close to zero) or a
translation of almost one whole pixel results in smaller MSE
than registering a pair of images offset by about half a pixel
(see Figure 4 for a typical error pin plot). Because there is no
prior knowledge about the distribution of the translations, we
estimate the performance of sub-pixel registration on average
by assuming that all sub-pixel translations are equally likely
to occur. Average performance can then be calculated simply
by averaging the squared error over all possible sub-pixel
translations — 100 translations, ranging from (0,0) to (0.9, 0.9)
for this experimental set-up.

Each pair of images with a unique offset was registered 100
times, each time with a different instance of white Gaussian
noise added to the images. A different pair of illumination gain
A and offset S constants were also used each time to adjust
the exposure of the target image. The gain constant was drawn
from a normal distribution with a mean of one and a standard
deviation of 0.1, and the offset constant was drawn from a
normal distribution with a mean of 0 and a standard deviation
of 25. The target image was clipped to only contain values
between 0 and 255 after the transformation.
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Fig. 4: Sub-pixel registration errors depicted as a pin plot for
image ’bird’ with no noise, using normalised cross-correlation
method.

To make the results easier to interpret, registration error
magnitude (12) was computed for each registration, and these
were averaged over the 100 repeated results for each possible
sub-pixel offset, and over all 100 sub-pixel offsets to give
expected sub-pixel accuracy when registering two images.

lell3 = (ua = d)* + (uy — )° (12)

The measurements were repeated at different noise levels.
We found the sub-pixel accuracy of registration to be very
sensitive to the noise level. To be able to compare the results
between the test scenes, different amounts of noise were added
in each case. This was achieved empirically by matching
the visual effect of noise on each scene; see Figure 3 for
an example — image ’bird’ required almost twice the noise
standard deviation in comparison to image ’face’ to achieve
the same level of contamination.

C. Methods for Comparison

To put the experimental results in perspective, we compare
them to three other popular methods: one standard iterative
method and two direct methods. We employ Lucas-Kanade
iterative registration [8] with bilinear interpolation for resam-
pling. A detailed description of implementation of this method
can be found in [21].

The two direct techniques that are used are the normalised
cross-correlation and a Fourier phase based method by Stone
et al. [22]. The Fourier phase method was chosen because it
works well in the presence of aliasing. Sub-pixel accuracy of
normalised cross-correlation was achieved by interpolating a
3 x 3 window around the function peak using a 2D second
order polynomial.

IV. RESULTS AND DISCUSSION

We have performed the experiment with the proposed
method using resampling filters of various sizes. We were able
to successfully recover the relative shift between the images
from the optimal filter coefficients according to equations 10
and 11, confirming our observations at the end of Section II-A.
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Fig. 5: Effect of noise strength on test images. Noise std stated in grayscale values.

Using filters of different sizes resulted in slightly different
degrees of accuracy.

We report the results for the 4 x 4 filter, as it had the
best performance relative to its computational complexity —
larger filters obviously require more computation. A plot of
root-mean-square registration error versus the noise standard
deviation can be seen in Figure 5. The registration error is
expressed as a fraction of the spatial pixel size (same as the
pixel pitch), whereas the noise standard deviation is expressed
in grayscale levels.

It can be observed that the proposed method can achieve
an accuracy of as high as 1% of a pixel in a low-noise
situation (left part of the graph). As the noise level increases,
the accuracy drops slightly to around 4% of a pixel (middle
part of the graph). At even higher noise levels, the accuracy
drops off more quickly, but at these noise levels the images
are quite heavily contaminated by noise, as can be seen from
Figure 3.

Comparing the results of the proposed method to that of
the other methods one can observe that it performs signif-
icantly better than the cross-correlation method, better than
Lucas-Kanade method and better than the Fourier phase-based
method, apart from images ’cat’ and ’bird’ with no added
noise. These are favourable results for the proposed method,
taking into consideration that it was twice as fast as normalised
cross-correlation and Fourier phase-based methods and eight
times faster than the iterative Lucas-Kanade method. All of
these methods, except Fourier phase-based method, see a linear
increase in execution time with an increase in image size.
Fourier phase-based method is in theory O(/Nlog/V); however,
because the transform is separable and image dimensions are
small, it also sees almost linear increase in execution time with
image size.
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V. CONCLUSION

Image registration is traditionally an optimisation problem
that makes use of interpolation as a crucial link between the
discrete and continuous domains. The use of interpolation
functions that are common in image processing, such as
piece-wise cubic polynomials for example, leads to a non-
linear objective function, the optimisation of which requires
an iterative solution. In the case of sub-pixel registration of
translated images, some direct methods also exist, but these
make certain assumptions that can limit the accuracy if the
assumptions do not hold. The optimal filter based image
registration proposed in this paper is an alternative two step
method for sub-pixel registration of translated images that does
not require iteration. The first step computes a resampling
filter that is a least-squares optimal predictor of the target
image using the pixel values of the reference image. The
second step estimates the translation between the target and
the reference from the filter coefficients. The method has a
linear-time computational complexity.

Experimental evaluation of the proposed method, using
synthetically generated images, demonstrated that its perfor-
mance is better than that of a number of other image regis-
tration methods for a range of scenes. It was shown that the
proposed method is capable of sub-pixel accuracy approaching
1% of a pixel in low-noise situations and 4% of a pixel
for moderate noise. The proposed method has been shown
to cope well with global illumination variations and is also
the fastest, by at least a factor of two, out of the methods
tested here. This method would be useful for a range of
applications that require fast alignment of shifted images, such
as image super-resolution, high-dynamic range reconstruction,
panorama stitching.
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APPENDIX

Equation 5 describes a resampling filter i, based on Keys’
cubic convolution interpolation kernel. The filter can be used to
”shift” a discrete sequence by resampling it on a uniform grid
which is offset by u. Because the interpolation kernel has finite
support (see Equation 4), the resampling filter has only 4 non-
zero coefficients. Assuming 0 < u < 1, these four coefficients
can be calculated by substituting m = {-—1,0,1,2} into
Equation 5:

hy, =[CC(—=u—1), CC(—u), CC(1 —u), CC(2 —w)] (13)

To show that Equation 6 is correct, we can substitute the
above filter coefficients into the right hand side of this equation
and simplify:

u :thu (m)
=—CC(—u—1)+CC(1—u)+2CC(2—u)

1
—(2|u1|3+2|u1|24|u1+2)
- (2|1u|3;|1u|2+1>

1 s 5
+2<2|2u|3+2|2u|24|2u+2)

1 5 5
= — ]_ — —
(w+1)" =3

2
3 5
+§(1—u)3—§(1—u)2+1

—(2—u)®+52—-u)*—8(2—u)+4

(u+ 1) +4(u+1)—2
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